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Abstract

We use decision theory to confront uncertainty that is sufficiently broad to incorporate
“models as approximations.” We presume the existence of a featured collection of what we
call “structured models” that have explicit substantive motivations. The decision maker
confronts uncertainty through the lens of these models, but also views these models as
simplifications, and hence, as misspecified. We extend the max-min analysis under model
ambiguity to incorporate the uncertainty induced by acknowledging that the models used
in decision-making are simplified approximations. Formally, we provide an axiomatic
rationale for a decision criterion that incorporates model misspecification concerns. We
then extend our analysis beyond the max-min case allowing for a more general criterion
that encompasses a Bayesian formulation.
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Come l’araba fenice:
che vi sia, ciascun lo dice;

dove sia, nessun lo sa.!

1 Introduction

The consequences of a decision may depend on exogenous contingencies and uncertain out-
comes that are outside the control of a decision maker. This uncertainty takes on many forms.
Economic applications typically feature risk, where the decision maker knows the correct prob-
abilistic model governing the contingencies but not necessarily the decision outcomes. Yet, this
is a demanding assumption. As a result, statisticians and econometricians have long wrestled
with how to confront ambiguity over models or unknown parameters within a model. Each
model is itself a simplification or an approximation designed to guide or enhance our under-
standing of some underlying phenomenon of interest. Thus, the model, by its very nature, is
misspecified, but in typically uncertain ways. How should a decision maker acknowledge model
misspecification in a way that guides the use of purposefully simplified models sensibly? This
concern has certainly been on the radar screen of statisticians and control theorists, but it has
been largely absent in formal approaches to decision theory.? Indeed, the statisticians Box and

Cox have both stated the challenge succinctly in complementary ways:

Since all models are wrong, the scientist must be alert to what is importantly wrong.

It is inappropriate to be concerned about mice when there are tigers abroad. Box
(1976).

. it does not seem helpful just to say that all models are wrong. The very word
“model” implies simplification and idealization. The idea that complex physical,
biological or sociological systems can be exactly described by a few formulae is
patently absurd. The construction of idealized representations that capture impor-
tant stable aspects of such systems is, however, a vital part of general scientific

analysis and statistical models, especially substantive ones ... Cox (1995).

While there are formulations of decision and control problems that intend to confront model
misspecification, the aim of this paper is: (i) to develop an axiomatic approach that will
provide a rigorous guide for applications and (ii) to enrich formal decision theory when applied

to environments with uncertainty through the guise of models.

1“Like the Arabian phoenix: that it exists, everyone says; where it is, nobody knows.” A passage from a
libretto of Pietro Metastasio.

?In Hansen (2014) and Hansen and Marinacci (2016) three kinds of uncertainty are distinguished based on
the knowledge of the decision maker, the most challenging being model misspecification viewed as uncertainty
induced by the approximate nature of the models under consideration.



The protagonist of our analysis is a decision maker who is able to formulate models — for
instance a policy maker having to decide a climate policy based on existing alternative climate
models — but is concerned about their misspecification and wants to use a decision criterion
which accounts for that. Our axiomatic analysis, which has a normative nature, aims to derive
a criterion of this kind to help the decision maker to cope with model misspecification in a
principled way. In this endeavour, we follow Hansen and Sargent (2022) by referring to the for-
mulated models as “structured models.” These structured models are ones that are explicitly
motivated or featured, such as ones with substantive motivation or scientific underpinnings,
consistent with the use of the term “models” by Box and Cox. They may be based on scientific
knowledge relying on empirical evidence and theoretical arguments or on revealing parameteri-
zations of probability models with parameters that are interpretable to the decision maker. In
posing decision problems formally, it is often assumed, following Wald (1950), that the correct
model belongs to the set of models that decision makers posit. The presumption that a decision
maker identifies, among their hypotheses, the correct model is often questionable — recalling
the initial quotation, the correct model is often a decision maker phoenix. We embrace, rather
than push aside, the “models are approximations” perspective of many applied researchers,
as articulated by Box, Cox and others. To explore misspecification formally, we introduce a
potentially rich collection of probability distributions that depict possible representations of
the data without formal substantive motivation. We refer to these as “unstructured models.”
We use such alternative models as a way to capture how models could be misspecified.?

This distinction between structured and unstructured is central to the analysis in this paper
and is used to distinguish aversion to ambiguity over models and aversion to potential model
misspecification. At a decision-theoretic level, a proper analysis of misspecification concerns has
remained elusive so far. Indeed, many studies dealing with economic agents confronting model
misspecification still assume that they are conventional expected utility decision makers who
do not address formally potential model misspecification concerns in their preference ordering.*
We extend the analysis of Hansen and Sargent (2022) by providing an axiomatic underpinning
for a corresponding decision theory along with a representation of the implied preferences that
can guide applications. In so doing, we show an important connection with the analysis of

subjective and objective rationality of Gilboa et al. (2010).

Criterion This paper proposes a first decision-theoretic analysis of decision making under
model misspecification. We consider a classical setup in the spirit of Wald (1950), but relative

to his seminal work we explicitly remove the assumption that the correct model belongs to

3Such a distinction is also present in earlier work by Hansen and Sargent (2007) and Hansen and Miao (2018)
but without specific reference to the terms “structured” and “unstructured.”

4See, e.g., Esponda and Pouzo (2016) and Fudenberg et al. (2017). In contrast, using a decision criterion
elaborated in this paper (cf. Section 6.1), Lanzani (2023) has recently showed the relevance for these analyses
of a proper account of misspecification concerns.



the set of posited models and we allow for nonneutrality toward this feature. More formally,
in our purely normative approach we assume that decision makers posit a set @) of structured
(probabilistic) models q on states, motivated by their information, but they are afraid that
none of them is correct and so face model misspecification. For this reason, decision makers
contemplate what we call unstructured models in ranking acts f, according to a conservative

decision criterion

V(f)—min{/U(f)dergggc(p,q)} (1)

peEA

where A denotes the set of all probabilities. To interpret this criterion, let
C (p,Q) = minc(p,
(p,Q) = minc(p,q)

where we presume that C'(¢,Q) = 0 if and only if ¢ € Q. In this construction, C (p, Q) is
what we call a Hausdorff statistical set distance between a model p and the posited set () of
structured models. This distance is nonzero if and only if p is unstructured, that is, p ¢ Q.
More generally, p’s that are closer to the set of structured models () have a less adverse impact

on the preferences, as is evident by rewriting (1) as:

peEA

V<f>=min{/u<f>dp+c<p,@>}

The unstructured models are statistical artifacts that allow the decision maker to assess formally
the potential consequences of misspecification as captured by the construction of C' (-, Q). In
this paper we provide a formal interpretation of C' (-, Q) as an index of misspecification fear:
the lower the index, the higher the fear.

We formalize model uncertainty by allowing the decision maker to posit a set (). In our
normative approach, it is then natural to enrich the standard decision-theoretic setting by
taking () as a given, a datum of the decision problem. For instance, in the climate policy
problem, () is the set of climate models that the policy maker considers. In this regard, observe
that we are not after detecting which choice behavior of the decision maker may reveal model
misspecification concerns, a different revealed preference exercise that would indeed require
an endogenous Q.° In line with standard practice in applied economics, we imagine that
the substantive modeling that underlies the construction of the elements of () is simplified
with an explicit structure imposed to facilitate interpretation. Applied researchers commonly
avoid reducing model building to the construction of the complex black boxes that a purely

nonparametric exercise might well involve, especially in multivariate settings.

>To ease terminology, we often refer to “misspecification” rather than “model misspecification.”
OIn this exercise, the findings of Denti and Pomatto (2022) may be useful.



A protective belt When c takes the entropic form AR(pl||g), with A > 0, criterion (1) takes

the form

min{/ﬂ(f) dp+ArqrggR(pHQ)} (2)

pEA

proposed by Hansen and Sargent (2022). It is the most tractable version of criterion (1), which
for a singleton @) further reduces to a standard multiplier criterion a la Hansen and Sargent
(2001, 2008). By exchanging orders of minimization, we preserve this tractability and provide

a revealing link to this earlier research,

win fin { [ (1) ap+ Aol } | 3)

The inner minimization problem gives rise to the minimization problem featured by Hansen and
Sargent (2001, 2008) to confront the potential misspecification of a given probability model ¢.”
Unstructured models lack the substantive motivation of structured models, yet in (1) they act
as a protective belt against model misspecification. The importance of their role is proportional
— as quantified by A in (2) — to their proximity to the set @), a measure of their plausibility in
view of the decision maker information. The outer minimization over structured models is the
counterpart to the Wald (1950) and the more general Gilboa and Schmeidler (1989) max-min
criterion. Clearly, the same inner-outer interpretation applies to the general case (1).

Our analysis provides a decision-theoretic underpinning for incorporating misspecification
concerns in a distinct way from ambiguity aversion. Observe that misspecification fear is absent
when the index min e ¢ (p, ¢) equals the indicator function d¢ of the set of structured models
@, that is,

minc (p,q) =

q€Q +o00 else

{ 0 ifpe@
In this case, which corresponds to A = 400 in (2), criterion (1) takes a max-min form:

V() = min [ u(f)dg
This max-min criterion thus characterizes decision makers who confront model misspecification
but are not concerned by it, so are misspecification neutral (see Section 4.3). The criterion in
(1) may thus be viewed as representing decision makers who use a more prudential variational
criterion than if they were to max-minimize over the set of structured models which they
posited. In particular, the farther away an unstructured model is from the set @ (so the less

plausible it is), the less it is weighted in the minimization.

"The Hansen and Sargent (2001, 2008) formulation of preferences builds on extensive literature in control
theory starting with Jacobson (1973)’s deterministic robustness criterion and a stochastic extension given by
Petersen et al. (2000), among several others.



Axiomatics Our axiomatic analysis considers as in Gilboa et al. (2010) a mental preference
70> describing the decision maker genuine ranking over acts, and a behavioral preference Zq
governing choices. The former is typically incomplete as the decision maker may find it difficult
to rank all acts, the latter is instead complete because, at the end, a choice has to be made.

As it should become clear as our analysis unfolds, this modelling choice is conceptually im-
portant for the study of misspecification because it is the mental preference that, interestingly,
turns out to be the one relevant for the analysis of misspecification attitudes. In particular,
the flexibility of our two-preference setting allows us to capture misspecification sensitivity via
a suitable weakening of the independence axiom, the weak certainty-independence axiom, for
the mental preference. We show that this weak form of independence, which underlies vari-
ational representations, is needed to account for misspecification sensitivity. Indeed, stronger
weakenings of the independence axiom, like the certainty-independence axiom, would force mis-
specification neutrality. These key decision-theoretic points, which underlie the importance of
a two-preference setting, are discussed in detail in Sections 4.2 and 4.3.

Another key feature of our axiomatization is the use of a family Q of sets of models ). We
thus consider preferences 7, and ¢ indexed by the sets ) and introduce axioms ensuring
their consistency across different sets of models, each depicting a different possible information
that the decision maker may have. In this way, our analysis is able to consistently connect
different decision environments in which the decision maker may end up. Besides its inherent
motivation, this rich setting also significantly eases the exposition. A derivation for a single
given () is, however, provided in the Online Appendix B.4.2. Appendix A uses the single-
preference framework in axiomatizing the entropic criterion (2). We include this analysis to
help situate our main criterion in a prior literature, including the single-preference variational
model.

For an outline of our approach, let us consider the entropic case (2). Start with a singleton
Q) = {q}. Decision makers, being afraid that the reference model ¢ might not be correct,
contemplate also unstructured models p € A and rank acts f according to the multiplier

criterion

Vi () = mip{ [ u(han-+ ARGl | ()

peEA

Here the positive scalar A is interpreted as an index of misspecification fear. When decision
makers posit a nonsingleton set ) of structured models, but are concerned that none of them

is correct, the multiplier criterion (4) then gives only an incomplete dominance relation:

f E,Zg g == Vig(f) =2 Vau(9) Vg eqQ (5)

With (5), decision makers can safely regard f better than g. Through this ranking, the domi-
nance relation provides a preferential account of the probabilistic information that () represents.

The dominance relation thus naturally arises when the set () is posited.



Yet, the ranking (5) has little traction because of the incomplete nature of 7Z7,. Nonetheless,

the burden of choice will have decision makers select between alternatives, be they rankable
by ¢ or not. A cautious way to complete the binary relation =7, is given by the preference
7o represented by (2), or equivalently by (3). This criterion thus emerges in our analysis as a
cautious completion of a multiplier dominance relation ?V‘*Q In this way, the probabilistic infor-
mation gets embedded in the behavioral preference. Suitably extended to a general preference
pair (25, Z@), we support this approach by axiomatizing criterion (1) as the representation of

the behavioral preference 77 and the unanimity criterion

fZo 9= I;éig{/U(f)derC(p,q)} > géig{/uw)dpw(p,q)} Vg €Q
as the representation of the incomplete dominance relation 7).

To sum up, our two-preference approach is motivated by the natural way with which the
dominance relation arises when the set () is posited. In our approach, we connect the dominance
and behavioral preferences to derive their desired representations. We then extend our analysis
beyond the max-min case allowing for a more general non-variational criterion that encompasses

a Bayesian formulation.

2 Preliminaries

2.1 Mathematics

Basic notions We consider a non-trivial algebra ¥ of events in a state space S of payoft-
relevant contingencies. We denote by A the set of finitely additive probabilities p : 3 — [0, 1]
and endow A and any of its subsets with the weak™ topology (unless otherwise specified, these
subsets are to be intended non-empty). Product sets are endowed with the product topology.
We denote by A the subset of A formed by the countably additive probability measures.
Given a probability ¢ in A, we denote by A (q) the collection of all probabilities p in A that
are absolutely continuous with respect to ¢, i.e., ¢ (A) = 0 implies p (A) =0 for all A € ¥.
The (convex analysis) indicator function 6c : A — [0, 00] of a subset C' of A is defined by

0 ifpeC
6c<p>={ P

+o00 else

Throughout we adopt the convention 0 - 00 = 0.

Collections In what follows Q denotes a collection of compact subsets of A?. It is often

assumed to be proper, that is, to contain all singletons and cover all doubletons.® Examples of

8That is, for each ¢,q' € A there exists some @ € Q such that {g,¢'} C Q.

6



proper collections Q are the collection of all finite sets of A7, the collection of all its compact
subsets, the collection of all its polytopes as well as the collection K of its compact and convex

subsets.

Statistical distances We say that a map ¢: A x A7 — [0, 00] is a statistical distance if it is

lower semicontinuous and satisfies the distance property

c(p,g) =0<=p=gq

Given a statistical distance ¢ and a family of compact sets Q in A?, we can define a Hausdorff
statistical set distance C': A x Q — [0, 00] by

C (p,Q) = minc(p,q)
q€Q

It is easy to see that C' is well defined, lower semicontinuous in the first argument and satisfies

the following two properties:

(C.i) for each Q € Q,
Cp,QRQ)=0+=peq

(C.ii) for each Q,Q’ € Q,
RQ2Q = C(,Q)<C(,Q)

These two properties make possible to interpret C' as a set distance.

Divergences We say that a statistical distance ¢ : A x A7 — [0, 00] is a divergence if, for
each ¢ € A%,
c¢(p,q) <00 =p<yq

Divergences thus assign an infinite penalty when p is not absolutely continuous with respect to q.
To introduce a well-known class of divergences, assume that ¥ is a o-algebra. Given a continuous
strictly convex function ¢ : [0,00) — [0,00), with ¢ (1) = 0 and lim; ., ¢ (t) /t = +00, define
Dy : A x A7 — [0,00] by

dp
Jo (—) dg ifp € A% (q)
Dy (pllg) = dg (6)
400 otherwise
under the conventions 0/0 = 0 and In0 = —oo. It can be proved that D, is a convex divergence,

called ¢-divergence.” When ¢ (t) = tlnt — ¢ + 1, D, reduces to the relative entropy R (p||q),

9For basic properties of ¢-divergences we refer, for example, to Chapter 1 of Liese and Vajda (1987). As
usual, dp/dq denotes any version of the Radon-Nikodym derivative of p with respect to g.

7



while when ¢ (t) = (t — 1)* /2 it becomes the Gini index x2 (p||q).

Example Let Z be a metric space endowed with its Borel o-algebra. Take S = Z°° with the
algebra ¥ of cylinders. Given any p € A, we denote by p, its restriction to the o-algebra 3, of
cylinders of length ¢ + 1. Define the discounted relative entropy Rp: A x A7 — [0, 00] by

Ry (pllg) = (1= 5)>_ B'R (pillan)

where 5 € (0,1). Hansen and Sargent (2008) use this divergence when studying infinite-horizon
discounted problems. It is routine to verify that Rs is a convex divergence. Notice that is
possible for p; to be absolutely continuous with respect to ¢; for all ¢ without p being absolutely

continuous with respect to ¢ over the o-algebra generated by the algebra ¥ of cylinders.!”

2.2 Decision theory

Setup We consider a generalized Anscombe and Aumann (1963) setup where a decision maker
chooses among uncertain alternatives described by (simple) acts f : S — X, which are X-
measurable simple functions from a state space S to a consequence space X. This latter space
is assumed to be a non-empty convex set in a vector space like, for instance, the set of all

(simple) lotteries defined on some prize space. The triple
(S, %, X) (7)

forms an (Anscombe-Aumann) decision framework.

Let us denote by F the set of all acts. Given any consequence z € X, we denote by x € F
also the constant act equal to x. Thus, under a standard abuse of notation we may identify X
with the subset of constant acts in F.

A preference 77 is a binary relation on F that satisfies the so-called basic conditions (cf.
Gilboa et al., 2010), i.e., it is:

(i) reflexive and transitive;

(ii) monotone: for all f,g € F,

f(s)Zg(s) VseS=fZyg

10With an appropriate scaling, a limiting version as 8 T 1 converges to a divergence that is central to a
discrete-time Donsker-Varadhan large deviation theory for ergodic Markov processes.



(iii) c-continuous: for all z,y,z € X, the sets
{ae0,1l]:ax+(1—-a)yz 2z} and {a€0,1]:zZax+(1—a)y}
are closed;
(iv) non-trivial: there exist f,g € F such that f > g.
Moreover, a preference 77 is:

1. continuous if, for all f, g, h € F, the sets
{a€0,1]:af+(1—a)gzh} and {ac[0,1]:hzaf+(1—a)g}

are closed;

2. unbounded if, for each x,y € X with x > y, there exist z, 2z’ € X such that

1 1 1 1
Z ym o=y = S
224—2ny yN2x+2z
Bets are binary acts that play a key role in decision theory. Formally, given any two prizes

x >y, a bet on an event A is the act Ay defined by

xAy(s):{ z ifseA

y else

In words, a bet on event A is a binary act that yields a more preferred consequence when A

obtains.

Comparative uncertainty aversion Let 7Z; and 725 be two preferences on F. As in Ghi-
rardato and Marinacci (2002), we say that 2Z; is more uncertainty averse than 7 if, for each

consequence r € X and act f € F,
fZiz = [Zex

In words, a preference is more uncertainty averse than another one if, whenever this preference
is “bold enough” to prefer an uncertain alternative over a sure one, so does the other one.

An absolute notion of uncertainty aversion can be defined in this comparative setting once
an uncertainty neutral preference is identified. In this case, a preference is declared to be

uncertainty averse when more uncertainty averse than the neutral one.



Decision criteria We say that a complete preference 7~ on F is variational when it is rep-

resented by a decision criterion V : F — R given by

pEA

v =mig{ [u(ndrs o] )

where the affine utility function v : X — R is non-constant and the index of uncertainty
aversion ¢ : A — [0, 00| is grounded (i.e., mina ¢ = 0), lower semicontinuous and convex. In
particular, given two unbounded variational preferences 7~; and 7~5 on F that share the same
u, we have that 7Z; is more uncertainty averse than 775 if and only if ¢; < ¢y (see Maccheroni
et al., 2006, Propositions 6 and 8).

When the function ¢ has the entropic form ¢ (p, q¢) = AR (p||q) under a reference probability
g € A7 and a coefficient A > 0, criterion (8) takes the multiplier form

pEA

Vi () = mip{ [ u(hdn-+ ARGl |

analyzed by Hansen and Sargent (2001, 2008).!' If, instead, the function ¢ has the indicator

form ¢, with C' compact and convex, criterion (8) takes the maz-min form

V(f) —Iggg/U(f)dp
axiomatized by Gilboa and Schmeidler (1989).
All these criteria are here considered in their classical interpretation, so Waldean for the

max-min criterion, in which the elements of A are interpreted as models.

3 Models and preferences

3.1 Models

The consequences of the acts among which decision makers have to choose depend on the exoge-
nous states s that are outside their control. They know, however, that states obtain according
to a probabilistic model described by a probability measure in A, the so-called true or correct
model. If decision makers knew the true model, they would confront only risk, which is the ran-
domness inherent to the probabilistic nature of the model. Our decision makers, unfortunately,
may not know the true model. Yet, they are able to posit a set of structured probabilistic
models @, based on their information (possibly including existing scientific theories, say eco-

nomic or physical), that forms a set of alternative hypotheses regarding the true model. It is

HStrzalecki (2011) provides the behavioral assumptions that characterize multiplier preferences among vari-
ational preferences.

10



a classical assumption, in the spirit of Wald (1950), in which @ is a set of posited hypotheses
about the probabilistic behavior of a, natural or social, phenomenon of interest.

A decision framework under model uncertainty is described by a quartet:
(5,8, X,Q) (9)

in which a set @ of models is added to a standard decision framework (7), as discussed in the
Introduction. The true model might not be in @, that is, the decision makers information may
be unable to pin it down. Throughout the paper we assume that decision makers are aware of
this limitation of their information and so confront model misspecification.'? This is in contrast
with Wald (1950) and most of the subsequent decision-theoretic literature, which assumes that
decision makers either know the true model and so face risk or, at least, know that the true

model belongs to ) and so face model ambiguity.'?

Example (continued) We consider an example of a real investment problem with a single
stochastic option for transferring goods from one period to another. This problem could be a
planner’s problem supporting a competitive equilibrium outcome associated with a stochastic
growth model with a single capital good. We introduce an exogenous stochastic technology
process that has an impact on the growth rate of capital as an example of what we call a
structured model. This stochastic technology process captures what a previous literature in
macro-finance has referred to as “long-run risk.” For instance, see Bansal and Yaron (2004).
We extend this formulation by introducing an unknown parameter 6 used to index members
of a parameterized family of stochastic technology processes. The investor’s exploration of the
entire family of these processes reflects uncertainty among possible structured models. We also
allow the investor to entertain misspecification concerns over the parameterized models of the
stochastic technology.!® Later in this paper we will reconsider this example by allowing the
investor to also be a statistician endowed with Bayesian priors over the parameter space ©.
To represent this example formally, consider the Euclidean spaces W, Z and O, modelling
respectively a random shock process, a stochastic technology (inclusive of a long-run risk com-
ponent) and a parameter specification. We take the state space S = Z*°, endowed with the

algebra Y = UEt of cylinders. A probability measure » on W, known to the investor, cap-
>0
tures risk in the economy. For instance, the implied process for the random shocks could be

i.i.d. and distributed as a multivariate standard normal at each date ¢.

12 Aydogan et al. (2023) propose an experimental setting that reveals the relevance of model misspecification
for decision making.

13The model ambiguity (or uncertainty) literature is reviewed in Marinacci (2015).

14While this and some of the papers we cite, assume an endowment economy, their insights extend to a model
with production.

"Hansen and Sargent (2021) give a (continuous time) example of such a specification with time varying
parameters residing in a convex subset of an infinite-dimensional parameter space.

11



The exogenous (system) state vector z; used to capture fluctuations in the technological
opportunities has realizations in Z and the shock vector w; has realizations in W. We build

the exogenous technology process from the shocks in a parameter dependent way:

21 =Y (Zt7 Wt41, 9) (10)

for a given initial condition zy. For instance, in long-run risk modeling one component of z

evolves as a first-order autoregression:
1 = Q9% + b Wi
and another component is given by:
Zpp = do + b5 - Wi

At each time ¢ the investor observes past and current values z* = {zg, 21, ..., z; } of the technology
process, but does not know # and does not directly observe the random shock vector w,. The
recursive formulation (10) implies, for a given observed z', a mapping 75 : W™ — § = Z*
defined by

Sl b i+ a2

To ((wt))tH = Yt >0

d@ + bg * Wit

The probability r on W then induces for each 6 a structured model gy on S via the pushforward

distribution
g0 (C) =7 (7,1 (C))

for each cylinder C' of S. As the shocks’ distribution r is known, the parameter # is the only
source of model uncertainty. A nonsingleton parameter set © then translates in a nonsingleton
set @ = {qp}yce Of structured models.

Similarly, we consider a recursive representation of capital evolution given by
ki1 = ki (ie/ ke, 2041)
where consumption ¢; > 0 and investment ¢; > 0 are constrained by an output relation:
¢+ i = kky

for a pre-specified initial condition ky. The parameter s captures the productivity of capital.
By design this technology is homogenous of degree one, which opens the door to stochastic
growth as assumed in long-run risk models. Both i; and ¢; are constrained to be functions

of z! at each date t reflecting the observational constraint that # is unknown to the investor

12



in contrast to the history z' of the technology process.'® Formally, they are Y,-measurable
functions.

Preferences are defined over consumption processes. Thus, the consequence space X consists
of the simple lotteries defined over streams of consumption levels (¢;). An act f associates, to
each realized sequence of the technology process, a lottery over streams of consumption levels
restricted to depend on technology histories.!” When such a lottery is degenerate, at each
period t the act returns a consumption level c¢;.

In this intertemporal setting, we consider an investor who solves a date 0 commitment
problem. We pose this as a static problem with consumptions and investments that depend
on information as it gets realized.!® The affine utility function u over X is a discounted ex-
pected utility over lotteries. In particular, by considering degenerate lotteries, the utility of a
consumption stream (¢;) is (1 — 3) Y 2, B'v (¢t), where 8 € (0,1) is a subjective discount rate
and v : R — R is a utility function over consumption levels. The production technology further
constraints the consumption and hence acts of interest, which form a collection C' dependent
on the initial condition ky for capital. These feasible acts f feature ¥;-measurable sections f;
because of the observational constraints.

In a traditional analysis, the agent is assumed to know the true parameter 6*, thus facing
only risk. At the decision time ¢ = 0, when only zy is known, the agent uses the standard

expected utility objective function

[t o (5) = 1= > [ o) dans) (1)
to solve the decision problem
mjgx/u(f) dgep- subfeC (12)

Here the agent confronts risk via a singleto