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Abstract

We use decision theory to confront uncertainty that is su¢ ciently broad to incorporate

�models as approximations.�We presume the existence of a featured collection of what we

call �structured models�that have explicit substantive motivations. The decision maker

confronts uncertainty through the lens of these models, but also views these models as

simpli�cations, and hence, as misspeci�ed. We extend the max-min analysis under model

ambiguity to incorporate the uncertainty induced by acknowledging that the models used

in decision-making are simpli�ed approximations. Formally, we provide an axiomatic

rationale for a decision criterion that incorporates model misspeci�cation concerns. We

then extend our analysis beyond the max-min case allowing for a more general criterion

that encompasses a Bayesian formulation.
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Come l�araba fenice:

che vi sia, ciascun lo dice;

dove sia, nessun lo sa.1

1 Introduction

The consequences of a decision may depend on exogenous contingencies and uncertain out-

comes that are outside the control of a decision maker. This uncertainty takes on many forms.

Economic applications typically feature risk, where the decision maker knows the correct prob-

abilistic model governing the contingencies but not necessarily the decision outcomes. Yet, this

is a demanding assumption. As a result, statisticians and econometricians have long wrestled

with how to confront ambiguity over models or unknown parameters within a model. Each

model is itself a simpli�cation or an approximation designed to guide or enhance our under-

standing of some underlying phenomenon of interest. Thus, the model, by its very nature, is

misspeci�ed, but in typically uncertain ways. How should a decision maker acknowledge model

misspeci�cation in a way that guides the use of purposefully simpli�ed models sensibly? This

concern has certainly been on the radar screen of statisticians and control theorists, but it has

been largely absent in formal approaches to decision theory.2 Indeed, the statisticians Box and

Cox have both stated the challenge succinctly in complementary ways:

Since all models are wrong, the scientist must be alert to what is importantly wrong.

It is inappropriate to be concerned about mice when there are tigers abroad. Box

(1976).

... it does not seem helpful just to say that all models are wrong. The very word

�model� implies simpli�cation and idealization. The idea that complex physical,

biological or sociological systems can be exactly described by a few formulae is

patently absurd. The construction of idealized representations that capture impor-

tant stable aspects of such systems is, however, a vital part of general scienti�c

analysis and statistical models, especially substantive ones ... Cox (1995).

While there are formulations of decision and control problems that intend to confront model

misspeci�cation, the aim of this paper is: (i) to develop an axiomatic approach that will

provide a rigorous guide for applications and (ii) to enrich formal decision theory when applied

to environments with uncertainty through the guise of models.

1�Like the Arabian phoenix: that it exists, everyone says; where it is, nobody knows.�A passage from a
libretto of Pietro Metastasio.

2In Hansen (2014) and Hansen and Marinacci (2016) three kinds of uncertainty are distinguished based on
the knowledge of the decision maker, the most challenging being model misspeci�cation viewed as uncertainty
induced by the approximate nature of the models under consideration.

1



The protagonist of our analysis is a decision maker who is able to formulate models �for

instance a policy maker having to decide a climate policy based on existing alternative climate

models �but is concerned about their misspeci�cation and wants to use a decision criterion

which accounts for that. Our axiomatic analysis, which has a normative nature, aims to derive

a criterion of this kind to help the decision maker to cope with model misspeci�cation in a

principled way. In this endeavour, we follow Hansen and Sargent (2022) by referring to the for-

mulated models as �structured models.�These structured models are ones that are explicitly

motivated or featured, such as ones with substantive motivation or scienti�c underpinnings,

consistent with the use of the term �models�by Box and Cox. They may be based on scienti�c

knowledge relying on empirical evidence and theoretical arguments or on revealing parameteri-

zations of probability models with parameters that are interpretable to the decision maker. In

posing decision problems formally, it is often assumed, following Wald (1950), that the correct

model belongs to the set of models that decision makers posit. The presumption that a decision

maker identi�es, among their hypotheses, the correct model is often questionable �recalling

the initial quotation, the correct model is often a decision maker phoenix. We embrace, rather

than push aside, the �models are approximations� perspective of many applied researchers,

as articulated by Box, Cox and others. To explore misspeci�cation formally, we introduce a

potentially rich collection of probability distributions that depict possible representations of

the data without formal substantive motivation. We refer to these as �unstructured models.�

We use such alternative models as a way to capture how models could be misspeci�ed.3

This distinction between structured and unstructured is central to the analysis in this paper

and is used to distinguish aversion to ambiguity over models and aversion to potential model

misspeci�cation. At a decision-theoretic level, a proper analysis of misspeci�cation concerns has

remained elusive so far. Indeed, many studies dealing with economic agents confronting model

misspeci�cation still assume that they are conventional expected utility decision makers who

do not address formally potential model misspeci�cation concerns in their preference ordering.4

We extend the analysis of Hansen and Sargent (2022) by providing an axiomatic underpinning

for a corresponding decision theory along with a representation of the implied preferences that

can guide applications. In so doing, we show an important connection with the analysis of

subjective and objective rationality of Gilboa et al. (2010).

Criterion This paper proposes a �rst decision-theoretic analysis of decision making under

model misspeci�cation. We consider a classical setup in the spirit of Wald (1950), but relative

to his seminal work we explicitly remove the assumption that the correct model belongs to

3Such a distinction is also present in earlier work by Hansen and Sargent (2007) and Hansen and Miao (2018)
but without speci�c reference to the terms �structured�and �unstructured.�

4See, e.g., Esponda and Pouzo (2016) and Fudenberg et al. (2017). In contrast, using a decision criterion
elaborated in this paper (cf. Section 6.1), Lanzani (2023) has recently showed the relevance for these analyses
of a proper account of misspeci�cation concerns.
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the set of posited models and we allow for nonneutrality toward this feature. More formally,

in our purely normative approach we assume that decision makers posit a set Q of structured

(probabilistic) models q on states, motivated by their information, but they are afraid that

none of them is correct and so face model misspeci�cation. For this reason, decision makers

contemplate what we call unstructured models in ranking acts f , according to a conservative

decision criterion

V (f) = min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
(1)

where � denotes the set of all probabilities. To interpret this criterion, let

C (p;Q) = min
q2Q

c (p; q)

where we presume that C(q;Q) = 0 if and only if q 2 Q. In this construction, C (p;Q) is

what we call a Hausdor¤ statistical set distance between a model p and the posited set Q of

structured models. This distance is nonzero if and only if p is unstructured, that is, p =2 Q.

More generally, p�s that are closer to the set of structured models Q have a less adverse impact

on the preferences, as is evident by rewriting (1) as:

V (f) = min
p2�

�Z
u (f) dp+ C (p;Q)

�
The unstructured models are statistical artifacts that allow the decision maker to assess formally

the potential consequences of misspeci�cation as captured by the construction of C (�; Q). In
this paper we provide a formal interpretation of C (�; Q) as an index of misspeci�cation fear:
the lower the index, the higher the fear.5

We formalize model uncertainty by allowing the decision maker to posit a set Q. In our

normative approach, it is then natural to enrich the standard decision-theoretic setting by

taking Q as a given, a datum of the decision problem. For instance, in the climate policy

problem, Q is the set of climate models that the policy maker considers. In this regard, observe

that we are not after detecting which choice behavior of the decision maker may reveal model

misspeci�cation concerns, a di¤erent revealed preference exercise that would indeed require

an endogenous Q.6 In line with standard practice in applied economics, we imagine that

the substantive modeling that underlies the construction of the elements of Q is simpli�ed

with an explicit structure imposed to facilitate interpretation. Applied researchers commonly

avoid reducing model building to the construction of the complex black boxes that a purely

nonparametric exercise might well involve, especially in multivariate settings.

5To ease terminology, we often refer to �misspeci�cation�rather than �model misspeci�cation.�
6In this exercise, the �ndings of Denti and Pomatto (2022) may be useful.
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A protective belt When c takes the entropic form �R(pjjq), with � > 0, criterion (1) takes
the form

min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
(2)

proposed by Hansen and Sargent (2022). It is the most tractable version of criterion (1), which

for a singleton Q further reduces to a standard multiplier criterion a la Hansen and Sargent

(2001, 2008). By exchanging orders of minimization, we preserve this tractability and provide

a revealing link to this earlier research,

min
q2Q

�
min
p2�

�Z
u (f) dp+ �R(pjjq)

��
(3)

The inner minimization problem gives rise to the minimization problem featured by Hansen and

Sargent (2001, 2008) to confront the potential misspeci�cation of a given probability model q.7

Unstructured models lack the substantive motivation of structured models, yet in (1) they act

as a protective belt against model misspeci�cation. The importance of their role is proportional

�as quanti�ed by � in (2) �to their proximity to the set Q, a measure of their plausibility in

view of the decision maker information. The outer minimization over structured models is the

counterpart to the Wald (1950) and the more general Gilboa and Schmeidler (1989) max-min

criterion. Clearly, the same inner-outer interpretation applies to the general case (1).

Our analysis provides a decision-theoretic underpinning for incorporating misspeci�cation

concerns in a distinct way from ambiguity aversion. Observe that misspeci�cation fear is absent

when the index minq2Q c (p; q) equals the indicator function �Q of the set of structured models

Q, that is,

min
q2Q

c (p; q) =

(
0 if p 2 Q
+1 else

In this case, which corresponds to � = +1 in (2), criterion (1) takes a max-min form:

V (f) = min
q2Q

Z
u (f) dq

This max-min criterion thus characterizes decision makers who confront model misspeci�cation

but are not concerned by it, so are misspeci�cation neutral (see Section 4.3). The criterion in

(1) may thus be viewed as representing decision makers who use a more prudential variational

criterion than if they were to max-minimize over the set of structured models which they

posited. In particular, the farther away an unstructured model is from the set Q (so the less

plausible it is), the less it is weighted in the minimization.

7The Hansen and Sargent (2001, 2008) formulation of preferences builds on extensive literature in control
theory starting with Jacobson (1973)�s deterministic robustness criterion and a stochastic extension given by
Petersen et al. (2000), among several others.
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Axiomatics Our axiomatic analysis considers as in Gilboa et al. (2010) a mental preference

%�Q, describing the decision maker genuine ranking over acts, and a behavioral preference %Q

governing choices. The former is typically incomplete as the decision maker may �nd it di¢ cult

to rank all acts, the latter is instead complete because, at the end, a choice has to be made.

As it should become clear as our analysis unfolds, this modelling choice is conceptually im-

portant for the study of misspeci�cation because it is the mental preference that, interestingly,

turns out to be the one relevant for the analysis of misspeci�cation attitudes. In particular,

the �exibility of our two-preference setting allows us to capture misspeci�cation sensitivity via

a suitable weakening of the independence axiom, the weak certainty-independence axiom, for

the mental preference. We show that this weak form of independence, which underlies vari-

ational representations, is needed to account for misspeci�cation sensitivity. Indeed, stronger

weakenings of the independence axiom, like the certainty-independence axiom, would force mis-

speci�cation neutrality. These key decision-theoretic points, which underlie the importance of

a two-preference setting, are discussed in detail in Sections 4.2 and 4.3.

Another key feature of our axiomatization is the use of a family Q of sets of models Q. We

thus consider preferences %�Q and %Q indexed by the sets Q and introduce axioms ensuring

their consistency across di¤erent sets of models, each depicting a di¤erent possible information

that the decision maker may have. In this way, our analysis is able to consistently connect

di¤erent decision environments in which the decision maker may end up. Besides its inherent

motivation, this rich setting also signi�cantly eases the exposition. A derivation for a single

given Q is, however, provided in the Online Appendix B.4.2. Appendix A uses the single-

preference framework in axiomatizing the entropic criterion (2). We include this analysis to

help situate our main criterion in a prior literature, including the single-preference variational

model.

For an outline of our approach, let us consider the entropic case (2). Start with a singleton

Q = fqg. Decision makers, being afraid that the reference model q might not be correct,
contemplate also unstructured models p 2 � and rank acts f according to the multiplier

criterion

V�;q (f) = min
p2�

�Z
u (f) dp+ �R(pjjq)

�
(4)

Here the positive scalar � is interpreted as an index of misspeci�cation fear. When decision

makers posit a nonsingleton set Q of structured models, but are concerned that none of them

is correct, the multiplier criterion (4) then gives only an incomplete dominance relation:

f %�Q g () V�;q (f) � V�;q (g) 8q 2 Q (5)

With (5), decision makers can safely regard f better than g. Through this ranking, the domi-

nance relation provides a preferential account of the probabilistic information that Q represents.

The dominance relation thus naturally arises when the set Q is posited.
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Yet, the ranking (5) has little traction because of the incomplete nature of %�Q. Nonetheless,
the burden of choice will have decision makers select between alternatives, be they rankable

by %�Q or not. A cautious way to complete the binary relation %�Q is given by the preference
%Q represented by (2), or equivalently by (3). This criterion thus emerges in our analysis as a

cautious completion of a multiplier dominance relation %�Q. In this way, the probabilistic infor-
mation gets embedded in the behavioral preference. Suitably extended to a general preference

pair (%�Q;%Q), we support this approach by axiomatizing criterion (1) as the representation of

the behavioral preference %Q and the unanimity criterion

f %�Q g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

as the representation of the incomplete dominance relation %�Q.
To sum up, our two-preference approach is motivated by the natural way with which the

dominance relation arises when the setQ is posited. In our approach, we connect the dominance

and behavioral preferences to derive their desired representations. We then extend our analysis

beyond the max-min case allowing for a more general non-variational criterion that encompasses

a Bayesian formulation.

2 Preliminaries

2.1 Mathematics

Basic notions We consider a non-trivial algebra � of events in a state space S of payo¤-

relevant contingencies. We denote by � the set of �nitely additive probabilities p : � ! [0; 1]

and endow � and any of its subsets with the weak* topology (unless otherwise speci�ed, these

subsets are to be intended non-empty). Product sets are endowed with the product topology.

We denote by �� the subset of � formed by the countably additive probability measures.

Given a probability q in �, we denote by �� (q) the collection of all probabilities p in �� that

are absolutely continuous with respect to q, i.e., q (A) = 0 implies p (A) = 0 for all A 2 �.
The (convex analysis) indicator function �C : �! [0;1] of a subset C of � is de�ned by

�C (p) =

(
0 if p 2 C
+1 else

Throughout we adopt the convention 0 � �1 = 0.

Collections In what follows Q denotes a collection of compact subsets of ��. It is often

assumed to be proper, that is, to contain all singletons and cover all doubletons.8 Examples of

8That is, for each q; q0 2 �� there exists some Q 2 Q such that fq; q0g � Q.
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proper collections Q are the collection of all �nite sets of ��, the collection of all its compact

subsets, the collection of all its polytopes as well as the collection K of its compact and convex
subsets.

Statistical distances We say that a map c : ���� ! [0;1] is a statistical distance if it is
lower semicontinuous and satis�es the distance property

c (p; q) = 0() p = q

Given a statistical distance c and a family of compact setsQ in��, we can de�ne aHausdor¤

statistical set distance C : ��Q ! [0;1] by

C (p;Q) = min
q2Q

c (p; q)

It is easy to see that C is well de�ned, lower semicontinuous in the �rst argument and satis�es

the following two properties:

(C.i) for each Q 2 Q,
C (p;Q) = 0() p 2 Q

(C.ii) for each Q;Q0 2 Q,
Q � Q0 =) C (�; Q) � C (�; Q0)

These two properties make possible to interpret C as a set distance.

Divergences We say that a statistical distance c : � � �� ! [0;1] is a divergence if, for
each q 2 ��,

c (p; q) <1 =) p� q

Divergences thus assign an in�nite penalty when p is not absolutely continuous with respect to q.

To introduce a well-known class of divergences, assume that� is a �-algebra. Given a continuous

strictly convex function � : [0;1) ! [0;1), with � (1) = 0 and limt!1 � (t) =t = +1, de�ne
D� : ���� ! [0;1] by

D� (pjjq) =

8<:
R
�

�
dp

dq

�
dq if p 2 �� (q)

+1 otherwise
(6)

under the conventions 0=0 = 0 and ln 0 = �1. It can be proved that D� is a convex divergence,

called �-divergence.9 When � (t) = t ln t � t + 1, D� reduces to the relative entropy R (pjjq),
9For basic properties of �-divergences we refer, for example, to Chapter 1 of Liese and Vajda (1987). As

usual, dp=dq denotes any version of the Radon-Nikodym derivative of p with respect to q.
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while when � (t) = (t� 1)2 =2 it becomes the Gini index �2 (pjjq).

Example Let Z be a metric space endowed with its Borel �-algebra. Take S = Z1 with the

algebra � of cylinders. Given any p 2 �, we denote by pt its restriction to the �-algebra �t of
cylinders of length t+ 1. De�ne the discounted relative entropy R� : ���� ! [0;1] by

R� (pjjq) = (1� �)
1X
t=0

�tR (ptjjqt)

where � 2 (0; 1). Hansen and Sargent (2008) use this divergence when studying in�nite-horizon
discounted problems. It is routine to verify that R� is a convex divergence. Notice that is

possible for pt to be absolutely continuous with respect to qt for all t without p being absolutely

continuous with respect to q over the �-algebra generated by the algebra � of cylinders.10

2.2 Decision theory

Setup We consider a generalized Anscombe and Aumann (1963) setup where a decision maker

chooses among uncertain alternatives described by (simple) acts f : S ! X, which are �-

measurable simple functions from a state space S to a consequence space X. This latter space

is assumed to be a non-empty convex set in a vector space like, for instance, the set of all

(simple) lotteries de�ned on some prize space. The triple

(S;�; X) (7)

forms an (Anscombe-Aumann) decision framework.

Let us denote by F the set of all acts. Given any consequence x 2 X, we denote by x 2 F
also the constant act equal to x. Thus, under a standard abuse of notation we may identify X

with the subset of constant acts in F .
A preference % is a binary relation on F that satis�es the so-called basic conditions (cf.

Gilboa et al., 2010), i.e., it is:

(i) re�exive and transitive;

(ii) monotone: for all f; g 2 F ,

f (s) % g (s) 8s 2 S =) f % g

10With an appropriate scaling, a limiting version as � " 1 converges to a divergence that is central to a
discrete-time Donsker-Varadhan large deviation theory for ergodic Markov processes.
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(iii) c-continuous: for all x; y; z 2 X, the sets

f� 2 [0; 1] : �x+ (1� �) y % zg and f� 2 [0; 1] : z % �x+ (1� �) yg

are closed;

(iv) non-trivial : there exist f; g 2 F such that f � g.

Moreover, a preference % is:

1. continuous if, for all f; g; h 2 F , the sets

f� 2 [0; 1] : �f + (1� �) g % hg and f� 2 [0; 1] : h % �f + (1� �) gg

are closed;

2. unbounded if, for each x; y 2 X with x � y, there exist z; z0 2 X such that

1

2
z +

1

2
y % x � y % 1

2
x+

1

2
z0

Bets are binary acts that play a key role in decision theory. Formally, given any two prizes

x � y, a bet on an event A is the act xAy de�ned by

xAy (s) =

(
x if s 2 A
y else

In words, a bet on event A is a binary act that yields a more preferred consequence when A

obtains.

Comparative uncertainty aversion Let %1 and %2 be two preferences on F . As in Ghi-
rardato and Marinacci (2002), we say that %1 is more uncertainty averse than %2 if, for each
consequence x 2 X and act f 2 F ,

f %1 x =) f %2 x

In words, a preference is more uncertainty averse than another one if, whenever this preference

is �bold enough�to prefer an uncertain alternative over a sure one, so does the other one.

An absolute notion of uncertainty aversion can be de�ned in this comparative setting once

an uncertainty neutral preference is identi�ed. In this case, a preference is declared to be

uncertainty averse when more uncertainty averse than the neutral one.
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Decision criteria We say that a complete preference % on F is variational when it is rep-

resented by a decision criterion V : F ! R given by

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
(8)

where the a¢ ne utility function u : X ! R is non-constant and the index of uncertainty

aversion c : � ! [0;1] is grounded (i.e., min� c = 0), lower semicontinuous and convex. In

particular, given two unbounded variational preferences %1 and %2 on F that share the same

u, we have that %1 is more uncertainty averse than %2 if and only if c1 � c2 (see Maccheroni

et al., 2006, Propositions 6 and 8).

When the function c has the entropic form c (p; q) = �R (pjjq) under a reference probability
q 2 �� and a coe¢ cient � > 0, criterion (8) takes the multiplier form

V�;q (f) = min
p2�

�Z
u (f) dp+ �R(pjjq)

�
analyzed by Hansen and Sargent (2001, 2008).11 If, instead, the function c has the indicator

form �C , with C compact and convex, criterion (8) takes the max-min form

V (f) = min
p2C

Z
u (f) dp

axiomatized by Gilboa and Schmeidler (1989).

All these criteria are here considered in their classical interpretation, so Waldean for the

max-min criterion, in which the elements of � are interpreted as models.

3 Models and preferences

3.1 Models

The consequences of the acts among which decision makers have to choose depend on the exoge-

nous states s that are outside their control. They know, however, that states obtain according

to a probabilistic model described by a probability measure in �, the so-called true or correct

model. If decision makers knew the true model, they would confront only risk, which is the ran-

domness inherent to the probabilistic nature of the model. Our decision makers, unfortunately,

may not know the true model. Yet, they are able to posit a set of structured probabilistic

models Q, based on their information (possibly including existing scienti�c theories, say eco-

nomic or physical), that forms a set of alternative hypotheses regarding the true model. It is

11Strzalecki (2011) provides the behavioral assumptions that characterize multiplier preferences among vari-
ational preferences.
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a classical assumption, in the spirit of Wald (1950), in which Q is a set of posited hypotheses

about the probabilistic behavior of a, natural or social, phenomenon of interest.

A decision framework under model uncertainty is described by a quartet:

(S;�; X;Q) (9)

in which a set Q of models is added to a standard decision framework (7), as discussed in the

Introduction. The true model might not be in Q, that is, the decision makers information may

be unable to pin it down. Throughout the paper we assume that decision makers are aware of

this limitation of their information and so confront model misspeci�cation.12 This is in contrast

with Wald (1950) and most of the subsequent decision-theoretic literature, which assumes that

decision makers either know the true model and so face risk or, at least, know that the true

model belongs to Q and so face model ambiguity.13

Example (continued) We consider an example of a real investment problem with a single

stochastic option for transferring goods from one period to another. This problem could be a

planner�s problem supporting a competitive equilibrium outcome associated with a stochastic

growth model with a single capital good. We introduce an exogenous stochastic technology

process that has an impact on the growth rate of capital as an example of what we call a

structured model. This stochastic technology process captures what a previous literature in

macro-�nance has referred to as �long-run risk.�For instance, see Bansal and Yaron (2004).14

We extend this formulation by introducing an unknown parameter � used to index members

of a parameterized family of stochastic technology processes. The investor�s exploration of the

entire family of these processes re�ects uncertainty among possible structured models. We also

allow the investor to entertain misspeci�cation concerns over the parameterized models of the

stochastic technology.15 Later in this paper we will reconsider this example by allowing the

investor to also be a statistician endowed with Bayesian priors over the parameter space �.

To represent this example formally, consider the Euclidean spaces W , Z and �, modelling

respectively a random shock process, a stochastic technology (inclusive of a long-run risk com-

ponent) and a parameter speci�cation. We take the state space S = Z1, endowed with the

algebra � =
[
t�0
�t of cylinders. A probability measure r on W1, known to the investor, cap-

tures risk in the economy. For instance, the implied process for the random shocks could be

i.i.d. and distributed as a multivariate standard normal at each date t.
12Aydogan et al. (2023) propose an experimental setting that reveals the relevance of model misspeci�cation

for decision making.
13The model ambiguity (or uncertainty) literature is reviewed in Marinacci (2015).
14While this and some of the papers we cite, assume an endowment economy, their insights extend to a model

with production.
15Hansen and Sargent (2021) give a (continuous time) example of such a speci�cation with time varying

parameters residing in a convex subset of an in�nite-dimensional parameter space.
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The exogenous (system) state vector zt used to capture �uctuations in the technological

opportunities has realizations in Z and the shock vector wt has realizations in W . We build

the exogenous technology process from the shocks in a parameter dependent way:

zt+1 =  (zt; wt+1; �) (10)

for a given initial condition z0. For instance, in long-run risk modeling one component of zt
evolves as a �rst-order autoregression:

z1t+1 = a�z
1
t + b1� � wt+1

and another component is given by:

z2t+1 = d� + b2� � wt+1

At each time t the investor observes past and current values zt = fz0; z1; :::; ztg of the technology
process, but does not know � and does not directly observe the random shock vector wt. The

recursive formulation (10) implies, for a given observed zt, a mapping �� : W1 ! S = Z1

de�ned by

�� ((wt))t+1 =

24 Pt
s=0 a

t�s
� b1� � ws+1 + at+1� z10

d� + b2� � wt+1

35 8t � 0

The probability r onW1 then induces for each � a structured model q� on S via the pushforward

distribution

q� (C) = r
�
��1� (C)

�
for each cylinder C of S. As the shocks�distribution r is known, the parameter � is the only

source of model uncertainty. A nonsingleton parameter set � then translates in a nonsingleton

set Q = fq�g�2� of structured models.
Similarly, we consider a recursive representation of capital evolution given by

kt+1 = kt' (it=kt; zt+1)

where consumption ct � 0 and investment it � 0 are constrained by an output relation:

ct + it = �kt

for a pre-speci�ed initial condition k0. The parameter � captures the productivity of capital.

By design this technology is homogenous of degree one, which opens the door to stochastic

growth as assumed in long-run risk models. Both it and ct are constrained to be functions

of zt at each date t re�ecting the observational constraint that � is unknown to the investor

12



in contrast to the history zt of the technology process.16 Formally, they are �t-measurable

functions.

Preferences are de�ned over consumption processes. Thus, the consequence spaceX consists

of the simple lotteries de�ned over streams of consumption levels (ct). An act f associates, to

each realized sequence of the technology process, a lottery over streams of consumption levels

restricted to depend on technology histories.17 When such a lottery is degenerate, at each

period t the act returns a consumption level ct.

In this intertemporal setting, we consider an investor who solves a date 0 commitment

problem. We pose this as a static problem with consumptions and investments that depend

on information as it gets realized.18 The a¢ ne utility function u over X is a discounted ex-

pected utility over lotteries. In particular, by considering degenerate lotteries, the utility of a

consumption stream (ct) is (1� �)
P1

t=0 �
tv (ct), where � 2 (0; 1) is a subjective discount rate

and v : R! R is a utility function over consumption levels. The production technology further
constraints the consumption and hence acts of interest, which form a collection C dependent

on the initial condition k0 for capital. These feasible acts f feature �t-measurable sections ft
because of the observational constraints.

In a traditional analysis, the agent is assumed to know the true parameter ��, thus facing

only risk. At the decision time t = 0, when only z0 is known, the agent uses the standard

expected utility objective functionZ
S

u (f (s)) dq�� (s) = (1� �)
1X
t=0

�t
Z
S

v (ft (s)) dq��(s) (11)

to solve the decision problem

max
f

Z
u (f) dq�� sub f 2 C (12)

Here the agent confronts risk via a singleton set Q = fq��g consisting of the true model, used
in an expected utility criterion. Yet, typically agents do not know the true model and confront

model uncertainty via a nonsingleton set Q of structured models. In the rest of the section

we present a preferential analysis of a rational agent coping with model uncertainty, yielding

the decision criterion discussed in the Introduction that extends traditional expected utility

analysis under risk to model uncertainty.

16Note that the endogenous state variable, kt, reveals no new information in addition to current and past
values of the technology process. This means that there is no incentive for the investor to experiment in this
setting.
17This shows that the elements of Z1 are the payo¤-relevant contingencies, which motivates our choice of

S = Z1 as the state space.
18By posing this as a date 0 commitment problem, we deliberately avoid dynamic consistency considerations.
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3.2 Preferences

We consider a two-preference setup as in Gilboa et al. (2010). In our �rst axiomatization,

we allow the set of structured models to vary within a collection of sets of models Q which

we assume to be proper (as de�ned in Section 2.1). In the second approach, developed in the

Online Appendix, Q will be �xed.

For each Q 2 Q we thus consider a mental preference %�Q and a behavioral preference %Q.

De�nition 1 A preference %Q is ( subjectively) rational if it is:

a. complete;

b. solvable: for each f 2 F there exists x 2 X such that f �Q x;19

c. risk independent: for all x; y; z 2 X and � 2 (0; 1),

x �Q y =) �x+ (1� �) z �Q �y + (1� �) z

The behavioral preference%Q governs the decision maker choice behavior and so it is natural

to require it to be complete as, eventually, the decision maker has to choose between alternatives

(burden of choice). It is subjectively rational because, in an �argumentative�perspective, the

decision maker cannot be convinced that it leads to incorrect choices. Risk independence

ensures that %Q is represented on the space of consequences X by an a¢ ne utility function

u : X ! R, for instance an expected utility functional when X is the set of lotteries. So, risk

is addressed in a standard way and we abstract from non-expected utility issues.

The mental preference %�Q on F represents the decision maker �genuine�preference over

acts, so it has the nature of a dominance relation for the decision maker. As such, it might well

not be complete because of the decision maker inability to compare some pairs of acts. These

preferences have an antecedent in statistical decision theory in the study of admissibility, where

decision rules are evaluated using a partial ordering based on their ex ante performance over a

family of possible parameter values.

De�nition 2 A continuous preference %�Q is a dominance relation (or is objectively rational)
if it is:

a. c-complete: for all x; y 2 X, x %�Q y or y %�Q x;

b. completeness: %�Q is complete when Q is a singleton;

c. weak c-independent: for all f; g 2 F , x; y 2 X and � 2 (0; 1),

�f + (1� �)x %�Q �g + (1� �)x =) �f + (1� �)y %�Q �g + (1� �)y

19As well-known, a complete continuous preference relation that satis�es risk independence is solvable.
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d. convex: for all f; g; h 2 F and � 2 (0; 1),

f %�Q h and g %�Q h =) �f + (1� �) g %�Q h

When f %�Q g we say that f dominates g. The dominance relation is objectively rational

because the decision maker can convince others of its reasonableness, for instance through ar-

guments based on scienti�c theories (a case especially relevant for our purposes). Momentarily,

axiom A.3 will further clarify the nature of the dominance relation. Axiomatically, it is a

variational preference not required to be complete, unless Q is a singleton.20 In the singleton

Q case the dominance relation is complete and yet, because of model misspeci�cation, satis-

�es only a weak form of independence. Hence in our approach, model misspeci�cation may

cause violations of the independence axiom for the dominance relation. Later in the paper,

Proposition 4 will show that relaxing independence to weak c-independence is conceptually

necessary as, otherwise, the behavioral preference would be misspeci�cation neutral. This is a

key decision-theoretic observation for our analysis.

By adding preferences %�Q and %Q to (9) we form a two-preference decision environment

under model uncertainty �
S;�; X;Q;%�Q;%Q

�
(13)

The next two assumptions, which we take from Gilboa et al. (2010), connect the two preferences

%�Q and %Q.

A.1 Consistency: for all f; g 2 F ,
f %�Q g =) f %Q g

Consistency asserts that, whenever possible, the mental ranking informs the behavioral one.

The next condition, caution, says that the decision maker opts by default for a sure alternative

x over an uncertain one f , unless the dominance relation says otherwise.

A.2 Caution: for all x 2 X and f 2 F ,

f 6%�Q x =) x %Q f

Unlike the previous assumptions, the next two are peculiar to our analysis. They both link

the posited set Q to the two preferences %�Q and %Q of the decision maker. We begin with the

20Convexity is stronger than uncertainty aversion a la Schmeidler (1989), which merely requires that f ��Q g
implies �f + (1� �) g %�Q g for all � 2 (0; 1). Yet, convexity and uncertainty aversion coincide under com-
pleteness (see, e.g., Lemma 56 of Cerreia-Vioglio et al., 2011). Nascimento and Riella (2011) study incomplete
variational preferences, but their result is not applicable to our setting because their axioms are over lotteries
of acts (and their state space is �nite).
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dominance relation %�Q. Here we write f
Q
= g when q (f = g) = 1 for all q 2 Q, i.e., f and g are

equal almost everywhere according to each structured model.

A.3 Objective Q-coherence: for all f; g 2 F ,

f
Q
= g =) f ��Q g

This axiom provides a preferential translation of the special status of structured models over

unstructured ones: if they all regard two acts to be almost surely identical, the decision maker�s

�genuine�preference %�Q follows suit and ranks them indi¤erent.

In what follows we will see that, though the set Q of structured models might not be convex

per se, its closed convex hull coQ that contains �hybrid models�might be of interest.21 This

is also mirrored in our next axiom. Even when Q is not convex, we assign a special role to

the probabilities in its convex hull relative to other unstructured models. Our rationale is that

hybrid models retain an epistemic status and are more than just statistical artifacts used to

assess model misspeci�cation.

To introduce our next axiom, recall that a rational preference %Q satis�es risk independence

and thus admits an a¢ ne utility function u : X ! R over consequences.22 Given a model p 2 �
and an act f , we de�ne an indi¤erence class Xp

f � X of consequences xpf via the equality

u(xpf ) =

Z
u (f) dp (14)

We can interpret each xpf as a consequence that would be indi¤erent, so equivalent, to act f if

p were the correct model. By constructing these equivalent consequences for alternative acts

and models, our next axiom relates the posited set of models Q with the behavioral preference

%Q.

A.4 Subjective Q-coherence: for all f 2 F and x 2 X,

x ��Q x
p
f =) x �Q f

if and only if p 2 coQ.

To motivate the right-hand side of the implication imposed in this axiom, by construction

the decision maker would be indi¤erent between the act f and a constant counterpart xpf under

expected utility with probability p. This construction is achieved without any misspeci�cation

21Loosely speaking, hybrid models are probabilities obtained as mixture of structured models. Subsequently,
we will suggest a robust Bayesian perspective that can justify this convexity.
22We make the usual identi�cation of constant acts with consequences. Though in principle u might depend

on Q, in our analysis it will turn out to be constant across Q�s.
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concerns regarding the probability p. On the other hand, misspeci�cation concerns potentially

reduce the attractiveness of f relative to xpf when p is in the convex hull of the set of structured

probability models Q. This axiom presumes that this implication only applies to such p�s.

This salience of p is the preferential footprint of a structured or hybrid model that the decision

maker takes seriously under consideration because of its epistemic status �as opposed to a

purely unstructured model, which they regard as a mere statistical artifact with no epistemic

content.

While we state Axioms A.3 and A.4 using a set of structured probabilities Q, as we will see,

Corollary 3 shows that our main results hold even when these axioms are required to hold only

for singletons fqg. When Q is �xed and does not range over a class Q, the general versions of
these two coherence axioms are needed for the analysis. We use this �xed Q approach for an

analysis of the entropic formulation of model misspeci�cation aversion in Appendix A and for

the general formulation considered in Online Appendix B.4.2. For this reason, we stated the

two coherence axioms for a generic Q.

To conclude, observe that in traditional purely subjective axiomatizations there is no way �

actually, no language �to embed the probabilistic information that Q represents in the decision

maker preference.23 The last two axioms provide the needed embedding, as the representation

theorems will show momentarily.

Example (continued) At the end of the one-sector growth example discussed above, the

agent confronted risk via a singleton set Q = fq��g consisting of the true model, used in
the expected utility criterion (11). When the agent still entertains a single model, but now

has doubts about it being correct, our approach prescribes that %�Q is a complete variational
preference and %Q coincides with it. In this case, we still have a singleton Q = fq�g but we
dropped the star since the investor no longer knows whether the single structured model is

correct. As a consequence, the preference %�Q considers other probabilities besides q�, but they
are penalized by a cost function. The Q-coherence axioms discipline such a penalization as we

will discuss below. For example, %�Q could be described by the discounted entropic criterion

V�;� (f) = min
p2��

�Z
u (f) dp+ �R�(pjjq�)

�
When Q = fq�g�2� is not a singleton, %�Q is not complete and has, as it will be seen in both
our two-preference axiomatizations, a multi-variational form. For example,

f %�Q g () V�;� (f) � V�;� (g) 8� 2 � (15)

23For instance, in the Gilboa and Schmeidler (1989) seminal axiomatization the derived set of probabilities
C is purely subjective. There is no formal connection with any underlying probabilistic information, something
left to the decision maker personal, unmodelled, elaborations. A notable exception is Gajdos et al. (2008),
which considers probabilistic information. Its analysis proceeds along lines very di¤erent from ours.
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Consistency and caution help to connect the evaluations that represent %�Q to the decision
criterion that represents %Q. Speci�cally, consistency imposes that when each evaluation of

%�Q deems f better than g, so does %Q. As we will see, it implies that %Q is represented by

a rule that aggregates these evaluations (cf. Proposition 7). We will also show that caution

singles out the �min�as the aggregation rule (cf. Theorem 1). Thus, when Q = fq�g�2� is
compact, the agent decision problem (12) becomes

max
f
min
p2��

�Z
u (f) dp+ �min

�2�
R�(pjjq�)

�
sub f 2 C

The dominance relation (15) proves to be useful in solving this problem by ruling out all strongly

dominated acts.24

Parameters and utility functions Many applications in econometrics and statistics use loss

functions (negatives of utility functions) expressed directly in terms of unknown parameters that

can be inferred in part from data. In our view, this is often done to short circuit the process

of specifying a substantively interesting application of a decision problem in which, like in our

example, the unknown parameters have implications for objects of interest such as consumption

or policy outcomes. That said, with some modest reframing, unknown parameters could be

included as arguments in the utility function in an extended analysis.

4 Decision criteria and model misspeci�cation

4.1 Main criterion

We introduced a two-preference decision environment under model uncertainty (13) as a tuple�
S;�; X;Q;%�Q;%Q

�
with the dependence of preferences on Q highlighted. Decision environments, however, may

share common state and consequence spaces, but di¤er on the posited sets of structured models

because of the di¤erent information that decision makers may have. It then becomes impor-

tant to ensure that decision makers use decision criteria that, across such environments, are

consistent.

To provide our �rst foundation of our main decision criterion, in this section we consider a

family ��
S;�; X;Q;%�Q;%Q

�	
Q2Q

of decision environments that di¤er in the set Q of posited models, which vary in a collection

24That is, all acts g 2 C for which there exist f 2 C and " > 0 with V�;� (f) � V�;� (g) + " for all � 2 �.
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Q that we continue to assume to be proper. Next we introduce three axioms on the family�
%�Q
	
Q2Q that connect these environments.

A.5 Monotonicity (in model ambiguity): for all f; g 2 F and all Q0 � Q,

f %�Q g =) f %�Q0 g

According to this axiom, when the �structured�information underlying a set Q is good enough

for the decision maker to establish that an act dominates another one, a better information

which decreases model ambiguity can only con�rm such judgement. Its reversal would be,

indeed, at odds with the objective rationality spirit of the dominance relation.

Next we consider a separability assumption.

A.6 Q-separability: for all f; g 2 F ,

f %�q g 8q 2 Q =) f %�Q g

In words, an act dominates another one when it does, separately, through the lenses of each

structured model. In this axiom the incompleteness of %�Q arises as that of a Paretian order over
the, complete but possibly misspeci�cation averse, preferences %�q determined by the elements
of Q.

We close with a continuity axiom. To state it, we need a last piece of notation: we denote

by xf;q the consequence indi¤erent to act f for the preference %�q.25

A.7 Lower semicontinuity: for all x 2 X and f 2 F , the set
�
q 2 �� : x %�q xf;q

	
is closed.

Next we introduce a class

PQ =
��
%�Q;%Q

�	
Q2Q

of two-preference families that builds on the properties that we have introduced.

De�nition 3 A two-preference family PQ is (misspeci�cation) robust if:

(i)
�
%�Q
	
Q2Q is monotone, separable and lower semicontinuous;

(ii) for each Q 2 Q, %�Q is an unbounded dominance relation, %Q is a rational preference,

both are Q-coherent and jointly satisfy caution and consistency.

We can now state our �rst representation result.

Theorem 1 Let PQ be a two-preference family. The following statements are equivalent:
25In symbols, f ��q xf;q. In particular, xf;q should not be confused with x

q
f as in (14).
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(i) PQ is robust;

(ii) there exist an onto a¢ ne function u : X ! R and a divergence c : � � �� ! [0;1],
convex in p, such that, for each Q 2 Q,

f %�Q g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

(16)

and

f %Q g () min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
� min

p2�

�Z
u (g) dp+min

q2Q
c (p; q)

�
(17)

for all acts f; g 2 F .

Moreover, u is cardinal and, given u, c is unique.

A robust PQ is thus characterized by a utility and divergence pair (u; c) that, consistently

across decision environments, represents each %�Q via the unanimity rule (16) and each %Q via

the decision criterion

VQ (f) = min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
(18)

The Hausdor¤ statistical set distance

p 7! C (p;Q) = min
q2Q

c (p; q)

between p and Q is strictly positive if and only if p is an unstructured model, i.e., p =2 Q. In

particular, the more distant from Q is an unstructured model, the more it is penalized and so

the smaller is its role in the minimization problem that criterion (18) features. An unstructured

model p may play a role in this criterion when c (p; q) <1 for some structured model q, that

is, when it has a �nite distance from a structured model. Momentarily, we will engage in a

comparative analysis of misspeci�cation aversion that will permit us to interpret C as an index

of misspeci�cation aversion.

A few remarks are now in order. Before moving to them, observe that in this representation

theorem there is no convexity assumption on the sets of structured models. In Section 4.4, we

will study the convex case.

Unstructured penalization Objective Q-coherence has important implications for the cost

functions used to impose misspeci�cation aversion. Consider �rst the case where Q is a sin-

gleton fqg. Objective Q-coherence imposes that all the unstructured models which are not
absolutely continuous with respect to q are in�nitely penalized. In contrast, subjective Q-

coherence prescribes that all the unstructured models are penalized, i.e., c (p; q) > 0 whenever

p 6= q.
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When Q is not a singleton, the absolute continuity restriction entailed by objective Q-

coherence continues to apply when all the probabilities in Q are mutually absolutely continuous.

Though it is a restriction that we do not make, it is commonly imposed in statistical problems

when constructing a likelihood function. For such problems we may think of the potential

misspeci�cation of each model as a way to represent a misspeci�ed likelihood function.26 Finally,

subjective Q-coherence imposes that all the unstructured models are strictly penalized.

Admissibility Since the dominance relation %�Q requires unanimity across structured models
as stated in (16), it implies a counterpart to admissibility extended to accommodate misspeci�-

cation aversion. Analogous to the outcome from the standard formulation of statistical decision

theory, the partial ordering%�Q alone su¢ ces to rule out a collection of acts as potential solutions
to decision problems.27

Speci�cations and computability Two speci�cations of our representation are noteworthy.

First, when c is the entropic statistical distance �R(pjjq), with � 2 (0;1], we have the following
important tractable version of our representation

VQ (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
(19)

Speci�cally, for � 2 (0;1),28

min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
= min

q2Q
�� log

Z
e�

u(f)
� dq (20)

This result is well known when Q is a singleton, that is, when (19) is a standard multiplier

criterion.

A second noteworthy special case of our representation is the Gini criterion

VQ (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
�2(pjjq)

�
(21)

Remarkably, we have

min
p2�

�Z
u (f) dp+ �min

q2Q
�2(pjjq)

�
= min

q2Q

�Z
u (f) dq � 1

2�
Varq (u (f))

�
(22)

for all acts f for which the mean-variance (in utils) criteria on the r.h.s. are monotone. So,

26Removing objective Q-coherence from Theorem 1 is equivalent to requiring c to be solely a statistical
distance and not necessarily a divergence. A similar observation applies to Proposition 7.
27We further elaborate in the working paper version.
28When � =1, we have minp2�

�R
u (f) dp+ �minq2QR(pjjq)

	
= minq2Q

R
u (f) dq. See Online Appendix

B.4.1 for the simple proof of (20).
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the Gini criterion is a monotone version of the max-min mean-variance criterion.29

As to computability, in the important case when criterion (18) features a �-divergence, like

the speci�cations just discussed, we need only to know the set Q to compute it, no integral

with respect to unstructured models is needed. This is proved in the next result, a consequence

of a duality formula of Ben-Tal and Teboulle (2007).30

Proposition 1 Let Q � �� and � 2 (0;1). If Q is compact, for each act f 2 F ,

VQ (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
D�(pjjq)

�
= �min

q2Q
sup
�2R

�
� �

Z
��
�
� � u (f)

�

�
dq

�
By using integrals only under structured models, the r.h.s. formula substantially simpli�es

computations and thus con�rms the analytical tractability of the previous speci�cations.

4.2 Comparative misspeci�cation aversion

We now turn to the study of comparative misspeci�cation aversion. From an axiomatic point

of view, we identi�ed nonneutrality toward model misspeci�cation with the dominance relation

%�Q violating the independence axiom and only satisfying weak c-independence. This suggests

that, in our approach, model misspeci�cation aversion is captured by the dominance relation

%�Q.

De�nition 4 A robust two-preference family P1;Q is more (model) misspeci�cation averse at
Q than P2;Q if, for each x 2 X and f 2 F ,

f %�1;Q x =) f %�2;Q x

We say that P1;Q is more misspeci�cation averse than P2;Q if this implication holds for all

Q 2 Q.

In words, a decision maker is more misspeci�cation averse at Q when her dominance relation

is more uncertainty averse. In a similar way we de�ne more uncertainty aversion (at Q) by

replacing %�i;Q with %i;Q for i = 1; 2.

Throughout the section, the two decision makers�preferences are represented by the pairs

(u1; c1) and (u2; c2) identi�ed in Theorem 1. With this, we can now state an important equiva-

lence result.

Proposition 2 Let P1;Q and P2;Q be robust two-preference families and Q 2 Q. The following
statements are equivalent:

29At the end of Online Appendix B.4.1 we further discuss this point.
30Here �� denotes the convex Fenchel conjugate of �, once extended to R by setting � (t) = +1 if t < 0. In

particular, �� is real valued and increasing.
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(i) P1;Q is more misspeci�cation averse at Q than P2;Q;

(ii) P1;Q is more uncertainty averse at Q than P2;Q.

When the maps p 7! C1 (p;Q) and p 7! C2 (p;Q) are convex, this is equivalent to

(iii) u1 is cardinally equivalent to u2 and C1 (�; Q) � C2 (�; Q), provided u1 = u2.

This characterization immediately yields that higher aversion to misspeci�cation is equiv-

alent to higher uncertainty aversion. Functionally it translates, under a minor convexity as-

sumption,31 into a lower statistical set distance. For this reason, in our main representation we

may interpret

C (�; Q) = min
q2Q

c (�; q)

as an index of misspeci�cation aversion at each Q.

In our main criterion uncertainty attitudes are thus equated to misspeci�cation attitudes,

something that will not happen for the less extreme criteria that will be discussed in Section

5. To understand why this is the case, we further elaborate on the equivalence between points

(i) and (ii) above. The consistency assumption yields

f %�Q x =) f %Q x (23)

that can be read as saying that the mental preference is more uncertainty averse than the

behavioral preference one. At the same time, by the continuity of %�Q and %Q, the caution

assumption can be rewritten as

f %Q x =) f %�Q x (24)

that we can read in the opposite way. As a consequence, in our main model %�Q and %Q share

the same uncertainty aversion attitudes. Since in our main representation the preference %Q

turns out to be variational, this immediately yields the inequality C1 (�; Q) � C2 (�; Q).
This observation allows us to better understand how misspeci�cation aversion a¤ects uncer-

tainty aversion. Let us consider again relation (23). Intuitively, the extra uncertainty aversion

of %�Q can be ascribed to two factors: a genuine extra aversion of %�Q or its incompleteness.
Indeed, consider a consequence x and an act f with f %Q x and f 6%�Q x. The fact that x is

not preferred to f by %�Q can happen because either x ��Q f or x and f are not comparable.

To further elaborate, assume that either Q is �nite or Q is the convex hull of a �nite set and

c is convex. Consistency then rules out the �rst possibility, i.e., x ��Q f . In fact, even for our

general model (cf. Proposition 7), %�Q admits a Paretian representation as in (16). Given our
assumptions on Q and the properties of c, this would imply the existence of a consequence y

31Used only to prove that (ii) implies (iii).
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such that x ��Q y ��Q f . In turn, consistency would yield that x �Q y %Q f , which is not com-

patible with f %Q x. Therefore, even without caution, the extra uncertainty aversion featured

by %�Q is due to its incompleteness, which in turn follows from model ambiguity (Q not being a
singleton). Thus, the lower uncertainty aversion featured by %Q relative to %�Q can be imputed
to how this incompleteness is resolved, in other words to the decision makers attitudes toward

model ambiguity. Functionally, under caution for each act f the worst evaluation given by %�Q
is the one followed by %Q. In such an extreme case, %Q is as uncertainty averse as %�Q, as we
have already seen preferentially. Later in the paper, Section 5 will discuss less extreme criteria.

In our last result, we characterize comparative uncertainty attitudes at a global level.

Corollary 1 Let P1;Q and P2;Q be robust two-preference families. The following statements are
equivalent:

(i) P1;Q is more misspeci�cation averse than P2;Q;

(ii) P1;Q is more uncertainty averse than P2;Q;

(iii) u1 is cardinally equivalent to u2 and c1 � c2, provided u1 = u2;

(iv) u1 is cardinally equivalent to u2 and C1 � C2, provided u1 = u2.

4.3 Misspeci�cation neutrality

As it should be clear by now, it is the dominance relation %�Q that captures misspeci�cation
attitudes. It is then natural to expect that misspeci�cation neutrality should be a notion that

pertains to %�Q. At the same time, we just learned that in our main criterion the uncertainty
attitudes of %�Q and %Q coincide, so one might want to discuss misspeci�cation neutrality also

at the level of %Q. We thus have three di¤erent approaches: (i) an axiomatic one for %�Q, (ii)
a functional one for %Q (discussed in Online Appendix), (iii) a �combo�one for %Q. Next we

discuss each of them and show that, remarkably, they lead to the same conclusions. Besides its

own interest, this can be seen as a consistency check for our analysis.

4.3.1 Axiomatic approach for %�Q

In our analysis, we identi�ed the presence of model misspeci�cation concerns with violations of

the independence axiom by %�Q. This prompts us to the following de�nition.

De�nition 5 Let PQ be a robust two-preference family and Q 2 Q. The preference %�Q is

(model) misspeci�cation neutral at Q if it satis�es independence.

We next show that misspeci�cation neutrality leads to the models in Q being fully trusted

by both %�Q and %Q.
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Proposition 3 Let PQ be a robust two-preference family and Q 2 Q. The following statements
are equivalent:

(i) %�Q is misspeci�cation neutral at Q;

(ii) for each f; g 2 F ,

f %�Q g ()
Z
u (f) dq �

Z
u (g) dq 8q 2 Q (25)

In this case, we have, for each f; g 2 F ,

f %Q g () min
q2Q

Z
u (f) dq � min

q2Q

Z
u (g) dq (26)

This result shows that when %�Q satis�es independence, the models are fully trusted and,
in turn, the behavioral preference becomes Waldean. In other words, the uncertainty aversion

featured by %Q is just the result of model ambiguity and misspeci�cation neutrality leads to

the max-min Waldean criterion.

Not to have all models fully trusted, we therefore need to weaken independence. The next

result will show that moving to weak c-independence is a necessary step. To discuss this key

point, we need to introduce a classical weakening of independence which is stronger than weak

c-independence.

A.8 C-independence: for all f 2 F , x; y 2 X and all � 2 (0; 1],

f %�Q x () �f + (1� �) y %�Q �x+ (1� �) y

Clearly, this axiom can also be stated for the preference %Q. When %Q is a rational

preference or the dominance relation %�Q is complete, our version of this axiom is equivalent to
the original one of Gilboa and Schmeidler (1989). Otherwise, ours is weaker.

Proposition 4 Let PQ be a robust two-preference family and Q 2 Q. The following statements
are equivalent:

(i) %�Q satis�es c-independence;

(ii) %Q satis�es c-independence;

(iii) for each f; g 2 F ,

f %Q g () min
q2Q

Z
u (f) dq � min

q2Q

Z
u (g) dq
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(iv) �coQ � C (�; Q) � �Q. In particular, C (�; Q) = �Q when Q is convex;

(v) c (p; q) =1 for all p =2coQ and all q 2 Q.

Weakening independence to c-independence would thus lead to a behavioral preference that

still fully trusts the models in Q, as point (iii) shows. From a statistical distance angle, this

suggests that misspeci�cation neutrality is the attitude of a decision maker who confronts model

misspeci�cation, but does not care about it: all the unstructured models that are not hybrid

are in�nitely penalized, as points (iv) and (v) indicate.

This angle becomes relevant here because it also shows that the representation (16) of the

dominance relation becomes

f %�Q g () min
q02coQ

�Z
u (f) dq0 + c (q0; q)

�
� min

q02coQ

�Z
u (g) dq0 + c (q0; q)

�
8q 2 Q

Unstructured models play no role here. Only structured and hybrid models are relevant.

4.3.2 Combo approach for %Q

As misspeci�cation aversion arises when structured models are not trusted, the following notion

that combines functional and preferential ingredients seems natural.

De�nition 6 Let PQ be a robust two-preference family and Q 2 Q. The preference %Q is

(model) misspeci�cation neutral at Q ifZ
u (f) dq �

Z
u (g) dq 8q 2 Q =) f %Q g

for all f; g 2 F .

Here the decision maker trusts models enough so to follow them when they unanimously rank

pairs of acts. Fear of misspeci�cation thus becomes decision-theoretically irrelevant. For this

reason, we classify this decision maker as model misspeci�cation neutral. The next result shows

that this neutral attitude characterizes a decision maker who adopts the max-min criterion (26).

Theorem 2 Let PQ be a robust two-preference family and Q 2 Q. The preference %Q is

misspeci�cation neutral at Q if and only if it is represented by the max-min criterion (26).

It is easy to see that the misspeci�cation neutrality of %�Q at Q implies that of %Q. At a

global level they become equivalent, as the next result shows.

Corollary 2 Let PQ be a robust two-preference family. The following statements are equivalent:

(i) %�Q is misspeci�cation neutral at all Q 2 Q;
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(ii) %Q is misspeci�cation neutral at all Q 2 Q;

(iii) c (p; q) = �fqg (p) for all p 2 � and for all q 2 ��.

In this case, we have, for each Q 2 Q,

f %�Q g ()
Z
u (f) dq �

Z
u (g) dq 8q 2 Q (27)

and

f %Q g () min
q2Q

Z
u (f) dq � min

q2Q

Z
u (g) dq (28)

4.3.3 Discussion

These results provide the sought-after decision-theoretic argument for the interpretation of the

max-min criterion as the special case of our decision criterion (18) that corresponds to aversion

to model ambiguity, with no fear of misspeci�cation. As remarked in the Introduction, under

this interpretation a decision maker using criterion (18) may be viewed as a decision maker

who, under model ambiguity, would max-minimize over the set of structured models which she

posited but that, for fear of misspeci�cation, ends up using the more prudential variational

criterion (18). Unstructured models lack the informational status of structured models, yet in

criterion (18) they act as a �protective belt�against model misspeci�cation.

In particular, the special multiplier case of a singleton Q = fqg then corresponds to a
decision maker who, with no fear of misspeci�cation, would adopt the expected utility criterionR
u (f) dq to confront the risk inherent to q. In other words, a singleton Q in (18) corresponds

to an expected utility decision maker who fears misspeci�cation.

Summing up, in our analysis decision makers adopt the max-min criterion (28) when they

either confront only model ambiguity (an information trait) or are averse to model ambiguity

with no fear of model misspeci�cation (a taste trait).

4.3.4 Misspeci�cation aversion (absolute)

Having identi�ed misspeci�cation neutrality at Q of %�Q and %Q respectively with the expected

utility dominance relation (27) and the Waldean criterion (28), we may declare a robust two-

preference family PQ misspeci�cation averse at Q when either %�Q is more uncertainty averse
than the dominance relation (27) or %Q is more uncertainty averse than the Waldean criterion

(28). No matter which choice we make, a robust two-preference family PQ is misspeci�cation

averse.

That said, we conclude this subsection by studying a mild form of misspeci�cation aversion:

models are trusted in some speci�c cases. To this end, note that structured models may be

incorrect, yet useful as Box (1976) famously remarked. This motivates the next notion. Recall

that act xAy, with x �Q y, represents a bet on event A.
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De�nition 7 A preference %Q is bet-consistent if, given any x �Q y,

q (A) � q (B) 8q 2 Q =) xAy %Q xBy

for all events A;B 2 �.

Under bet-consistency, a decision maker may fear model misspeci�cation, yet regards struc-

tured models as good enough to choose to bet on events that they unanimously rank as more

likely. Preferences that are bet-consistent can be classi�ed as exhibiting a mild form of fear of

model misspeci�cation. The following result shows that an important class of preferences, ones

for which the cost speci�cation is a scaled �-divergence, are bet consistent.

Proposition 5 If � 2 (0;1] and c = �D�, then a preference %Q represented by (18) is bet-

consistent.

This result applies to criterion (19) as a special case. More generally, it sheds light on the

decision-theoretic nature of the tractable speci�cations of our criterion based on �-divergences.

4.4 Convex sets of models

In this �nal subsection we sharpen Theorem 1 by assuming that the sets of models are compact

and convex. To do so, we �rst need to discuss the role of convexity.

We previously encountered a closed convex hull of a set of models in the statement of axiom

A.4 and in the discussion that followed. Conceptually it is not an innocuous operation: a hybrid

model that mixes two structured models can only be less well motivated than either of them.

Decision criterion (18) accounts for the lower appeal of hybrid models when c is convex, like for

instance when it is a �-divergence. To see why, observe thatminp2�
�R

u (f) dp+ c (p; q)
	
is, for

each act f , convex in q. In turn, this implies that hybrid models negatively a¤ect criterion (18).

This negative impact of mixing thus features an �aversion to model hybridization�attitude,

behaviorally captured by axiom A.9 below. Remarkably, the relative entropy criterion turns

out to be neutral to model hybridization. In this important special case, convexity of Q plays

a little role (as Online Appendix B.4.1 clari�es).

The convexi�cation of Q can be also justi�ed by building a convex family of probability dis-

tributions from a set of �structured building block�or primitive models weighted by possible

prior distributions. The convexity can then be imposed on the set of priors used in the weight-

ing. For instance, each of the primitive models could each have an i.i.d. representation. By

entertaining a prior weighting over these we obtain an exchangeable process. As is known from

the Hewitt and Savage (1955) version of the de Finetti Representation Theorem, conversely we

may represent any exchangeable process as probability weighted average of i.i.d. processes. By

entertaining uncertainty about the weighting captured by a convex set of prior distributions,
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we can in this way obtain a convex speci�cation of Q. Incorporating misspeci�cation concerns

provides a protective shield for each of the resulting exchangeable processes. In Section 6, we

will describe alternative extensions of our analysis that allow for conceptually distinct ways to

confront model misspeci�cation and prior uncertainty.

We introduce a new axiom based on this added convexity structure on sets of models (it

features the same terminology of axiom A.7). Observe that under the hypotheses of Theorem

1, all dominance relations %�Q agree on X and so we can just write %�, dropping the subscript
Q.

A.9 Model hybridization aversion: for all q; q0 2 ��, � 2 (0; 1) and f 2 F ,

�xf;q + (1� �)xf;q0 %� xf;�q+(1��)q0

According to this axiom, the decision maker dislikes, ceteris paribus, facing a hybrid struc-

tured model �q + (1� �) q0 that, by mixing two structured models q and q0, could only have a

less substantive motivation.

The next result extends Theorem 1 by dealing with sets of structured models that are also

convex; in particular, here we get a convex divergence. Recall that K is the proper collection

of compact and convex sets.

Proposition 6 Let PK be a two-preference family. The following statements are equivalent:

(i) PK is robust and model hybridization averse;

(ii) there exist an onto a¢ ne u : X ! R and a convex divergence c : � ��� ! [0;1] such
that, for each Q 2 K,

f %�Q g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

and

f %Q g () min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
� min

p2�

�Z
u (g) dp+min

q2Q
c (p; q)

�
for all acts f; g 2 F .

Moreover, u is cardinal and, given u, c is unique.

5 Beyond caution

As caution is the axiom behind the prudential nature of our representation result, it is natural

to wonder about what happens when we dispense with it. To this end we introduce a new class

of two-preference families.
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De�nition 8 A two-preference family PQ is (misspeci�cation) sensitive if:

(i)
�
%�Q
	
Q2Q is monotone, separable and lower semicontinuous;

(ii) for each Q 2 Q, %�Q is an unbounded dominance relation, %Q is a rational preference,

both are Q-coherent when restricted to singletons and jointly satisfy consistency.

Compared to the notion of robust family (De�nition 3), we made two changes. The im-

portant one is the removal of caution. We also require Q-coherence to hold only when Q is a

singleton, a change immaterial under caution as we will later discuss (we could have actually

considered this weaker version throughout). As a result, given a sensitive two-preference family

PQ and a set of models Q, the dominance relation continues to be represented as follows:

f %�Q g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

In particular, an act f induces an evaluation map

q 7! min
p2�

�Z
u (f) dp+ c (p; q)

�
(29)

over the collection Q of structured models. Our criterion (18) emerges when these evaluations

are aggregated via the minimum on Q. But, in principle, less extreme stances are conceivable.

This requires dropping caution, as the next result shows.32

Proposition 7 Let PQ be a two-preference family. The following statements are equivalent:

(i) PQ is sensitive;

(ii) there exist an onto a¢ ne u : X ! R, a divergence c : ���� ! [0;1], convex in p, and
for each Q 2 Q a normalized and monotone functional JQ : B (Q)! R such that

f %�Q g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

(30)

and

f %Q g () JQ

�
min
p2�

�Z
u (f) dp+ c (p; �)

��
� JQ

�
min
p2�

�Z
u (g) dp+ c (p; �)

��
(31)

for all acts f; g 2 F .

Moreover, u is cardinal and, given u, c is unique.

32B (Q) is the space of all real-valued bounded Borel measurable functions with domain Q.
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Decision-theoretically, Theorem 1 is the special case of this result when %�Q and %Q jointly

satisfy caution for all Q 2 Q, as Corollary 3 will momentarily show. Analytically, it corresponds
to the special case where JQ is the minimum over Q of the evaluation maps (29). In this case, by

exchanging the order of minima, (31) reduces to the decision criterion (18). We will explore an

altogether di¤erent case of JQ in the next section, for instance a quasi-arithmetic speci�cation.

Corollary 3 Let PQ be a two-preference family. The following statements are equivalent:

(i) PQ is robust;

(ii) PQ is sensitive and (%�Q;%Q) jointly satisfy caution for all Q 2 Q;

(iii) there exist an onto a¢ ne u : X ! R and a divergence c : ���� ! [0;1], convex in p,
such that (16) and (17) hold for all Q 2 Q.

Moreover, u is cardinal and, given u, c is unique.

Given the equivalence between points (i) and (ii), this corollary shows that for our main

results we only need to consider the Q-coherence Axioms A.3 and A.4 when restricted to

singletons, fqg 2 Q. Notice in particular that p 2 co fqg in Axiom A.4 simpli�es to p = q, thus

making q the only model that satis�es the implication that Axiom A.4 features.

6 A Bayesian analysis

With the exception of the Bayesian construction of convex sets of models (Section 4.4), our

analysis so far has been conducted in a classical Waldean setting where the decision maker

speci�es a family of structured models of interest. In contrast, in this section we outline a

Bayesian analysis based on prior uncertainty.

Under model ambiguity, the decision maker has, possibly multiple, prior probabilities �Q
over the set of structured models Q. Typically, each such prior probability �Q (q) of a structured

model q 2 Q quanti�es the decision maker belief that q is the correct model. Under model

misspeci�cation, this interpretation is no longer possible because the decision maker no longer

regards the correct probability model to be among the structured models. Thus, they no longer

form an exhaustive collection of mutually exclusive uncertain alternatives. Nevertheless, the

family of structured models continues to play a central role in the decision theory leaving the

door open to imposing subjective priors, �Q, over these models.

In this section, we consider two approaches. One approach follows the Bayesian approach

with a single prior, but entertains preferences for which the uncertainty induced by the prior is

distinct from that contributed by risk. A second entertains multiple priors as in robust Bayesian

analysis. In both cases, potential model misspeci�cation continues to play a central role in our
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analysis. Interestingly, in his conclusion, Chamberlain (2020) emphasized the importance of

sensitivity over both likelihoods and priors. He was led to a very special case of what follows

as he chose to remain within previous decision theory under uncertainty, as we will comment

below.

6.1 A smooth Bayesian criterion

We �rst consider a functional JQ in criterion (31) that is a quasi-arithmetic mean over the

evaluation maps (29):

VQ (f) = ��1Q

�Z
Q

�Q

�
min
p2�

�Z
S

u (f (s)) dp (s) + c (p; q)

��
d�Q (q)

�
(32)

This is, formally, a Bayesian criterion with the prior probability �Q interpreted as an averaging

device over the structured models. In this representation, the variational criteria indexed by Q

are

min
p2�

�Z
S

u (f) dp+ c (p; q)

�
They account for fear of misspeci�cation about the posited models q, while the function �Q
addresses the fear of prior misspeci�cation. The Bayesian criterion (32) incorporates model

misspeci�cation concerns into the smooth ambiguity criterion of Klibano¤ et al. (2005), which

is the special case c (p; q) = �fqg (p) that imposes model misspeci�cation neutrality. In this

regard, observe that our comparative uncertainty aversion analysis extends to this more general

setting (in particular, the equivalence in Proposition 3).

An important entropic speci�cation of criterion (32) is

V �;�
Q (f) = ��1�

�Z
Q

��

�
min
p2�

�Z
S

u (f (s)) dp (s) + �R (pjjq)
��

d�Q (q)

�
(33)

where �� (t) = �e�
1
�
t. The parameter � > 0 captures aversion to prior uncertainty, while

the parameter � > 0 is a fear of model misspeci�cation index. The lower � is the more

misspeci�cation averse is %�Q in the sense of De�nition 4. Next we show that, as fear of either
model or prior misspeci�cation vanishes or explodes, we get the criteria that one would expect.

This provides an analytical consistency check for criterion (33). Recently, Lanzani (2023) used

criterion (35) to study learning under model misspeci�cation.

Proposition 8 Let supp�Q = Q. For each f 2 F ,

lim
�!0+

V �;�
Q (f) = min

p2�

�Z
S

u (f) dp+ �min
q2Q

R (pjjq)
�

8� > 0 (34)
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and

lim
�!1

V �;�
Q (f) =

Z
Q

�
min
p2�

�Z
S

u (f (s)) dp (s) + �R (pjjq)
��

d�Q (q) 8� > 0 (35)

Moreover,

lim
�!1

lim
�!1

V �;�
Q (f) = lim

�!1
lim
�!1

V �;�
Q (f) =

Z
Q

�Z
S

u (f (s)) dq (s)

�
d�Q (q) (36)

In words, the limit (34) shows that, as fear of prior misspeci�cation explodes, criterion (33)

gets closer and closer to our criterion (19). In contrast, the limit (35) shows that, when such

fear vanishes, we end up with a criterion that averages, via the prior �Q, multiplier criteria

(one per structured model q). Finally, the limit (36) shows that, when both fears vanish, at the

limit we have the two-stage subjective expected utility criterion.33 In deriving this result, we

focused on the entropic formulation. But the result can be generalized in di¤erent directions,

for example, by replacing either the relative entropy with a general divergence as in (6) or the

conditions on � with similar ones on the Arrow-Pratt index of �Q.

6.2 A variational robust Bayesian criterion

Criterion (33) turns out to have an alternative interpretation as the reduced form of a preference

criterion that incorporates a robust prior concern. Speci�cally, a generalization of criterion (33)

is the outcome of the minimization over � in:

VQ (f) = min
���

�Z
Q

min
p2�

�Z
S

u (f (s)) dp (s) + c (p; q)

�
d� (q) + �R (�jj�Q)

�
This has a direct extension to a speci�cation with two divergences, one that captures the

aversion to model misspeci�cation and another that depicts aversion to prior misspeci�cation,

as proposed by Hansen and Sargent (2023) but without complete axiomatic support. Consistent

with Proposition 7, one may replace �R (�jj�Q) with a generic penalty function d (�), leading
to a robust Bayesian criterion

VQ (f) = min
�

�Z
Q

min
p2�

�Z
S

u (f (s)) dp (s) + c (p; q)

�
d� (q) + d (�)

�
(37)

This variational criterion is robust toward prior misspeci�cation because of the minimization

over �. For instance, when d is the (convex analysis) indicator function of a compact set � of

priors, criterion (37) takes the multiple-prior form à la Gilboa-Schmeidler

VQ (f) = min
�2�

Z
Q

min
p2�

�Z
S

u (f (s)) dp (s) + c (p; q)

�
d� (q)

33As discussed in Cerreia-Vioglio et al. (2013).
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Compared to a traditional robust Bayesian approach, criterion (37) takes into account also

model misspeci�cation via the inner term minp2�
�R

S
u (f (s)) dp (s) + c (p; q)

	
, which replaces

the traditional term
R
S
u (f (s)) dq (s). Criterion (32) specializes to criterion (33) when a relative

entropy penalty speci�cation is used for both aversion to prior misspeci�cation and to model

misspeci�cation. When the two relative entropy penalty parameters are equal, we have the

preferences suggested by Chamberlain (2020) in his concluding section. That said, we leave

a full-�edged analysis of these criteria and of their relationships to future research. We close

by observing that if we take � to be the set of all possible priors, then the last multiple-prior

criterion essentially collapses to the Waldean criterion studied earlier in the paper. This allows

for interpreting the Waldean criterion as capturing a maximal speci�cation of aversion to prior

misspeci�cation.

6.3 Example (concluded)

We now reconsider and complete our running example by incorporating a robust Bayesian

perspective in which the parameter vector � becomes learnable over time with observations

on the stochastically evolving technology process given a prior distribution over �. When

making decisions at date t, the investor can use observations on past and current values zt =

fz0; z1; :::; ztg of the technology process to make inferences about �. Other signal observable to
the investor could also be included in the computations. For a given prior, there is typically a

separation between prediction and control, meaning that recursive solution to Bayesian learning

can be employed while adjusting the objective to accommodate potential misspeci�cation for

each of the possible models.

Collin-Dufresne et al. (2016) and Andrei et al. (2019) have explored learning implications

in models with long-run risk and a unique prior. As was argued in these papers and in an

earlier Hansen (2007) contribution, some of the technology parameters may be hard to estimate

making the prior an important input in the calculations. When the posterior distributions are

highly sensitivity to priors for extensive period of time, prior uncertainty becomes an important

consideration for an investor.

By exploiting some well known feature of min-max optimization, robust prior adjustments

can be implemented with computational approaches that iterate between minimized priors given

a decision process and maximizing decisions computed with a given prior. A full exploration of

such computational methods is beyond the scope of this paper, although they have been used

in other settings. The point here is that our axiomatic formulations open the door to exploring

misspeci�cation of models and priors, where the latter would seem particular important for

applications where the data is not su¢ cient to narrow substantially the scope of prior uncer-

tainty. The extensive literature on partial identi�cation provides another setting where, even

asymptotically, prior uncertainty remains a concern in decision making.
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6.4 On the interpretation of priors

As we previously remarked, under model misspeci�cation a set Q of structured models is no

longer a set of exhaustive and mutually exclusive alternatives, so a logical partition upon which

to de�ne a prior probability. What might be a new partition of this kind?

To address this question, denote by p� 2 � the correct model. The decision makers do not

know whether or not it belongs to Q. Let q� be the structured model, assumed to uniquely

exist, such that

c (p�; q�) = min
q2Q

c (p�; q)

Model q� best approximates, or best �ts, the correct model p� according to the statistical

distance c that decision makers adopt. Under model ambiguity, when they know that p� is in

Q, we have p� = q� and so q� itself is the correct model.

Decision makers are uncertain about q�, that is, about which structured model q 2 Q best

�ts the correct model. But, they know that one of them is, indeed, the best �t. Under this

interpretation of its elements, Q thus forms a collection of exhaustive and mutually exclusive

alternatives. Decision makers now regard each element q of Q as a �candidate best �tting

model�: this is how they interpret q and what they are uncertain about. The meaning of prior

�Q (q) is then clear: it quanti�es the decision maker belief that q is the best �t of the correct

model (see Walker, 2013, for an insightful discussion).

This interpretation of �Q reduces to the standard one under model ambiguity because, as

previously remarked, in this case the best �t coincides with the correct model itself. In the

working paper version, we make more rigorous this discussion.

7 Conclusion

Quantitative researchers use models to enhance their understanding of economic phenomena

and to make policy assessments. In essence, each model tells its own quantitative story. We

refer to such models as �structured models.�Typically, there are more than just one such type of

model, with each giving rise to a di¤erent quantitative story. Statistical and economic decision

theories have addressed how best to confront the ambiguity among structured models. Such

structured models are, by their very nature, misspeci�ed. Nevertheless, the decision maker seeks

to use such models in sensible ways. This problem is well recognized by applied researchers,

but it is typically not part of formal decision theory. In this paper, we extend decision theory to

confront model misspeci�cation concerns. In so doing, we recover a variational representation

of preferences that includes penalization based on discrepancy measures between �unstructured

alternatives�and the set of structured probability models.
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A natural generalization of our main criterion is

V (f) = min
p2�

�Z
u (f) dp+ C (p;Q)

�
where C is a general statistical set distance, not necessarily Hausdor¤ (so not necessarily

characterized by an underlying statistical distance). This variational criterion still leads to a

preference which is uncertainty averse. Though the analysis of this general criterion is beyond

the scope of this paper and left for future research, we close our exposition with it, as its form

should help to put our exercise in a �nal perspective. A further topic left for future research is

a proper axiomatic analysis of the robust Bayesian criteria that we discussed in the last section.

A Entropic misspeci�cation: a single preference approach

As discussed at length in the paper, we regard our two-preference approach as conceptually

appropriate for the study of decision making under model misspeci�cation. Yet, as mentioned

in the Introduction, to help situate our main criterion (1) in the broader literature and to

better relate it with the single-preference variational model, in this appendix we now develop a

single-preference derivation of an entropic version (19) of our main criterion. This also shows

that our modelling choice was not dictated by technical impediments (we focus on the entropic

special case because of the exemplary nature of this appendix).

Speci�cally, we axiomatize the representation

V�;Q (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
(38)

by using only the subjectively rational preference % on F . The starting point is the following
rewriting of (38), contained in Online Appendix B.4.1,

V�;Q (f) = min
q2Q

��1�

�Z
�� (u (f)) dq

�
with �� (t) = �e�

1
�
t for all t 2 R and � > 0. Thus, to axiomatize (38) one can split the proof

in a few parts:

1. provide an axiomatization for the criterion

V (f) = min
q02Q0

��1
�Z

� (u (f)) dq0
�

(39)

where Q0 � �� is compact and has an essential event,34 u : X ! R is non-constant and
34An event E 2 � is essential when minq02Q0 q0 (E) 2 (0; 1).
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a¢ ne, and � : Imu! R is a strictly increasing and continuous function;

2. prove that � is concave;

3. prove that � is CARA.

This strategy mirrors the one used by Strzalecki (2011) to axiomatize multiplier preferences,

which correspond to a singleton Q0. An extra part is, however, needed in our setting:

4. show that Q0 = Q under a single-preference version of subjective Q-coherence.

Point 1 is achieved in Lemma 3. Other axiomatizations are available in the literature for

criterion (39), which decision theoretically is a subjective version of the max-min criterion and

mathematically a minimum of quasi-arithmetic means (see, e.g., Casadesus-Masanell et al.,

2000 or Alon and Schmeidler, 2014). Points 2 and 3 are achieved in Lemma 1 by showing that

� is concave (resp. CARA) if and only if % is convex (resp. satis�es weak c-independence).

Finally, point 4 is established in Lemma 2 where we show that the endogenous/subjective set

Q0 of point 1 coincides with the posited Q under the following single-preference version of

subjective Q-coherence.

A.4* Single-preference Subjective Q-coherence: for all f 2 F and x 2 X,

x � xpf =) x � f

if and only if p 2 coQ.

Compared to the original version of the axiom we require also the �rst ranking, x � xpf , to

be in terms of % as the dominance relation is here missing.

Lemma 1 Let % be a preference represented by V de�ned as in (39) with an essential event.

The following facts are true:

1. % satis�es convexity if and only if � is concave;

2. % satis�es weak c-independence if and only if � is CARA.

The next lemma makes formal the �coincidence�of Q and Q0 under single-preference sub-

jective Q-coherence.

Lemma 2 Let % be a preference represented by V de�ned as in (39) with an essential event.

If % satis�es weak c-independence and convexity, then % satis�es single-preference subjective

Q-coherence if and only if coQ = coQ0. In particular, Q0 in (39) can be replaced with Q.
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To continue the analysis, we need a richer setting than the one used for our main results.

In particular, we require � to be a �-algebra, not just an algebra, and we assume that X

is a convex subset of a topological vector space, not just a vector space. A preference % is

biseparable when it is represented by a subcontinuous35 functional V : F ! R that features
a non-constant restriction v on X and a capacity � : � ! [0; 1], with � (E) 2 (0; 1) for some
E 2 �, such that

V (xAy) = v(x)�(A) + v(y)(1� �(A))

for all A 2 � and for all x; y 2 X with v (x) � v (y). Here an event E of � is essential when

x � xEy � y for all (some) x � y in X; in this case � (E) 2 (0; 1). In the next result cxEy 2 X
is the certainty equivalent of xEy, i.e., cxEy � xEy.

Proposition 9 (Ghirardato et al., 2003) Let % be a biseparable preference with represen-

tation V , x; y; z 2 X and E an essential event. The following statements are equivalent:

(i) x % z % y and xEy � cxEzEczEy;

(ii) v (x) � v (y) and v(z) =
v(x) + v(y)

2
.

We call z a preference midpoint of x and y. It depends on x, y and %, but neither on the
representation V nor on the essential event E. If x % y, such a z always exists because Im v is

an interval; following Hardy, Littlewood, and Polya (1934), we denote any midpoint of x and y

byM(x; y). When y % x, we still use M(x; y) to denote any preference midpoint of y and x.

Preference midpoints of a pair (x; y) are typically not unique, but they form an equivalence

class under �. Given any f; g 2 F , we denote by M(f; g) any act h 2 F such that h (s) �
M(f (s) ; g (s)) for all s 2 S. With this, Ghirardato et al. (2003) introduce the following

axioms:

A.10 Invariance: for all f; g 2 F and all x 2 X, f % g if and only if M(f; x) %M(g; x).

A.11 Ambiguity aversion: for all f; g 2 F , f % g implies M(f; g) % g.

A.12 Ambiguity neutrality: for all f; g 2 F , f % g implies f %M(f; g) % g.

A �nal standard axiom is needed to guarantee that probabilities are countably additive.

A.13 Monotone continuity: for all x; y; z 2 X with y � z and all sequences of events fEngn�1 �
� with En # ;, there exists �n 2 N such that xE�ny � z.

We can now state the representation result achieving point 1.

35That is, V (f�)! V (f) where f� is a net in F that pointwise converges to f 2 F , with each f� measurable
with respect to the same �nite �-measurable partition of S.
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Lemma 3 Let % be a binary relation on F . The following statements are equivalent:

(i) % is a monotone continuous rational preference that satis�es biseparability, invariance,

and ambiguity aversion.

(ii) there exist a non-constant, continuous and a¢ ne u : X ! R, a strictly increasing and
continuous function � : Imu! R, and a compact set Q0 in �� such that

V (f) = min
q02Q0

��1
�Z

� (u (f)) dq0
�

represents % on F , with 0 < minq02Q0 q0 (E) < 1 for some E 2 �.

By merging Lemma 3 with Lemmas 1 and 2, we get the sought-after representation result.

Observe that a continuous rational preference that satis�es weak c-independence and convexity

is, axiomatically, a variational preference; if it also satis�es c-independence, it is a Gilboa-

Schmeidler max-min preference.

Theorem 3 Let % be a binary relation on F . The following statements are equivalent:

(i) % is a monotone continuous rational preference that satis�es weak c-independence, con-

vexity, biseparability, invariance, ambiguity aversion, and single-preference subjective Q-

coherence;

(ii) there exist a non-constant, continuous and a¢ ne u : X ! R and � 2 (0;1] such that

V (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
represents % on F .

Moreover,

1. u is unique up to a positive a¢ ne transformation and, given u, � is unique.

2. % is a multiplier preference, i.e., Q0 = fq0g, if and only if it satis�es ambiguity neutrality.

3. % is a max-min preference, i.e., � =1, if and only if it satis�es c-independence.

4. % is an expected utility preference, i.e., Q0 = fq0g and � = 1, if and only if it satis�es
ambiguity neutrality and c-independence.
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