B Online Appendix for “Making Decisions under Model

Misspecification”

The Online Appendix is structured as follows. In Section B.1, we prove the ancillary results
we use in deriving our main representation results. Section B.2 regroups the proofs of the
main representation results in the body of the paper. Section B.3 contains all the remaining
proofs. Specifically, in Section B.3.1, we prove all the results about misspecification attitudes
and neutrality (so those pertaining to Sections 4.2 and 4.3). Section B.3.2 includes the proofs
of the other results that appear in the body of the paper (Propositions 1, 6, and 8 as well as
Corollary 3). Section B.3.3 is devoted to the proofs of the results in Appendix A. In the final
Section B.4, we provide some additional material discussed informally in the main text. We
first show the irrelevance of convexity in the entropic model for the set @) (Section B.4.1). We
conclude by providing the axiomatization of our criterion with only one set @) (Section B.4.2).

In all appendices, we denote by By (32) the space of ¥-measurable simple functions ¢ : S —
R, endowed with the supnorm || ||_.. Given an interval 7" in R, we denote by By (X,T) the
subset of By (X) consisting of all functions ¢ that take values in 7. The norm dual of By (X)
can be identified with the space ba (X) of all bounded finitely additive measures on (.5, X).
Given a subset C' C A, the effective domain of f : C — (—o0, 00], denoted by dom f, is the set
{pe C: f(p) < oo} where f takes finite values. Recall that the function f is grounded if the
infimum of its image is 0, i.e., info f = 0. With the usual abuse of notation, throughout the

paper, we denote by k£ both the real number and the constant function taking value k.

B.1 Ancillary results for the main representation results

We here prove the two ancillary variational lemmas we will use in proving Theorem 1.

Lemma 4 Let - be a variational preference represented by V : F — R defined by
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and let p € A. If 7~ is unbounded, then the following conditions are equivalent:
(i) ¢(p) = 0;
(1) :z:? = f forall f € F;

(i11) for each f € F and for each x € X

x>x§’; — x> f



Proof We actually prove that (i)=(ii)<=>(iii), with equivalence when 77 is unbounded.

(i) implies (ii). Let f € F. It is enough to observe that ¢ (p) = 0 implies

pEA

V (2}) = u (2}) Z/U(f)dﬁ+0(z3) zmin{/u(f)dp+c<p>} =V (f)

yielding that x’; = f.

(ii) implies (iii). Assume that xfc > fforall f € F. Since 7 is complete and transitive, it
follows that if z = 2%, then z ~ f.

(iii) implies (ii). By contradiction, suppose that there exists f € F such that f > :z:?. Let
xs € X be such that x; ~ f. This implies that x; >~ m]} and so z; > f, a contradiction.

(ii) implies (i). Let 7 be unbounded. Assume that xi’: Z fforal feF ie, V(f) <
Ju(f)dp for all f € F. So, p corresponds to a SEU preference that is less ambiguity averse
than 2. By Lemma 32 of Maccheroni et al. (2006), we can conclude that ¢ (p) = 0. [ |

We denote by A< (Q) the collection of all probabilities p which are absolutely continuous
with respect to @, that is, if A € ¥ and ¢ (A) =0 for all ¢ € @, then p(A) = 0.

Lemma 5 Let - be a variational preference represented by V : F — R defined by

vin-uin{ [una+en]  vwer
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If 7~ is unbounded, then the following conditions are equivalent:

(i) For each f,g € F
[Eg = fr~yg

(11) domec C A< (Q).

Proof We begin by observing that in proving the two implications, () being either compact or

convex plays no role.

(i) implies (ii). Let p € A\A<(Q). It follows that there exists A € 3 such that ¢ (4) =0
for all ¢ € Q as well as p (A) > 0. Define I : By (X) — R by I () = minyea { [ ¢dp + ¢ (p)} for
all ¢ € By (X). Since u is unbounded, for each A € R there exists ), € X such that u (x)) = .
Similarly, there exists y € X such that u(y) = 0. For each A € R define f\ = x,Ay. By
construction, we have that f) g y for all A € R. This implies that I (A14) =V (f\) =V (y) =
I(0) =0 for all A € R. By Maccheroni et al. (2006) and since u is unbounded and p (A) > 0,
we have that

)= s {f - | sodp} > sup {7 (ALs) — Ap(4)} = oo
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Since p was arbitrarily chosen, it follows that dom ¢ C A< (Q).

(ii) implies (i). Assume that dome C A< (Q). If f g g, then u (f)
that u (f) £ u (g) for all p € A< (Q) and, in particular,

[1©

u(g). This implies

vin—mipf [unarrcw) = win { [unarscm)

peA PEAS(Q
= mi d = mi d =V
i { fu@ap+ e} —mpd [u@arsen | -v
proving that f ~ g. |

B.2 Proofs of the main representation results

In this appendix, we provide the proofs of our representation results (Theorem 1 and Proposition
7).

Proof of Theorem 1 We only prove (i) implies (ii), the converse being routine.?® We proceed
by steps.

Step 1. 7§ agrees with ¢, on X for all Q,Q" € Q. In particular, there exists an affine and
onto functzon u: X — R representing g, on X for all Q) € Q.

Proof of the Step Let Q,Q" € Q be such that () 2 @'. Note that 7, and 7, restricted to
X, satisfy weak order, continuity and risk independence.?” By Herstein and Milnor (1953) and
since >‘ and **Q, are non-trivial, there exist two non-constant affine functions ug, ug : X — R
which represent Zo and g, respectively. Since {NQ} Qco is monotone in model ambiguity,

we have that
uq (v) > uq (y) = ug (v) > ug: (y)

By Corollary B.3 of Ghirardato et al. (2004), ug and ug are equal up to an affine and positive
transformation, proving that ¢ and 7, agree on X. Next, fix g € A?. Set u = ugz. Given any
other ¢ € A7, consider () € Q such that ) O {7, ¢}. By the previous part, it follows that ug,
uy and ug are equal up to an affine and positive transformation. Given that ¢ was arbitrarily
chosen, we can set u = u, for all ¢ € ). Similarly, given a generic () € Q, select ¢ € ). Since

Q 2 {q}, it follows that we can set u = ug, proving the main part of the statement. By Lemma

36 The only exception is the proof that the representation implies subjective Q-coherence. This is a consequence
of Theorem 2.4.18 in Zalinescu (2002) paired with Lemma 32 of Maccheroni et al. (2006).

37To prove that ia satisfies risk independence, it suffices to deploy the same technique of Lemma 28 of
Maccheroni et al. (2006) and observe that 27, is complete and transitive, that is a weak order, on X. This
yields that

. 1 1 1 1 Ve X
way:>2x+2z 2y+2z S

By Theorem 2 of Herstein and Milnor (1953) and since ¢, satisfies continuity, we can conclude that 7, satisfies
risk independence.



59 of Cerreia-Vioglio et al. (2011b) and since ¢, is non-trivial and unbounded for all @ € Q,

we can conclude that u is onto. O

Step 2. For each q € A there exists a normalized, monotone, translation invariant and concave
functional I, : By (%) — R such that

fZng =1, (u(f) 2 L (ulg) (40)

Moreover, there exists a unique grounded, lower semicontinuous and convex function c, : A —
[0, 00] such that

Lo =] [etrram}  vecnE) (41)
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Proof of the Step Fix ¢ € A?. Since Z; is an unbounded dominance relation which is complete,
we have that /Z; is axiomatically a variational preference. By the proof of Theorem 3 and
Proposition 6 of Maccheroni et al. (2006) and Step 1, there exists an onto and affine function
u, + X — R, which can be set to be equal to u, and, given u, a unique, grounded, lower

semicontinuous and convex function ¢, : A — [0, 00] such that (40) and (41) hold. O
Define ¢ : A x A7 — [0,00] by ¢(p,q) = ¢, (p) for all (p,q) € A x A”.

Step 3. For each Q) € Q we have that f ) g if and only if f 2, g for all ¢ € Q. In particular,

we have that

PEA

o9 <= mlg{/U(f)deLC(p,Q)} > min{/U(g)dp+C(p,Q)} VgeQ - (42)
Proof of the Step Fix Q) € Q. Since {,?fQ} gco is monotone in model ambiguity, we have that

fZo9 = fZ,9 V€@

Since {NQ} gco is separable, we can conclude that f =7 g if and only if f 227 g for all ¢ € Q.
By Step 2 and the definition of ¢, (42) follows. 0

Step 4. ¢ agrees with Zq on X for all Q € Q. Moreover, Zq is represented on X by the
function U of Step 1.

Proof of the Step Fix Q € Q. Note that 7, and Zq, restricted to X, satisfy weak order,
continuity and risk independence. By Herstein and Milnor (1953) and since >‘Q is non-trivial,
there exists a non-constant affine function vg which represents Zq. By Step 1, 7, is represented

by u. Since (2, Zq) jointly satisfy consistency, it follows that

u(r) > u(y) = vq (r) > v (y)

By Corollary B.3 of Ghirardato et al. (2004), vg and u are equal up to an affine and positive
transformation. So we can set vg = u, proving the statement. U



Step 5. For each () € Q there exists a normalized and monotone functional Ig : By(X) —
R such that

fZog=Ig(u(f)) > Ig(u(g))

Moreover, for each q € A we have that I, = fq and, in particular, ZZ; coincides with 7Z,.

Proof of the Step Fix Q € Q.*® By Step 4, ¢ is represented on X by the onto and affine
function u of Step 1. Since ¢ is solvable, for each f € F there exists z;o € X such that
[ ~q xso. Since Imu = R, we have that By (X) = {u(f): f € F}. Define I : By(X) — R
by Ig (¢) = u(zfq) where f € F is such that u (f) = ¢. Since 77 is a complete, transitive
and monotone binary relation, we have that I is well defined and monotone. Moreover, by

construction, we have that I (klg) = k for all k € R. By construction, note that

Ig(u(f)) > Ig(u(g) == u(rsq) >u(req) <= T1Q TQ Tgq <= fZQY

Next, fix ¢ € A”. By Step 2 and the previous part of the proof, we have that f — fq (u(f)) and
[+ I, (u(f)) represent, respectively, 2% and Z,. Since (ij’[;, ?\jq) jointly satisfy consistency and

the range of both functionals is R, we can conclude that there exists a (not necessarily strictly)
monotone function i : R — R such that I, (u(f)) =h <fq (u (f))) for all f € F. Since I, and

I, are normalized and Im u = R, we have that & (u (z)) = u (z) for all z € X, proving that h is
the identity. Since ¢ € A was arbitrarily chosen, it follows that I, = fq and, in particular, 7
coincides with /7, for all ¢ € A“. O
Step 6. ¢(p,q) =0 if and only if p=gq.

Proof of the Step By Steps 2 and 5, we have that [, = fq and 77 coincides with 7, for all
g € A?. By Lemma 4 and since 77, is subjectively {q}-coherent, we have that argminc (-, q) =
argmin ¢, = {q}. O
Step 7. domc (-, q) € A< (q) for all g € A7

Proof of the Step By Step 2 and Lemma 5 and since 7% is objectively {q}-coherent, we can

~q

conclude that dome (+,q) C A< (¢) for all ¢ € A”. O

Step 8. c is jointly lower semicontinuous.
Proof of the Step Define the map .J : By (X) x A” — R by J (¢,q) = I, (¢) for all p € By (%)
and for all ¢ € A?. Observe that, for each (p,q) € A x A7,

¢(p,q) =¢q(p) = sup {fq (@)—/wdp} = sup {J(%q)—/wdp} (43)

©EBY(D) p€BH(X)

We begin by observing that J is lower semicontinuous in the second argument. Note that for

38We follow the strategy proof of Proposition 1 in Cerreia-Vioglio et al. (2011a).
39The set A< (g) contains all p in A such that if A € ¥ and ¢ (A4) = 0, then p (A) = 0.



each p € By (X) and for each ¢ € A

J(p,q) = fq () =u(xsy) where f € Fisst. o =u(f)

Fix ¢ € By (X) and t € R. By the axiom of lower semicontinuity, the set
{geA”:J(pq) <ty ={qeA":u(@)>u(zs)} ={a€A” 27} xs4}

is closed where x € X and f € F are such that u (z) =t as well as u (f) = ¢. Since ¢ and t were
arbitrarily chosen, this yields that J is lower semicontinuous in the second argument. Since
J is lower semicontinuous in the second argument, the map (p,q) — J (¢,q) — [ ¢dp, defined
over A x A7, is jointly lower semicontinuous for all ¢ € By (X). By (43) and the definition of
¢, we conclude that c is jointly lower semicontinuous. U
Step 9. I (@) > infueq I, (@) for all ¢ € By (%) and for all Q € Q.

Proof of the Step Fix QQ € Q and ¢ € By (X). Since each fq is normalized and monotone and
u is onto, we have that I, (¢) € [minseg ¢ (s), max,cs ¢ (s)] € Imu = R for all ¢ € Q. Since
© € By (X), it follows that there exists f € F such that ¢ = u(f) and 2 € X such that
u(z) = infyeq I, (p). Note that Iy (u(f)) = I, (gp) > infoeq I, (9) = u(x) = Iy (u(x)) for all
q' € Q. By Steps 2 and 3, f 7, x. Since (i 0 ) jointly satisfy consistency, we have that
f 7o x. By Step 5, this implies that I (@) = I (u(f)) > Io (u(z)) = u(z) = inf,eq I, (),
proving the step. 4
Step 10. I (@) < infyeq I, (¢) for all o € By (%) and for all Q € Q.

Proof of the Step Fix Q € Q and ¢ € By (X). We use the same objects and notation of
Step 9. For each ¢ > 0 there exists x. € X such that u(z.) = u(z) +e. By Steps 2 and
3 and since infyeq I, (p) = u(z), it follows that for each € > 0 there exists ¢ € Q such that
I,(u(f) =1, (¢) < u(x:) = I, (u(z.)), yielding that f 75 e Since (2§, Zq) jointly satisfy
caution, we have that x. 77g f for all € > 0. By Step 5, this implies that u (z) + ¢ = u (z.) =
Io (u(z2) > I (u(f)) = Io () for all & > 0, that is, infueq I, (¢) = u(z) > Iy (), proving
the step. Il

Step 11. For each @) € Q we have that

fZog = ggg{/U(f)dergggc(p,q)} Zmin{/U(g)dpﬂIIgSC(p,Q)}

pEA

Proof of the Step Fix Q) € Q. By Step 5, we have that

fZeg = Ig(u(f)) > Ig(u(g))



By Steps 2, 9 and 10 and the definition of ¢, we have that

Io (uw(f)) = inf I, (u(f) = inf inf {/u(f)dp+c(p,q)} _ inf inf {/u(f)dp—i—c(p,q)}

qeQ qeQ peA PEA gEQ

= inf u(f)dp+ inf c(p, VfeF
peA{/ (f)dp+ infc(p Q)} f
Since c is lower semicontinuous, we can conclude that both infima are minima and the statement

follows. O

Step 1 proves that u is affine and onto. Steps 2, 6, 7 and 8 prove that ¢ is a divergence
which is convex in the first argument. Steps 3 and 11 yield the representation of ¢, and Zq
for all @ € Q. As for uniqueness, cardinal uniqueness of u is routine. As for ¢, assume that
the function ¢ : A x A” — [0, 00| is a divergence which is convex in the first argument and
represents 7, and Zq for all ) € Q. By Proposition 6 of Maccheroni et al. (2006) and since
Imu =R and 7 is a variational preference for all ¢ € A7, it follows that é(-,q) = c (-, q) for
all ¢ € A7, yielding that ¢ = ¢. ]
Proof of Proposition 7 We only prove (i) implies (ii), the converse being routine. We
keep the same notation and terminology of the statement and proof of Theorem 1. It is then
immediate to note that Steps 1-9 of that proof continue to hold here.*’ In particular, there
exist an onto and affine function u and a divergence ¢ : A x A7 — [0, 0o, which is convex in
the first argument, such that for each Q € Q

fZo9 <= géig{/U(f)dp+C(p7q)}Zmin{/U(g)derC(p,q)} Vge @ - (44)

pEA

proving (30). Moreover, for each Q € Q there exists a normalized and monotone functional
I : By (¥) — R such that

fZeg = Io(u(f)) = Ig (u(g)) (45)

and for each ¢ € A?

1, (¢) Zmin{/wdpw(p,q)} Vo € By (%)

pEA

Fix ) € Q. Given ¢ € By (X), note that the map ¢ — I, (p) is such that min,gp(s) <
I, (¢) < maxges ¢ (s) for all ¢ € @Q, yielding that the map ¢ — I, (¢) is an element of B (Q).
Consider the set

M={¢eB(Q):Jpe By(X) st. 6(q) =1,(¢) VqeQ}

40The axiom of caution has been used only in the proof of Step 10 and, as a consequence, Step 11. Moreover,
we only used @Q-coherence for singletons in Steps 6 and 7.
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Since I, (klg) = k for all k € R and for all ¢ € @, we have that M contains all the constants
klg where k € R. Define Jy : M — R by Jo (¢) = Io (p) where ¢ € By (%) is such that
¢ (q) = 1,(p) for all ¢ € Q. Note that for each ¢ € By (X) there exists f € F such that
u(f) = ¢. Assume that given ¢ € M there exist ¢,1 € By (X) such that ¢ (q) = I, (p) =
I, () for all ¢ € Q. Consider f,g € F such that u(f) = ¢ and u(g) = ¢. It follows that
I, (u(f)) = I;(u(g)) for all ¢ € Q. By (44) and consistency, this implies that f ~§ g and
f ~q g. By (45), it follows that Io (p) = I (u(f)) = Ig (u(g)) = I (), proving that Jg is
well defined. Next, assume that ¢,¢) € M are such that ¢ > 1. Let ¢, € By (%) be such
that ¢ (q) = I, (¢) and ¢ (q) = I, (¢)) for all ¢ € Q. Consider f, g € F such that u (f) = ¢ and
u(g) = 1. It follows that I, (u(f)) > I,(u(g)) for all ¢ € Q. By (44) and consistency, this
implies that f Zf g and f Z¢q g- By (45), it follows that

Ta (@) = I (0) = I (u(1)) 2 Iq (u(9) = Io (&) = Jo (4)

proving that .J, is monotone. Moreover, by construction, we have Jy (k1g) = Io (klg) = k for
all k£ € R, proving that jQ is normalized. By (45) and definition of jQ, we can conclude that

Fras e o (] [uan e }) 2o (win{ [u@arscir}) o)

We next extend Jg to the entire set B (Q). Define Jg : B (Q) — R by
Jo (@) =sw{Jo(¢):M3d<3}  VeBEQ

It is routine to check that .J, extends J; and is normalized and monotone. Moreover, by (46)
and since it is an extension, it satisfies (31), proving the implication. Uniqueness follows from

the same arguments of Theorem 1. |

B.3 Remaining proofs
B.3.1 Misspecification attitudes

Proof of Proposition 2 (i) is equivalent to (ii). Given a robust two-preference family Pg
and @ € Q, the arguments leading to (23) and (24) allow us to conclude that 227, and g have
the same uncertainty attitudes, yielding the equivalence. (ii) is equivalent to (iii). Consider
i € {1,2}. Since ¢; is a divergence, we have that p — C;(p,Q) is well defined, grounded
and lower semicontinuous. By assumption, p — C;(p, Q) is convex for all : € {1,2}. By
Propositions 6 and 8 of Maccheroni et al. (2006) and since u; and us are onto, the equivalence
follows. |

Proof of Corollary 1 (i) is equivalent to (ii). By Proposition 2, the equivalence follows at



each ) € Q, so does in general.

(ii) implies (iii). By Propositions 6 and 8 of Maccheroni et al. (2006) and since u; and us
are onto and c¢; and ¢, are divergences which are convex in the first argument, the implication
follows.

(iii) implies (iv). Since C; (p, Q) = mingeg ¢; (p, q) for all p € A, for all @ € Q, and for all
i € {1,2}, the implication trivially follows.

(iv) implies (ii). Fix @ € Q. Consider f 7Z; o z. Since Cy < Cy, this implies that

win{ [uar+cap@f 2 mn{ [+ 6.0} 200
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proving that f 2o « and, in particular, the implication. |

Before proving the next results, it will be useful to make few observations. Consider a robust
two-preference family Pg and fix Q € Q. By the proof of Proposition 2 (cf. (23) and (24)),
recall that for each f € F and for each z € X

fZor == [fZao® (47)

By Theorem 1, recall also that there exist an onto affine function v : X — R and a divergence

¢, convex in p, such that

rego =] funarceofzm{ [vhwrconl wee

and

fi@g¢$$g{/UUﬁm+%gdn®}zgg{/uwﬁm+%gdn®} (49)
In particular, it is easy to see that 7 is axiomatically a variational preference for all ) € Q.
By Theorem 3 and Proposition 6 of Maccheroni et al. (2006) and since each 7 is axiomatically
a variational preference, for each ) € Q there exists a unique grounded, lower semicontinuous
and convex function dg : A — [0,00] such that (49) holds with dg in place of C (-, Q)."
Moreover, by (7) of Maccheroni et al. (2006) and since C (p, @) = 0 for all p € @), we have that
dg < C(-,Q) < ég. By Lemma 4 and since each - satisfies subjective ()-coherence and since
Zq and Zf coincide on X, we have that dél (0) =coQ.
Proof of Proposition 3 (ii) implies (i). It is trivial. (i) implies (ii). We prove the implication
by only assuming that Py is sensitive. By Proposition 7 and since Py is sensitive, we have that

there exist an onto affine u : X — R and a divergence ¢ : A x A — [0, 0], convex in p, such

1 Recall that p — C (p, Q) might not be convex, yielding that a priori dg # C (-, Q).



that
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By Theorem 1 of Gilboa et al. (2010) and since 2y, is a dominance relation and satisfies

independence, we have that there exists a unique closed and convex set C' of A such that

frog e /u(f)dpz/u<g>dp Wec (51)

Consider f € F. Define now 2,2y € X by

peC qeQ | peA

u(if)zmin/u(f)dp and u(;zf):min{min{/u(f)dp+c(p,q>}}

By (51) and (50), we have that

[unazuiey wee = sryi — win{ [unarrewafzui) weQ

— ule) =wip fwin{ [u(Nap+ et} = ui).

qeQ | peA

By (50) and (51), we have that

min{/u(f)dp—i—c(p,q)}zu(fcf) Ve Q = fzopiy = /u(f)deu(:ﬁf) Vpe

pEA

— u(if):min/u(f)dpzu(if).

peC

Since f was arbitrarily chosen, we can conclude that u (27) = u (%), that is, min,ec [u (f)dp =
mingeo {minyea { [ w (f)dp+c(p,q)}} for all f € F. Since u is onto, this implies that
By (2) ={u(f): f € F}and Ig (p) = minyec [ @dp for all ¢ € By (X) where I : By (¥) — R
is defined as

qeQ | peA

Ig (¢) = min {min {/sodp + ¢ (p, q)}} = min J, (p)  Vp € By(X)

and I, (¢) = minyea { [ @dp + ¢ (p,q)} for all p € By (X) and for all ¢ € Q. By Theorem 2.4.18
in Zalinescu (2002) and since p — ¢ (p,q) is lower semicontinuous and convex in p and such
that argminc (-, q) = {q} for all ¢ € Q, we have that

co() = co (quQan (0)) = CO (quQ:Iq(O):IQ(O)@]q (0)) = 3]Q (0) =C
proving (25).
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Finally, by Steps 5, 9, and 10 of the proof of Theorem 1, if Py is robust, then f 2Z¢ g if and

only if I (u(f)) > Ig (u(g)). Since I (¢) = minyec [ @dp for all ¢ € By (X) and C' = coQ),
we have that I (p) = minyesg [ pdp = minyeq [ @dp for all ¢ € By (X), proving (26). [ |

Proof of Proposition 4 (i) is equivalent to (ii). Assume that /Z¢, satisfies c-independence.
By (47), we have that if f € F, z,y € X, and a € (0, 1], then

fZor <= fZor <= af+(l-a)yZoart(l—-a)y <= af+(l-a)y Zqar+(l—a)y

proving that - satisfies c-independence. If 77 were to satisfy c-independence, then the same

argument, inverting the roles of 77 and 27, would yield the opposite implication.

(ii) implies (iv). By Propositions 6 and 19 of Maccheroni et al. (2006) and since u is onto,
dél (0) = ¢oQ, and ¢ satisfies c-independence, we have that dg > C (-,Q) > dg = 00,
proving the first part of the implication. Since () is compact, if () is convex, then co@Q) = @)

and, in particular, 69 > C (-, Q) > d¢, proving the second part.
(iv) implies (iii). Since 00 < C'(+, Q) < dg, we have that for each f € F

wig{ [u()dp+duq 0} < min{ [u(navs o} <min{ [+ som]

Since for each f € F

géig{/u(f)deramQ(p)} :prg;%/u(f)dpz%ig/u(f)dp=ggg{/U(f)der%(p)}

this implies that

win{ [wn)ap+C 0@} ~nig [u(nag vrer

pEA q€

By (49), the implication follows.

(iii) implies (ii). It is routine.

(iv) is equivalent to (v). Since C (p, Q) = mingyeg ¢ (p,q’) < ¢(p,q) for all p € A and for all
q€Q,ifdzg < C(+,Q) < dg, then co = dzg (p) < C (p, Q) < ¢(p,q) for all p ¢co() and for all
q € Q. Vice versa, since C' (p, )) = mingeq ¢ (p,¢’) for all p € A, if ¢ (p, ¢) = oo for all p ¢co@)
and for all ¢ € @, then C (p, Q) = 00 = de (p) for all p ¢co@). Since 0 < C' (-, Q) < dg, this
implies that 00 < C'(+, Q) < dg. [ |
Proof of Theorem 2 We prove the “only if”, the converse being obvious. Consider dg as
defined above. Define 2¢ by f 2§ ¢ if and only if [u(f)dg > [u(g)dq for all ¢ € c6Q. By
hypothesis, the pair (NQ, NQ) satlsﬁes consistency.*? Let f 26 . Then, there exists ¢ € coQ)

21t is immediate to verify that f 2¥ ¢ if and only if [u(f)dg > [u(g)dg for all ¢ € Q.
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such that w(z%) = [u(f)dg < u(z). Hence, 2 »¢ z%. By Lemma 4 and since d,' (0) =coQ,
we have that  >¢ f. So, the pair (Zg, EJQ) satisfies default to certainty. By Theorem 4 of
Gilboa et al. (2010), this pair admits the representation

fzzgg<:>/wf>dqz/u<g>dq Vg € @Q

and

frog e mm/umdqz min/u@)dq

q€ToR q€coqQ
Note that, in the notation of Gilboa et al. (2010), we have C' =¢6() because C' is unique up to
closure and convexity and €oQ is closed and convex. Since mingeq [ u (f)dg = mingessg [ u (f) dg
for all f € F, the statement follows. [ |
Proof of Corollary 2 (i) implies (ii). Fix @ € Q. By Proposition 3 and if /77, is misspecifi-

cation neutral at (), then
fzps < [unaez [u@a vaeq

Since (ia, i‘JQ) jointly satisfy consistency, 7o is misspecification neutral at Q).

(ii) implies (iii). Consider ¢ € A?. By Theorem 2 and since 77, is misspecification neutral,
fZggifandonly if [w(f)dg > [u(g)dg. In other words, 7, is represented by the functional
Vy + F — R defined by

v -uin{ [uatigm)  vrer

pPEA

By Proposition 6 of Maccheroni et al. (2006) and since p — ¢(p, q) is grounded, lower semi-
continuous and convex and u is onto, we have that c (-, ¢) = d,, proving the implication.

(ili) implies (i). Fix @ € Q. By (48) and since ¢ (p,q) = d¢q (p) for all p € A and for all
q € A7, it follows that f =¢ g if and only if [ (f)dg > [u(g)dq for all ¢ € Q, proving that
Z¢) satisfies independence and, in particular, is misspecification neutral at Q.

Finally, (27) is proved in (iii) implies (i) while (28) follows from point (ii) paired with
Theorem 2. |
Proof of Proposition 5 Consider first A € (0, 00). By Lemma 15 of Maccheroni et al. (2006),
¢(-,q) = ADy (+||q) is Shur convex (with respect to g) for all ¢ € Q). Consider A, B € ¥.. Assume
that ¢ (A) > ¢(B) for all ¢ € Q. Let ¢ € Q. Consider z,y € X such that  >¢ y. It follows
that

[rtweaman= [owasp)a

for each v : R — R increasing and concave. By Theorem 2 of Cerreia-Vioglio et al. (2012) and

12



since ¢ was arbitrarily chosen, it follows that

PEA pe

min{ [y ap+ 00, 6l b = min { [ By dp+ 3Dl ) e

yielding that xAy ¢, *By and, in particular, vAy Zq zBy. If A = oo instead, we have that
c(-,q) = ADy (-||q) = gy () for all ¢ € Q. This implies that (18) takes the max-min form over
the set (), which trivially implies bet-consistency. [ |

Functional approach for ;7o In the Introduction we outlined a “protective belt” interpre-

tation of decision criterion

o d .
Vo (f) gégl{/U(f) p+rqr£6(p,q)}
In Proposition 2 we observed that p — C' (p, Q) = mingeq ¢ (p, q) is an index of misspecification
aversion: the higher the fear, the lower the index. This misspecification index has the following
bounds

0<minc(p,q) <dg(p) VpeEA (52)

q€Q
The upper bound d¢ suggests that fear of misspecification is absent when the misspecification
index is dg — e.g., when A = 400 in (19) — in which case criterion (18) takes a Wald (1950)

max-min form

Vo (7) =iy [ u(f)dg (53

qe@
This max-min criterion characterizes a decision maker who confronts model misspecification,
but is not concerned by it and exhibits only aversion to model ambiguity. In other words, this
Waldean decision maker is again a natural candidate to be (model) misspecification neutral for
7¢- The next limit result further corroborates this insight by showing that, when the fear of

misspecification vanishes, the decision maker becomes Waldean.*?

Proposition 10 If Q) is compact, then for each f € F,

limmin{/u(f)dp—l—)\rqréiélR(qu)} :rqréicrgl/u(f)dq

AToo peEA

Proof First, note that min,cq R (p||¢) = 0 if and only if p € ). Indeed, we have that

13233(17”61):0 — J7e@Qst. R(p/lg) =0 <= Fge€Qst.p=g

#3To ease matters, we state the result in terms of criterion (19). A general version can be easily established
via an increasing sequence of misspecification indexes.

13



Define A\, = n for all n € N. For each n € N, we have )\, min g R (p||g) = 0 if and only if
p € Q. So, for each p € A,

0 ifpeq@

lim A, min R =
im A, min R (p|lq) {+OO fp 20

Since A, mingeo R (p||g) = 0 for each n € N if and only if p € @, by Proposition 5.4, Remark
5.5, and Theorem 7.4 of Dal Maso (1993) we have

n peA

limmin{/u(f)dp—l—)\nrqréicrle(qu)} :Iqréiél/u(f)dq VfeF

Finally, by (52), we have that for each f € F

i [0 < i { [ () o+ 0 min R 0l |

qeQ n  peEA
<l i dp + Amin R < mi / d
< tmmip{ [ u(Hdp+ amin R Gl b < min [ (9
yielding the statement. |

B.3.2 Remaining results

The proof of Proposition 1 follows immediately from the following lemma. Here, as usual, ¢
is extended to R by setting ¢ (t) = +oo if t ¢ [0,00). In particular, ¢* is real valued and

increasing.

Lemma 6 For each Q C A% and for each A € (0,00),

522{/u(f)derA;gchMpllq)} :’\qi&fgigg{”—/cb* (n—@) dq}

forallu: X — R and all f: S — X such that uo f is bounded and ¥-measurable.

Proof By Theorem 4.2 of Ben-Tal and Teboulle (2007), for each ¢ € A” it holds

;gg{/fdp+D¢(qu)} = sup {n—/qﬁ* (n—2¢) dq}

14



for all ¢ € L (q). Then, if uo f is bounded and measurable, then uo f € L™ (¢) for all ¢ € A7,
it follows that

wt { [urap+ 20,610} =3 { [P+ Dol

pe o [ (=550 g

for all A > 0, as desired. By taking the inf over ) on both sides of the equation, the statement
follows. u

Proof of Proposition 6 We only prove (i) implies (ii), the converse and uniqueness being
routine. We keep the notation of the proof of Theorem 1. Compared to that result, we only
need to prove that ¢ is jointly convex. Fix ¢ € By (%), ¢,¢' € A% and A € (0,1). By model
hybridization aversion and since u is affine, we have that

J ((,0, /\q + (1 - )\) q’) =Uu (Iﬁ)\q_,_(l_)\)q/) S u ()\ZL‘ﬁq + (1 - )\) ZL’f’q/)
= Au(gq) + (1= A u(rrg) = AT (p.0) + (1 =A) T (¢,4)

where f € F is such that u (f) = ¢. Since ¢, ¢, ¢' and \ were arbitrarily chosen, this yields
that J is convex in the second argument. Since J is convex in the second argument, the map
(p,q) — J(p,q) — [ @dp, defined over A x A7, is jointly convex for all ¢ € By (X). By (43)
and the definition of ¢, we conclude that ¢ is convex, proving the implication. |
Proof of Corollary 3 (i) implies (ii). By the definitions of robust and sensitive, it is immediate.
(ii) implies (iii). A careful inspection of the proof of (i) implies (ii) in Theorem 1 reveals that
we only used ()-coherence restricted to singletons in Steps 6 and 7, proving the implication.
(iii) implies (i). It is implication (ii) implies (i) of Theorem 1. As for uniqueness, given the
equivalence between (i) and (iii), it follows again from Theorem 1. [ |
Proof of Proposition 8 We begin by making two observations. It is well known that, given

a continuous function F : () — R,

i " / 06 (F (@) dug (0)) = _in F (o) =miy (3 (54)

£0+ qESupp pQ q€Q
and
v pQ

ot ( [ octr @)dng) = min { [ Fav+ €rvlug) | (55)

where ¢¢ (1) = —e e forall t € Rand £ > 0. Fix f € F and A € (0,00]. If A < oo,

then set F) (¢) = minpea { [u (f)dp+ AR (p||q)} = 3" ([ éx (w(f)) dg) for all ¢ € Q, where
ox (1) = —e~x! for all t € R. If A = oo, then set Fy (¢q) = Ju(f)dg for all ¢ € Q. Since each

f € F is finitely valued, it is immediate to see that in both cases F) is continuous.
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By (54), (34) follows. By Proposition 12 of Maccheroni et al. (2006) and (55) and since
lime oo ER (V||pg) = 00 if v # pg and lime o ER (v||pg) = 0 if v = pg, (35) follows. By (35),
we have that

i V3 () = [ (min{ [ w00 0) + ARGl | ) a0
By Proposition 12 of Maccheroni et al. (2006) and since limy_, AR (p||q) = oo if p # ¢ and
im0 AR (pllg) = 0 if p = g, we have that limy_,o F) (¢) = [u(f)dg = Fx (¢) for all ¢ € Q.
By the Lebesgue Dominated Convergence Theorem (applied to any sequence in {F)\}, g o))
and since {F},¢ g o is uniformly bounded, the second equality of (36) follows. The first has

a similar proof and we omit it. |

B.3.3 Appendix A

Proof of Lemma 1 Set 7' = intImu. Since u is non-constant, 7" is a non-empty interval.
Without loss of generality, we assume that 0,1 € T. Otherwise, it is enough to replace u
with @ = au + b, where a,b € R and a > 0 are such that 0,1 € intImu. Accordingly, we
replace ¢ with ¢ : Im@ — R defined by ¢ (t) = ¢ (?) for all t € Ima. These changes and
transformations yield ordinally the same V' (it becomes aV/ + b) and leave the properties of u
and ¢ unchanged, but with 0,1 € int Im .

1. We prove the “only if”, the converse being obvious. Since 77 satisfies convexity, it has
convex upper contour sets, i.e., given any f,g,h € F,if f =~ hand g 77 h, thenyf+(1 —~)g = h
for all v € (0,1). Consider an essential event £ and define a = mingeq ¢’ (E) € (0,1). Define
F:T xT — R by, for each (t,s) e T x T,

F(t,s) =" (agp(t) + (1 a)d(s))

The set D< = {(t,s) € T x T :t> s} is convex and has a non-empty interior. Consider
(t,s),(t,s") € Dc and v € (0,1). Consider also z,z’,y,y" € X such that u(x) =t, u(2') =1,
u(y) = s, and u(y') = . Since (t,s),(t',s’) € D< and 7 is represented by V', defined
as in (39), we have V (zEy) = F (t,s) and V (¢/Ey’) = F(t',s'). Similarly, we have that
Fyt+ (1=t vs+ (1 —7)s) = V(2"Ey") where 2" = vz + (1 — )2’ and ¢ = vy +
(I=7y.
Fyt+ 1=yt vs+ (1 —7)s) >min{F (t,s),F (t,s')}, proving that F' is quasiconcave on
D<. Since D< has non-empty interior, there exist two open subintervals 7", 7" C T such that

Since 7~ has convex upper contour sets and V represents it, we conclude that

T" x T" C D<. Since ¢ is strictly increasing and F' is quasiconcave on D<, we have that F' is
quasiconcave on 7" x 7" and so is ¢ o F'. By Theorem 2 of Debreu and Koopmans (1982), we

conclude that ¢ is concave.**

#4n the language of Debreu and Koopmans, set X =T, Y =T, f = —a¢ and g = — (1 — a) ¢. By their
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2. Also for this point we prove the “only if”, the converse being obvious. Define I :
By (%, Imu) — R by I(p) = mingeg ¢ * ([ ¢ (¢)dq) for all ¢ € By(E,Imu). Since ¢ is
strictly increasing and continuous, it is obvious that [ is normalized and monotone. Since -
is represented by V', defined as in (39), it follows that V' = I o u represents 7. By Theorem
4 of Cerreia-Vioglio et al. (2014) and since 7 satisfies weak c-independence, I is translation

invariant. Define also
T.={teT:t+reT}=Tn0(T-1)

Since T' is open, T, is an open subinterval of 7' C Imwu and 0 € T, for all » € T. Define
¢o: T, — Rand ¢, : T, — Rby ¢ (t) = ¢(t) and ¢, (t) = ¢ (t + r) for all t € T,.. By definition
of I and because it is translation invariant, we have, for each (t,s) € D< NT, x T,

F+r,s+r)=1((t+r)1lg+(s+7)1lg)=1(tlg+slg)+r=F(ts)+r
that is,

¢;1 (04¢7° (t) + (1 - Oé) ¢r (3))

d M (ap(t+r)+(1—a)p(s+71)) -7
¢ (ap (t) + (1 —a)¢(s))

By Lemma All in Wakker (1989) and since ¢ is strictly increasing and continuous and r was
arbitrarily chosen we conclude that, for each r € T, there exist u,, A, € R with yu, > 0 such
that ¢, (t) = ¢ (t) + N\, for all t € T,. Define p: T — (0,00) and A : T'— R by A (r) = A,
and 1 (r) = p.. We have that ¢ (t+7) = u(r) ¢ (t) + A(r) for all t € T, and all r € T, i.e.,
there exist A\, : T'— R such that, for all t,r € T with t +r € T,

¢(t+r)=p(r) o) +A(r)

By p. 3233 of Aczel (2005), it follows that either ¢ (r) = ar + ( for some «, 5 € R with o > 0
or ¢ (r) = ae? + [ for some «, 5,7 € R with ay > 0. [ |

Proof of Lemma 2 Define I : By (3, Imu) — R by I (p) = mingeg ¢~ ([ ¢ () dg’) for all
¢ € By (3,Imwu). Call k£ € int Imu. By construction and by points 1 and 2 of Lemma 1, [ is
normalized, monotone, quasiconcave, and translation invariant. In particular, it is concave and
so is ¢ which is also CARA. Being represented by V' = [ o, 7~ is thus a variational preference.
Define J : By (Z,Imu) x Q" — R by J(p,¢) = ¢ ([ ¢ (p)dd) for all ¢ € By (Z,Imu)
and all ¢ € Q'. It is well known that J (-, ¢’) is normalized, monotone, translation invariant,
concave, and such that 0.J (-, ¢') (k) = {¢'} for all ¢ € Q)'. Clearly, I (¢) = mingeq J (p,¢’) for
all ¢ € By (X,Imu). By Theorem 2.4.18 in Zalinescu (2002) and since ¢’ — J (+,¢’) is lower

Theorem 2, it follows that either f or g is convex. Either way, since a € (0,1), ¢ is concave.
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semicontinuous, we have that

©0Q'= 0 (Uye0J (-, ¢') (k) =0 (Ugeq stng)=1000J (-, q') (k) = OI (k) (56)

We now prove the “only if”. By Jensen’s inequality and since ¢ is concave, we have that
x - 93? implies x = f for all ¢ € Q. By single-preference subjective (Q-coherence and since V'
represents -, we conclude that ¢’ € co@ for all ¢’ € ', i.e., Q' C co@ and co@)’ C co@. As for
the opposite inclusion, by single-preference subjective ()-coherence, if p € €o(), then for each
f € F and for each x € X

T - x’} — x> f

By Lemma 4 and its proof, this means that ' 27 f for all f € F,ie., V (f) < Ju(f)dp for all
f € F. So, p corresponds to a SEU preference that is less ambiguity averse than ~. By Lemma
32 of Maccheroni et al. (2006), we conclude that p € 91 (k) = @0Q’, proving that 6@’ O ToQ).
As for the “if”, by (56) and Lemma 32 of Maccheroni et al. (2006), we have

peAisst.ah o f VfeF <= pedl(k)=rcoQ =7coQ

In words, p satisfies condition (ii) of Lemma 4 if and only if p € ¢6Q). By Lemma 4 and its
proof, this implies that p satisfies condition (iii) of Lemma 4 if and only if p satisfies condition
(ii) of Lemma 4 if and only if p € ToQ), proving that = satisfies single-preference subjective

(-coherence. [

Proof of Lemma 3 As the converse is trivial, we only prove that (i) implies (ii). By the same
techniques of Proposition 3 of Ghirardato et al. (2003), there exist a non-constant continuous

function v : X — R and a non-empty compact subset )’ of A such that - is represented by
V : F — R defined by

7 (f) = min / o (f)dg (57)

qeQ’
where 0 < mingc ¢’ (E) < 1 for some E € 3. By usual separation arguments, Q" = 6@’
is the only non-empty compact and convex subset of A for which (57) holds. Chateauneuf et
al. (2005) show that monotone continuity guarantees that ()’ consists of (countably additive)
probability measures. Since 7~ is a continuous and nontrivial rational preference, there is a
non-constant affine u : X — R that represents 7 on X. Since v also represents 7~ on X, we
conclude that v = ¢ o u where ¢ : Imu — R is strictly increasing and continuous. This proves
that u = ¢! o v is continuous. It follows that V (f) = mingeq [ ¢ (u(f))dq for all f € F.

Since ¢ is strictly increasing and continuous, the functional V' : F — R defined by

V()= (mg / ¢(U(f))dq’) = min 5" ( ot (f))dq’)

represents -, proving the implication. |
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Proof of Theorem 3 As the converse is trivial, we only prove that (i) implies (ii). Lemma 3,

along with Lemmas 1 and 2, imply that the functional V' : 7 — R defined by

V(f)= Iqré1(3¢ (/¢ )

represents 2~ and ¢ : Imu — R is strictly increasing, continuous, CARA, and concave. In other
words, for each t € Im u we have either ¢ (t) = at+b witha > 0 and b € Ror ¢ (t) = —ae M +b
where a, A > 0 and b € R. By the results of Section B.4.1 (below), we conclude that

Vv = mi dp + A\ mi
(f) I]}gg{/U(f) p+ I;ggR(qu)}
represents 7, as desired (when ¢ is linear, this corresponds to A = 00). Finally, points 1-4 are

routine. n

B.4 Additional material

B.4.1 Non-convex set of structured models

Let us consider two decision makers who adopt criterion (19), the first one posits a, possibly
non-convex but compact, set of structured models () and the second one posits its closed convex
hull co ). So, the second decision maker considers also all the mixtures of structured models
posited by the first decision maker. Next we show that their preferences over acts actually agree.
We deal with the case A € (0,00), being A = oo trivial. It is thus without loss of generality
to assume that the set of posited structured models is convex for our entropic specification.
Before doing so we prove formula (20). Observe that given a compact subset Q C A, be that

convex or not, we have

wig { [ u(7)dp+ Amin R pllo) | = migmin { [0 () o+ AR o) |

pEA PEA ¢€Q

:minmin{/u(f)dp—l—)\R(pHQ)}

qeQ peA

- (o)

where ¢, (t) = —e > for all t € R and A > 0. Observe that the next result, as the equalities
above, does not rely on the unboundedness of .

Proposition 11 If Q) C A% is compact, then for each f € F

min{/u(f)dp+mq%i£1a(p||q)} :ggg{/u(f)dpmqg%z%(qu)}

pEA
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Proof First observe that co@ C A?. Indeed, since () is a compact subset of A, the set
function v : ¥ — [0, 1], defined by v (£) = ming,qq(E) for all £ € ¥ is an exact capacity
which is continuous at S. This implies that () C corerv C A?, yielding that co () C corev C A°.
Given what we have shown before we can conclude that

wig{ [ () dpm;ggmpnq)} — oy’ ([ ot (f))dq>
fovins
~ort (i ([ or0 )

iy 47 ( [ortutn) dq)

proving the statement. |

After (22), we claimed that the Gini criterion is a monotone version of the max-min mean-
variance criterion. To be more precise, given a probability ¢ € A% and a weight 1/2\ > 0
for the variance, the mean-variance criterion is not monotone over its entire domain, but it is
normalized, translation invariant, and monotone in an area containing the constant functions
(see Theorem 24 and its proof of Maccheroni et al., 2006). At the same time, the variational
preference with cost function the Gini index Ax%(:||¢) is monotone and coincides with the
mean-variance criterion over such an area. A similar argument, mutatis mutandis, holds for the
max-min mean-variance criterion and our formula (21). This allows us to see the corresponding

variational criteria as a monotonization of the corresponding mean-variance ones.

B.4.2 Representation with fixed ()

In this appendix, we provide a foundation of our main criterion by keeping () fixed, compact
and convex. The primitive will be a pair (2§, Zo) = (Z*,7) with Q fixed where Z* is an

~ )~

unbounded dominance relation, 7~ is a rational preference, both are ()-coherent and jointly
satisfy caution and consistency. The proof is based on two pillars. The first step (Section
B.4.2) proves that ~—* admits a multi-variational representation which can further be refined
to be parametrized by @), the second step (Section B.4.2) shows that 7~ can be represented by
our main criterion, given that 77 is a cautious completion of =~*. Given ¢ : A x Q — [0, <],
we say that ¢ is variational if p — ¢ (p, ¢) is grounded, lower semicontinuous and convex for all
q € Q and cq (-) = mingeg c (-, ¢q) is well defined and shares the same properties. We say that

a variational c is a variational pseudo-statistical distance if cél (0) =Q.
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A Bewley-type representation The next result is a multi-utility (variational) representa-

tion for unbounded dominance relations.

Lemma 7 Let 77* be a binary relation on F, where (S,%) is a standard Borel space. The

following statements are equivalent:

(i) 7=* is an unbounded dominance relation which satisfies objective Q-coherence;

(ii) there exist an onto affine function v : X — R and a variational ¢ : A x Q) — [0, 00] such
that dome (-, q) C A< (Q) for all ¢ € Q and

rztg = ] funarcpalzmf [vwa+cpa} weo 69

To prove this result, we need to introduce one mathematical object. Let >* be a binary
relation on By (3). We say that >=* is convexr niveloidal if and only if =* is a preorder that

satisfies the following five properties:

1. For each ¢, 9 € By (X) and for each k € R

o= Y = p+k="Y+k

2. If 9,9 € By (¥) and {ky}, oy € R are such that k, T k and ¢ — k, =* ¢ for all n € N,
then ¢ — k >=*

3. For each ¢, € By (Y),
p=tp = ="

4. For each k,h € R and for each ¢ € Bj (X),

k>h = o+k>"p+h

5. For each 1), € By (X) and for each A € (0,1),

pr"Cand Y =" = Ap+ (L= =" ¢

Lemma 8 If 72* is an unbounded dominance relation, then there exists an onto affine function
u: X — R such that
vy = u(r) = u(y) (59)

Proof Since ~—* is a non-trivial preorder on F that satisfies c-completeness, continuity and

weak c-independence, it is immediate to conclude that ~—* restricted to X satisfies weak order,
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continuity and risk independence. By Herstein and Milnor (1953), it follows that there exists
an affine function v : X — R that satisfies (59). Since 7~* is a non-trivial c-complete preorder
on F that satisfies monotonicity, we have that 7~* is non-trivial on X. By Lemma 59 of Cerreia-
Vioglio et al. (2011b) and since 7Z* is non-trivial on X and satisfies unboundedness, we can

conclude that u is onto. [ ]

Since u is affine and onto, note that {u (f): f € F} = By (X). In light of this observation,

we can define a binary relation =* on By (X) by
p =" Y < fZ"gwhereu(f) =y and u(g) = (60)

Lemma 9 If Z* is an unbounded dominance relation, then =*, defined as in (60), is a well
defined convex niveloidal binary relation. Moreover, if 72* is objectively QQ-coherent, then Q P

implies @ ~* 1.

Proof We begin by showing that =* is well defined and does not depend on the representing
elements of ¢ and . Assume that fi, f, 91,92 € F are such that u (f;) = ¢ and u(g;) = ¢
for all i € {1,2}. Tt follows that u (f1 (s)) = u(f2(s)) and u (g1 (s)) = u (g (s)) for all s € S.
By Lemma 8, this implies that fi (s) ~* fa(s) and ¢; (s) ~* g2 (s) for all s € S. Since 77* is
a preorder that satisfies monotonicity, this implies that f; ~* f, and g; ~* go. Since Z—* is a

preorder, if f; ~* g1, then

LT hZanZl = L3 %

that is, f1 =

~Y

* g1 implies fo ~* go. Similarly, we can prove that fo =* go implies f; =* ¢.
In other words, f1 7=* ¢1 if and only if f =* go, proving that =* is well defined and does not
depend on the representing elements of ¢/ and . It is immediate to prove that >* is a preorder.

We next prove properties 1-5.

1. Consider ¢,1) € By (X) and k € R. Assume that ¢ =* 9. Let f,g € F and z,y € X be
such that u (f) = 2p, u(g) = 2¢, u(x) = 0 and u (y) = 2k. Since u is affine, it follows
that

1 1 1 1
Z Z —— Z — o =*
u(3+50) = qu 0+ quie) = = v

— jula)+ yu) =u (50 + 52)

proving that % f+ %ZC ol % g+ %x Since 7~* satisfies weak c-independence and v is affine,
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we have that 1f + 1y =* 19 + 1y, yielding that

2. Consider ¢, € By (X) and {k,}

2

1 1 1. 1Y\ . /1 1
g0+k:§u(f)+§u(y):u<§f+§y> = u<§g+§y>
1

= Jule) + quly) =+ k

C R such that k, T k and ¢ — k,, =* ¢ for all n € N.

neN

We have two cases:

(a)

k > 0. Consider f, g, h € F such that

u(f)=p,u(g) =¢—kandu(h)="1

Since k > 0 and k, T k, there exists n € N such that k, > 0 for all n > n. Define
A =1 —k,/k for all n € N. It follows that A, € [0,1] for all n > 7. Since u is

affine, for each n > n

uAnf + (1 =2)g) = Au(f) + (1= An)ulg) = —kn =" ¢ = u(h)

yielding that A, f 4+ (1 — A,) g Z* h for all n > n. Since 7Z* satisfies continuity and
An — 0, we have that g =—* h, that is,

p—k=u(g) =" u(h) =1

k < 0. Since {k;},cy is convergent, {k,},y is bounded. Thus, there exists h > 0
such that k, + h > 0 for all n € N. Moreover, k, +h T k+ h > 0. By point 1, we
also have that ¢ — (k, +h) = (¢ — k,) — h =* ¢ — h for all n € N. By subpoint a,
we can conclude that (p — k) —h = ¢ — (k+ h) =* ¢» — h. By point 1, we obtain
that ¢ — k =" 1.

3. Consider p,9 € By (X) such that ¢ > 1. Let f,g € F be such that u(f) = ¢ and
u(g) = 1. It follows that u (f (s)) > u(g(s)) for all s € S. By Lemma 8, this implies
that f(s) zZ* g (s) for all s € S. Since ~—* satisfies monotonicity, this implies that f 7* g,

yielding that ¢ = u (f) =* u(g) = ¥.

4. Consider k,h € R and ¢ € By (X). We first assume that £ > h and k£ = 0. By point 3, we
have that ¢ = o+ k =* ¢ + h. By contradiction, assume that ¢ #* ¢ + h. It follows that
© ~* p+ h, yielding that I = {w € R: ¢ ~* ¢ + w} is a non-empty set which contains 0

and h. We next prove that I = R. First, consider wy,ws € I. Without loss of generality,
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assume that w; > ws. By point 3 and since wy, wy € I, we have that for each A € (0,1)
o= o4w = o+ (Awr + (1= A)we) = @ +wy =% ¢

proving that ¢ ~* ¢ + (Awy + (1 — X\) we), that is, dw; + (1 — N we € I. Next, we
observe that I N (—00,0) # 0 # I N (0,00). Since h € I and h < 0, we have that
I'N(—00,0) # 0. Since I is an interval and 0,k € I, we have that h/2 € I. By point 1
and since ¢ ~* ¢+ h/2, we have that ¢ — h/2 ~* (¢ + h/2) — h/2 = ¢, proving that 0 <
—h/2 € IN(0,00). By definition of 7, note that if w € I\ {0}, then ¢ +w ~* ¢. By point
1 and since w/2 € I and =* is a preorder, we have that (¢ +w) +w/2 ~* o +w/2 ~* ¢,
that is, %w, %w € I. Since [ is an interval, we have that either [%w, %w} Clifw<0
or [%w, gw] C I if w > 0. This will help us in proving that I is unbounded from below
and above. By contradiction, assume that I is bounded from below and define m = inf I.
Since I N (—00,0) # 0, we have that m < 0. Consider {w,}, .y € I N (—00,0) such that
w, | m. Since [%wn,%wn] C I for all n € N, it follows that m < %wn for all n € N.
By passing to the limit, we obtain that m < %m < 0, a contradiction. By contradiction,
assume that I is bounded from above and define M = sup I. Since IN(0, 00) # 0, we have
that M > 0. Consider {wy,}, .y € 1N (0,00) such that w, 1 M. Since [Lw,, 2w,| C I for
all n € N, it follows that M > %wn for all n € N. By passing to the limit, we obtain that
M > %M > (, a contradiction. To sum up, / is a non-empty unbounded interval, that is,
I = R. This implies that ¢ ~* ¢ + w for all w € R. In particular, select wy = ||¢||_ + 1
and wy = — |||, — 1. Since >* is a preorder, we have that ¢ +w; ~* ¢+ w,. Moreover,
p+w; >1>—12> ¢+ we. By point 3, this implies that ¢ +w; >* 1 >=* —1 =" ¢ 4 ws.
Since »* is a preorder and ¢ + wy ~* ¢ + wsy, we can conclude that 1 ~* —1. Note also
that there exist x,y € X such that u (z) = 1 and u (y) = —1. By Lemma 8, this implies
that = >=* y. By definition of =* and since u () = 1 ~* —1 = u (y), we also have that
y 7=* x, a contradiction. Thus, we proved that if £ > h and k = 0, then ¢ + k >* ¢ + h.
Assume simply that k£ > h. This implies that 0 > h — k and ¢ >* ¢ + (h — k). By point

1, we can conclude that ¢ + k =* o+ (h — k) +k = p + h.

. Consider ¢,19,£ € By (X) and A € (0,1). Assume that ¢ =* { and ¢ =* £. Let f,g,h € F
be such that u (f) = ¢, u(g) = ¥ and u(h) = . By assumption and definition of >=*,
we have that f =" h and ¢ Z* h. Since 72* satisfies convexity and v is affine, this
implies that Af + (1 — \) g Z=* h, yielding that Ao + (1 = A) ¢ = Au(f) + (1 =N u(g) =
WM+ (1= N)g) =" u(h) =&
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Points 1-5 prove the first part of the statement. Finally, consider ¢, € By (2). Note that
there exist a partition {4;}; ; € ¥ of S and {«a;};_, and {5;};_, in R such that

=) oy and =) By
=1 1=1

,,,,,

all ¢ € @ and for all ¢ € {1,...,n} such that o; # f;. Since u is unbounded, define {z;}  C X
to be such that u(z;) = a; for all ¢ € {1,...,n}. Since u is unbounded, define {y;};_;, C X to
be such that y; = z; for all i € {1,...,n} such that o; = §; and wu (y;) = ; otherwise. Define
f,g: S — Xbyf(s)=x;and g(s) =y; forall s € A; and for all i € {1,...,n}. It is immediate
to see that f g g as well as u (f) = ¢ and u(g) = 1. Since Z* is objectively @)-coherent, we
have that f ~* g, yielding that ¢ ~* ¢ and proving the second part of the statement. [ |

The next three results (Lemmas 10 and 11 as well as Proposition 12) will help us representing
=*. This paired with Lemma 8 and Proposition 13 will yield the proof of Lemma 7.

Lemma 10 Let >=* be a convex niveloidal binary relation. If v € By (X), then U (¢) =
{ € By(X) : ¢ =* ¢} is a non-empty convex set such that:

1. Y eU);

2. if p € By (¥) and {kn}, oy R are such that k, Tk and ¢ — k, € U (¢) for all n € N,
then p — k € U (¢);

3. if k>0, then ) —k & U (¥);

4. if v1 > @9 and ps € U (Y), then ¢ € U (¢);

5. if k>0 and @y € U (¢), then o +k € U (¢).

Proof Since >* is reflexive, we have that ¢ € U (), proving that U (¢/) is non-empty and
point 1. Consider ¢1,p2 € U (¢b) and A € (0,1). By definition, we have that ¢; =* ¢ and
g =" 1h. Since »=* satisfies convexity, we have that Ap; + (1 — A) g =* 1), proving convexity
of U (¢). Consider ¢ € By (X) and {k,}, .y € R such that &k, T k and ¢ — k, € U () for all
n € N. It follows that ¢ — k, =* ¢ for all n € N, then ¢ — k =* ¢, that is, ¢ — k € U (¢),
proving point 2. If £ > 0, then 0 > —k and ¢ =)+ 0 >=* ¢ — k, that is, v — k € U (¢)), proving
point 3. Consider ¢; > ¢y such that ¢y € U (¢), then p; =* ¢y and s =* 1, yielding that
¢1 =* 1 and, in particular, ¢; € U (¢), proving point 4. Finally, to prove point 5, it is enough

to set 1 = 3 + k in point 4. [ ]

Before stating the next result, we define few properties that will turn out to be useful later
on. A functional I : By (X) — R is:
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1. a niveloid if I (¢) — I () < sup,eg (¢ (s) — ¥ (s)) for all p,1 € By (X);
2. normalized if I (k) = k for all k € R;

3. monotone if for each ¢, 19 € By (¥)
o> = I(p) 2 1(¥)
4. »*-consistent if for each ¢, € By (X)
p=t Y = I(p) 2 1Y)
5. concave if for each ¢,1 € By (X) and A € (0,1)
I+ (1 =XN) =M () + (1=A) ()
6. translation invariant if for each ¢ € By (X)) and k € R

I{e+k)=1(p)+k

Lemma 11 Let =* be a convex niveloidal binary relation. If 1 € By (X), then the functional
I, : By (2) — R, defined by

Iy (p) =max{keR:p—keU(¥)} Vo € By (Y)

is a concave nweloid which is =*-consistent and such that I, () = 0. Moreover, we have that:

1. The functional I, = I, — I, (0) is a normalized concave niveloid which is =*-consistent.

2. If =* satisfies
e A
then
@/Jg@// = I, =1y and I, = I

Proof Consider ¢ € By(X). Define C, = {k€R:p -k e U (¢)}. Note that C, is non-
empty. Indeed, if we set k = — ||¢||, — [|%]|., then we obtain that o —k = o+ |l¢|l . + |¢]l, >
0+ |l¥l|l, = v € U(w). By property 4 of Lemma 10, we can conclude that ¢ — k € U (¢),
that is, k € C,. Since U () is convex, it follows that C,, is an interval. Since ¢ € By (), note
that there exists k € R such that V> o — k. It follows that Y=o — k. In particular, we
can conclude that ¥ >* ¢ — k+¢) for all e > 0. This yields that C, is bounded from above.
Finally, assume that {k,},.y € C, and k, T k. By property 2 of Lemma 10, we can conclude
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that k € Cy,. To sum up, C, is a non-empty bounded from above interval of R that satisfies
the property
{kntpen €Cpand by, Th = ke C, (61)

The first part yields that sup{k € R: ¢ — k € U (¢)} = sup C,, € R is well defined. By (61), we
also have that sup C,, € C,, that is, sup C, = max C,,, proving that I, is well defined. Next, we
prove that I, is a concave niveloid. We first show that I, is monotone and translation invariant.
By Proposition 2 of Cerreia-Vioglio et al. (2014), this implies that I, is a niveloid. Rather than
proving monotonicity, we prove that I, is =*-consistent.*> Consider ¢, p2 € By (X) such that

@1 = 2. By the properties of =* and definition of I, we have that

01— Iy (2) =" 2 — Iy (p2) and g — Iy (p2) € U (¢)

and, in particular, ps— Iy () =* 1. Since >* is a preorder, this implies that p; — 1y, (¢2) =* ¥,
that is, @1 — I, (2) € U (¢) and I, (¢2) € C,,, proving that I, (¢1) > Iy (¢2). We next prove
translation invariance. Consider ¢ € By (X) and k£ € R. By definition of I, we can conclude
that

(p+ k)= Uy(p)+k)=p—1IL,(p) €U (V)

This implies that I, (¢) + k € Cyyx and, in particular, 1, (¢ + k) > I, (¢) + k. Since k and ¢

were arbitrarily chosen, we have that
ILi(p+k)>I,(p)+k Ve By(X),VkeR

This implies that I, (¢ + k) = I, (¢) + k for all ¢ € By (X) and for all £ € R. We move to
prove that I, is concave. Consider @1, ps € By (X) and A € (0,1). By definition of I,,, we have
that

o1 — 1y (p1) €U () and py — Iy (w2) € U ()

Since U (1) is convex, we have that

(A1 + (1 = A) p2) = (MLy (p1) + (1 = A) Iy (p2))
= A1 — Ly (1)) + (1 = A) (02 — Ly (92)) € U (¢)

yielding that Ay, (¢1)+(1 — X) Iy (92) € Crpy+(1-2)p, and, in particular, I, (Agq + (1 — A) 2) >
My (1) + (1= ) I, (2).

Finally, since ¢ € U (¢), note that 0 € Cy, and I, (¢») > 0. By definition of I,;, if I, (¢) > 0,
then ¢ — Iy, (¢) € U (¢), a contradiction with property 3 of Lemma 10.

1. It is routine to check that [_w is a normalized concave niveloid which is >*-consistent.

#Gince if o1 > 9, then @1 =* o, it follows that >=*-consistency implies monotonicity.
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2. Clearly, we have that if ¢ ~* ¢/, then U (¢) = U (¢'), yielding that I, = Iy and, in
particular, I, (0) = I, (0) as well as I, = I,,. The point trivially follows. [ |

Proposition 12 Let =* be a binary relation on By (X). The following statements are equiva-

lent:
(i) =* is convex niveloidal;

(ii) there exists a family of concave niveloids {1,}, ., on By (X) such that

=" = I (p) > 1, () Va € A (62)

(111) there exists a family of normalized concave niveloids {I_a}ae 4 on Bo () such that

o= = I,(p) >1.(¥) VaeA (63)

Proof (iii) implies (i). It is trivial.

(1) implies (ii). Let A = By (X). We next show that

017" 02 = Iy(p1) > Iy (p2) VY € By (%)

where I is defined as in Lemma 11 for all ¢y € By (X). By Lemma 11, we have that I is
~*-consistent for all ¢ € By (X). This implies that

o1 =" e = Iy (p1) > Iy (p2) Vi € By (%)

Vice versa, consider g1, s € By (X). Assume that I, (¢1) > Iy (v2) for all ¢ € By (X). Let
1) = 9. By Lemma 11, we have that I, (¢1) > 1, (¢2) = 0, yielding that ¢1 > @1 —1I,, (1) €
U (p2). By point 4 of Lemma 10, this implies that ¢; € U (¢2), that is, p; =* .

(ii) implies (iii). Given a family of concave niveloids {I,},. 4, define I, = I, — I, (0) for all
a € A. It is immediate to verify that I, is a normalized concave niveloid for all a € A. It is

also immediate to observe that

I, (p1) > 1y (p2) YVa€e A <= I, (p1) > 1y (p2) VYae A

proving the implication. |

Remark 1 Given a convex niveloidal binary relation =* on By (), we call canonical (resp.
canonical normalized) the representation {Iy},p s (resp. {1,} . (2)) obtained from Lemma
11 and the proof of Proposition 12. By the previous proof, clearly, {Lﬁ}weBo(Z) and {[1/’}1/1@30(2)
satisfy (62) and (63) respectively.

28



The next result clarifies what the relation is between any representation of >* and the
canonical ones. This will be useful in establishing an extra property of {L/, } VeBo(®) in Corollary
4.

Lemma 12 Let =* be a convex niveloidal binary relation. If B is an index set and {Jﬁ}ﬁeB i8

a family of normalized concave niveloids such that

prp = Jg(e) = Js(¥) VBeB

then for each 1) € By (X)

Ly (0) = Inf (J5(¢) = Js(¥)) Ve € Bo(2) (64)
and
Iy (¢) = inf (Jo (9) = Jp (W) +5up T3 (9) ¥ € Bo (%) (65)

Proof Fix ¢ € By (X) and ¢ € By (X). By definition, we have that
Iy (o) =max{k € R:p—keU@¥)}

Since {J3} sep Tepresents =" and each Jg is translation invariant, note that for each k£ € R

p—keU®W) <= p—kx"y < Ji(p—k) 2 J;(¥) VSeB
= Jslp)—k2Js(¥) VBeB = Jplp)-Js(d) 2k V€D
= inf (Js(p) = Js () 2 &

By definition of I, and since p—1 (¢) € U (¢), this implies that I, (¢) = infgep (J5 (p) — J5 (¥)).
Since ¢ and 1 were arbitrarily chosen, (64) follows. Since I, = I,,— I, (0), we only need to com-
pute —1I,;, (0). Since each J3 is normalized, we have that —1I,, (0) = —infzep (J5 (0) — Js (¢)) =
—infgep (—J5 (V) = supgep Js (¢), proving (65). u

Corollary 4 If =* is a convex niveloidal binary relation, then Iy < I, for all ¢ € By (X).

Proof By Lemma 12 and Remark 1 and since each I, is a normalized concave niveloid, we
have that

I = inf  (Iy (@) — Iy (0)) + Iy (0) = inf Ty(p) <1 Vi € By (S
o () w,elgo(z)(w(w) 4 (0)) W:Bﬁz)w() w,elgo(z)w(so)_w(w) p € By (%)

for all v € By (X), proving the statement. [ |

The next result is instrumental in providing a multi-variational representation of ~* para-

metrized by @), when |@Q| > 2. In order to discuss it, we need a piece of terminology. We denote
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by V' the quotient space By (X) /M where M is the vector subspace {gp €EB(X):p ol Re
call that the elements of V' are equivalence classes [¢)] with ¢» € By (X) where ¢/, 4" € [¢] if
and only if ¢ g e g 1", Recall that () is convex.

Proposition 13 If (S,X) is a standard Borel space and |Q| > 2, then there ezists a bijection
f:V—-=aQ.

Proof We begin by observing that:
|ca (X)] < Jeay (5) x cay (B)] = |ear (B)] = [(0,00) x A7] = [A7]

The first inequality holds because the map ¢ : ca (¥) — cay (X) x cay (2), defined by p —
(u™, p7), is injective. By Theorem 1.4.5 of Srivastava (1998) and since X is non-trivial, we have
that cay (X) is infinite, yielding that a bijection justifying the first equality exists. As to the
second equality, the map ¢ : ca; (X)\ {0} — (0,00) x A%, defined by p — (1 (S), /1 (S)),
is a bijection and so |cay (£)\ {0} = |(0,00) x A?|. By Theorem 1.3.1 of Srivastava (1998),
we can conclude that |cay (X)| = |cay (£)\ {0} = |(0,00) x A7]. As to the last equality, by
Theorem 1.4.5 and Exercise 1.5.1 of Srivastava (1998), being |(0,00)| = |(0,1)] < |A?|, we have
|A7] < [(0,00) x A7 =1(0,1) x A7 < |A7 x A% = |A7], yielding that |(0,00) x A%| = |A“].

We conclude that |ca (¥)] < |A?], that is, there exists an injective map ¢ : ca (X) — A°.
Since () is a compact and convex subset of A%, there exists § € () such that ¢ < g for all ¢ € Q).
We define i : V' — ca (X) by

hqu(A):/AWq— vAes

Note that h is well defined. For, if ¢’ € [¢], that is, ¢ Q ', then 1 < ¢/, yielding that
Jivdg = [,'dg for all A € ¥. Similarly, h([¢)]) = h([¢']) implies that v L /. Since
q < q for all ¢ € @, this implies that g Y and [¢] = [¢'], proving h is injective. This
implies that f = g o & is a well defined injective function from V to A?. Clearly, we have that
|A| > ‘f(V)) > |[0,1]|. Since (5,3) is a standard Borel space and @ is convex and |Q] > 2,
we also have that |[0,1]] > |A?| > |Q| > |[0,1]|. This implies that |V| = ‘f(V)‘ — ||, proving
the statement. ]

We can now prove our multi-variational representation result for dominance relations.
Proof of Lemma 7 (ii) implies (i). It is trivial.

(i) implies (ii). Since 7Z* is a dominance relation, if |@| = 1, that is Q = {g}, then Z* is
complete. By Maccheroni et al. (2006) and since 7Z* is unbounded, it follows that there exists

an onto and affine u : X — R and a grounded, lower semicontinuous and convex ¢; : A — [0, o0
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such that V' : F — R defined by

pEA

vin-un{ [oa+a0)  vier

represents 2~*. If we define ¢ : A x Q) — [0,00] by ¢(p,q) = ¢;(p) for all (p,q) € A x @, then
we have that c is variational. By Lemma 5 and since =* is objectively )-coherent, it follows
that dome (-, q) € A<(Q) for all ¢ € @, proving the implication. Assume || > 1. By Lemma
8, there exists an onto affine function u : X — R which represents ~* on X. By Lemma 9, this
implies that we can consider the convex niveloidal binary relation >=* defined as in (60). By
definition of =* and Proposition 12 (and Remark 1), we have that

fzrg = ulf) =z ulg) = I (u(f) 21 (ulg) Y€ By (%)

where each I is a normalized concave niveloid. As before, consider V' = By (X) /M where M
is the vector subspace {go €EB(X):p 2 0}. For each equivalence class [¢], select exactly one
Y’ € By (X) such that ¢’ € [¢]. In particular, let 1" = 0 when [¢)] = [0]. We denote this subset
of By (X) by V. Clearly, we have that

Ly (u(f)) 2 Iy (u(g)) Yo €Bo(T) = Iy (u(f) 21y (ulg)) VeV

Vice versa, assume that I, (u (f)) > I, (u(g)) for all ¢» € V. Consider ) € By (D). Tt follows
that there exists [¢)] in V such that ¢) € [¢]. Similarly, consider ¢’ € V such that ¢/ € [¢]. Tt
follows that 1& e Y. By Lemmas 9 and 11 and since =* is objectively Q-coherent, then I b= Ly,
yielding that ‘71/3 (u(f)) > ‘71/3 (u(g)). Since ¢ was arbitrarily chosen I, (u (f)) > I; (u(g)) for all
1 € By (X). By construction, observe that there exists a bijection f : V' — V. By Proposition
13, we have that there exists a bijection f : V — Q. Define f = f o f . By Corollary 4, if we
define I, = Ij-1(, for all ¢ € Q, then we have that ff(o) <1, for all ¢ € Q and

frrg = Li(u(f)>1,(u(g) Yo €B(E) < Iy(u(f)>1I;(ulg) VeV
= I, (u(f) >1,(u(g) VYeeQ

Since each fq is a normalized concave niveloid, we have that for each ¢ € () there exists a

function ¢, : A — [0, o] which is grounded, lower semicontinuous, convex and such that

A

Lo=mp{ [enram] veene)
Define ¢ : A x Q — [0,00] by ¢(p,q) = ¢, (p) for all (p,q) € A x Q. Clearly, the g-sections of

¢ are grounded, lower semicontinuous and convex and (58) holds. By Lemma 5 and (58) and
since 7~—* is objectively @Q-coherent, it follows that domc (-, q) C A< (Q) for all ¢ € Q. Finally,
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recall that
c(p,q) = sup {EW)—/@@} VpeAVgeQ

wEBy(X)

Since I 7o) < fq for all ¢ € @), we have that for each ¢ € )

¢(p, f(0)) = sup {ﬁmWW—/¢@}§ sup {EW?—/w@}ZC@ﬂ)\weA

pEBY(D) »€BY()

Since ¢ (-, f (0)) is grounded, lower semicontinuous and convex and f (0) € @, this implies that
mingegc(-,q) = ¢ (-, f (O)) is well defined and shares the same properties, proving that c is

variational. [

Main criterion with fixed () We can now state our main representation theorem with @)
fixed. To this end, we say that a function ¢ : A x Q@ — [0,00] is uniquely null if, for all
(p,q) € A x Q, the sets ;' (0) and ¢, (0) are at most singletons. We are now ready to state

our first representation result.

Theorem 4 Let (5,3, X,Q, 75", 72) be a two-preference decision environment under model un-

VR NV

certainty, where (S,3) is a standard Borel space. The following statements are equivalent:

(i) 7=* is an unbounded dominance relation and 7 is a rational preference that are both Q-

coherent and jointly satisfy consistency and caution;

(ii) there exist an onto affine function u : X — R and a variational pseudo-statistical distance
c: A xQ —[0,00], with domcg C A< (Q), such that, for all acts f,g € F,

pPEA peEA

fifg¢$mm{/UUﬁ@+dn®}me{/uwﬁ@+dn®} Vg € Q (66)
and

o . . > i .
ng¢$$g{/UUﬂm+%gdnm}_gg{/uwﬁw+ﬁgdn®} (67)
If, in addition, c is uniquely null, then it can be chosen to be such that ¢ (p,q) = 0 if and only
ifp=gq.

Proof (i) implies (ii). We proceed by steps. Before starting, we make one observation. By
Lemma 7 and since 7~* is an unbounded dominance relation which is objectively )-coherent
there exist an onto affine function v : X — R and a variational ¢ : A x Q — [0, 0o such that
dome (-, q) € AS(Q) for all ¢ € @ (in particular, domcg () € Ugegdome (-, q) € AS(Q))
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and

rzg = min{ [udp e} znin{ [u@drcoaf weo

peEA

We are left to show that c¢g : A — [0, 00] is such that

rzoewnf [unirao) zm{ [vwpraee) o)
PEA pEA

and Cc_gl (0) = Q. To prove this we consider ¢ as in the proof of (i) implies (ii) of Lemma 7. This

covers both cases |Q| = 1 and |Q| > 1. In particular, for each ¢ € Q define I, : By (£) — R by

EWOme{/w@+C@ﬂﬁ Vo € By (%)

pEA

A

and recall that there exists (= f (0) € Q when |Q| > 1) such that ¢ (-, §) < ¢(-,q), thus I; < I,
for all ¢ € Q.

Step 1. 77 agrees with =* on X. In particular, u: X — R represents 72* and 7.

Proof of the Step Note that —* and - restricted to X are continuous weak orders that satisfy
risk independence. Moreover, by the observation above, 7=* is represented by u. By Herstein
and Milnor (1953) and since 77 is non-trivial, it follows that there exists a non-constant and
affine function v : X — R that represents 7~ on X. Since (2Z*, 7) jointly satisfy consistency, it
follows that for each x,y € X

u(z) >u(y) = v() >v(y)

By Corollary B.3 of Ghirardato et al. (2004), u and v are equal up to an affine and positive

transformation, hence the statement. We can set v = u. Il

Step 2. There exists a normalized and monotone functional I : By (X) — R such that

fZge=1(f) =1(ulg))

Proof of the Step By the same arguments of Step 5 in the proof of Theorem 1 and since 7~ is a
rational preference relation, the statement follows. i
Step 8. I (p) < infyeq I, (@) for all ¢ € By (X).

Proof of the Step Consider ¢ € By (X). Since each I, is normalized and monotone and w is
onto, we have that I, (¢) € [infyes ¢ (s),sup,cs @ (s)] € Imu for all ¢ € Q. Since p € By (2), it
follows that there exists f € F such that ¢ = u(f) and = € X such that u (z ) — infyeq 1, (gp)
For each € > 0 there exists x. € X such that u (z.) = u (z) + . Since inf,cq I, (¢) = u (x), i
follows that for each & > 0 there exists ¢ € Q such that I, (u (f)) = I, (¢) < u(z.) = I, (u (z )),
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yielding that f 7* x.. Since (=Z*, ) jointly satisfy caution, we have that x. 7~ f for all ¢ > 0.
By Step 2, this implies that

u(e) +e=u(re) =1I(u(ze)) = I(u(f)) =1(p) Ve>0

that is, inf,eq I, () = u (x) > I (), proving the step. O

Step 4. I(p) > infyeq I, () for all ¢ € By (%).
Proof of the Step Consider ¢ € By (X). We use the same objects and notation of Step 3. Note
that for each ¢’ € Q

Iy () = Iy () 2 L I, (9) = (@) = Iy (u @)

that is, f 72" x. Since (2%, ) jointly satisfy consistency, we have that f >~ x. By Step 2, this

~ )~

implies that
I(p) =T (u(f)) = I (u(x)) =u(z)=inf ()

proving the step. Il

Step 5. 1 (¢) = minyea { [ @dp + co (p)} for all ¢ € By (2).
Proof of the Step By Steps 3 and 4 and since fq < fq for all ¢ € @), we have that

I(g) =minl, (¢) = [(¢) Y9 € Bo(D)

Since ¢ (-, §) = cg (-), it follows that for each ¢ € By (¥)

I(p) = I3 () Zmin{/sodp+c(p,d)} Zggg{/wdpﬂ@(p)}

pEA

proving the step. O

Step 6. cél 0) = Q.
Proof of the Step By Steps 2 and 5, we have that V' : 7 — R defined by

pPEA

v =mig [utr)dp+co )

represents 2. By Lemma 4 and since 77 is subjectively ()-coherent and cg is well defined,
grounded, lower semicontinuous and convex, we can conclude that cél 0) = Q. 4

Thus, (68) follows from Steps 2 and 5 while, by Step 6, cél (0) = Q. This completes the
proof.

(ii) implies (i). It is routine.
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Next, assume that c¢ is uniquely null. Define the correspondence I' : ) = () by

I'(q)={peA:c(p,q) =0} =argming,

Since ¢ < ¢, for all ¢ € Q and cél (0) = @, we have that I is well defined. Since ¢, is grounded,
it follows that I' (¢) # () for all ¢ € Q. Since ¢ is uniquely null and ¢, is grounded, we have that

;" (0) is a singleton, that is,

cpg)=c(p,q)=0=p=yp

This implies that I" (¢) is a singleton, therefore I is a function. Since cél (0) = @, observe that

Ugeol (¢) = Ugeg argmin ¢, = argmincg = @

that is, I' is surjective. Since c is uniquely null, we have that ¢, 1(0) is at most a singleton, that
is,

cp,q)=c(p,d)=0 = q¢=¢
yielding that I" is injective. To sum up, I' is a bijection. Define ¢ : A x @ — [0,00] by
¢(p,q) = c(p, Tt (q)) for all (p,q) € AxQ. Note that ¢ (-, q) is grounded, lower semicontinuous,

convex and dom¢é (-, q) € A<(Q) for all ¢ € @ and dom ég () € A< (Q). Next, we show that
Cg = cq. Since cq is well defined, for each p € A there exists ¢, € @) such that

¢(p, I (gp) =c(p,ap) = géigc(p, q) <cp.qd)=¢mT(d) YidecQ

Since I is a bijection, we have that ¢ (p,I'(g,)) < ¢(p,q) for all ¢ € Q). Since p was arbitrarily

chosen, it follows that

cq(p) =minc(p,q) =¢(p,T'(g)) =minc(p,q) =co(p) VpeA
To sum up, ¢g = c¢g and Eél (0) = cél (0) = Q. In turn, since ¢q is grounded, lower semicon-
tinuous and convex, this implies that ¢g is grounded, lower semicontinuous and convex. Since
I is a bijection, we can conclude that (66) holds with ¢ in place of ¢ and (67) holds with ¢g in
place of cq.

We are left to show that ¢ (p, ¢) = 0 if and only if p = ¢. Since ¢;* (0) is a singleton for all
q € Q and T is a bijection, if ¢ (p,q) = 0, then ¢ (p,'" (¢)) = 0, yielding that p = T'(I'"! (¢)) =
q. On the other hand, ¢(q,q) = ¢(¢,T' (q)) = 0. We can conclude that ¢ (p, ¢) = 0 if and only
if p = q, proving the last part of the statement. ]
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