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Abstract

Rational inattention models characterize optimal decision-making in data-rich environments.

In such environments, it can be costly to look carefully at all of the information. Some information

is much more salient for the decision at hand and merits closer scrutiny. The inattention decision

model formalizes this choice and deduces how best to navigate through the potentially vast array

of data when making decisions. In the rational formulation, the decision-maker commits fully to a

subjective prior distribution over the possible states of the world that could be realized. We relax

this assumption and look for a robustly optimal solution to the inattention problem by allowing

the decision-maker to be ambiguity averse with respect to this prior. We feature a setup that is

deliberately simple by a) assuming a discrete set of choices, b) using Shannon’s mutual information

to quantify attention costs, and c) imposing relative entropy with respect to a baseline probability

distribution to quantify prior divergence. We provide necessary and sufficient conditions for

the robust solution and develop numerical methods to solve it. In comparison to the rational

solution with no prior uncertainty, our decision-maker slants priors in more cautious or pessimistic

directions when deducing how to allocate attention over the range of available information. This

approach implements a form of robustness to prior misspecification, or equivalently, a form of

ambiguity aversion. We explore some examples that show how the robust solution differs from

the rational solution with a commitment to a subjective prior distribution and how it differs from

imposing risk aversion.
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People often make choices with limited information. In so doing, they determine where to focus their at-

tention when the available information is vast. To study such decision problems, Sims (1998, 2003) introduces

a rational inattention (RI) framework by modeling information costs using the Shannon (1948) entropy-based

mutual information (henceforth the Shannon model). While Sims (1998) focuses on continuous choices in dy-

namic settings, Caplin and Dean (2015), Matêjka and McKay (2015), and Caplin et al. (2019, 2022) adopt the

RI framework to study discrete choice problems in static settings. We follow these latter authors by studying

discrete choice problems. Such problems have applications to such diverse fields as labor economics, industrial

organization, macroeconomics, and political economy. This framework also has links to model selection prob-

lems in statistics and control theory. Those literatures study the ability to statistically discriminate among

models using existing data sets. This becomes an attention allocation problem when the decision maker is

unsure which statistical model is correct and explores some of a vast amount information to help with this

determination.

While the Shannon model is a standard approach in the literature, it may suffer from a problem of

prior misspecification. Specifically, the Shannon mutual information is defined as the difference between the

entropies of the prior and the posterior. The prior is assumed to be exogenously given to the decision maker

(DM), and the DM has full confidence in this prior. The perspective adopted in this paper is that of a DM

with prior ambiguity who is looking to make a robustness adjustment.

Prior uncertainty can have important ramifications for the Shannon model because, as Caplin et al.

(2019) show, the different specifications of the prior can generate different so called “consideration sets.”

Consideration sets are collections of alternatives chosen with positive probabilities. The implications of prior

ambiguity carry over to these sets and change how the DM views alternatives within these sets.

Operationally, we incorporate prior robustness into a static, discrete-choice setting by integrating a version

of Hansen and Sargent (2007, 2023), and Hansen and Miao (2018). As Hansen and Sargent (2007) show, there

is a robust prior interpretation of the smooth ambiguity model of Klibanoff et al. (2005). While the smooth

ambiguity model has multiple axiomatic defenses, Hansen and Sargent (2023) argue that the robust prior

interpretation opens the door to the axiomatic formulations of Maccheroni et al. (2006) and Strzalecki (2011).1

Intuitively, the DM does not have a single prior about the state of the world but instead has a baseline or

reference prior. The DM explores the consequences of alternative priors that may be different from a baseline

prior. The deviation of any prior from the baseline prior is penalized by a cost modeled by the relative entropy.

The cost is scaled in utility units by a robustness parameter that dictates the degree of ambiguity aversion.

Alternatively, the DM may impose a relative entropy constraint on the family of priors, giving rise to a version

of Gilboa and Schmeidler (1989)’s max-min utility preferences.

1 Model

We first introduce the model setup and then provide an equivalent formulation to simplify the decision problem.

1For other statistical motivations for smooth ambiguity, see Cerreia-Vioglio et al. (2013) and Denti and Pomatto
(2022).
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1.1 Setup

In what follows, we use a bold lower case letter x to denote a random variable and a letter x to denote its

realization. The set ∆ (Y ) denotes the collection of probability distributions on any finite set Y. One such set

is the finite state space X = {x1, x2, ..., xM} and a prior µ ∈ ∆(X) . Another is the set S, which denotes a

finite set of signal realizations.

The DM does not observe the state, but can acquire a signal about the state. Based on the signal, the

DM selects an element from a finite action set A to maximize expected utility u : X × A → R. The DM also

chooses an optimal information structure by paying a cost modeled by the Shannon mutual information. A

strategy is a pair (d, σ) composed of

(i) an information strategy, d, consisting of a system of signal distributions d (s | x) , for all s ∈ S, x ∈ X;

(ii) an action strategy, σ : S → A, specifying an action a = σ (s) when observing a signal s.

Let Σ denote the set of all strategies. While the information strategy, d, is an object of choice, the prior over

states, µ, is given with full commitment in the standard Shannon RI specification.

An information strategy and prior over states induce a joint distribution d⊗ µ over X × S :

(d⊗ µ) (x, s) = d (s|x)µ (x) .

In what follow, we let Ed⊗µ denote the expectation computed using d(s|x)µ(x). The implied marginal distri-

bution over signals is:

ν (s) =
∑
x

µ (x) d (s|x) ,

and the conditional distribution over states is

µs(x)
def
=

d (s|x)µ (x)
ν(s)

.

We consider Shannon entropy for both the marginal and the conditional distribution of states:

H(µ) = −
∑
x

µ(x) logµ(x)

H(µs) = −
∑
x

µs(x) logµs(x).

Entropy H (µ) measures the amount of uncertainty embedded in the prior about the underling state. Mutual

information measures the reduction of uncertainty after observing signals:

I(d⊗ µ)
def
=
∑
s

[H(µ)−H(µs)] ν(s).

Equivalently,

I(d⊗ µ)

=
∑
x,s

d(s | x)µ(x) (log [d(s | x)µ(x)]− log [µ(x)ν(s)]) ,
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which is the Kullback-Leibler (KL) divergence between the joint distribution of states and signals relative to

the product of the marginals.2

As a precursor to our analysis, we first state the standard RI problem as a benchmark for comparison:

Problem 1 (Signal RI problem)

V (µ) = max
(d,σ)∈Σ

Ed⊗µ (u [x, σ(s)])− λI(d⊗ µ),

where λ > 0 denotes the shadow cost of information.

As is well known in the literature, the solution to this problem is sensitive to the specification of the prior

µ. Since prior misspecification is a concern, we consider a robust alternative in which in which the single prior,

µ, is replaced by baseline prior, µ̂, and the DM explores the adverse consequences of prior misspecification

subject to a scaled version of a relative entropy or Kublack-Leibler cost:

R (µ||µ̂) :=
∑
x

µ (x) log
µ (x)

µ̂ (x)
.

Our robust alternative to Problem 1 is:

Problem 2 (Robust signal RI problem)

W (µ̂) = max
(d,σ)∈Σ

min
µ∈∆(X)

Ed⊗µ (u [x, σ(s)])− λI(d⊗ µ)

+ξR (µ∥µ̂) , (1)

where ξ > 0 denotes a robustness parameter.

Since the constraint sets are compact and the objective function is continuous, the robust RI problem has a

solution. The minimization in (1) reflects the DM’s aversion to prior ambiguity as parameterized by ξ.

As specified, ξ governs a smooth tradeoff between the utility maximization and the cost of prior ambiguity

as in multiplier preferences of Hansen and Sargent (2001) and the variational preferences of Maccheroni et al.

(2006).3 Large values of ξ induce large costs in deviating from the baseline prior and hence a small amount

of aversion to ambiguity. Alternatively, we may suppose that there is constraint on relative entropy:

R (µ||µ̂) ≤ η

for some η > 0. In this case η governs the ambiguity aversion as in Gilboa and Schmeidler (1989). Consider

a Lagrangian specification of the problem with ξ as a multiplier as in Petersen et al. (2000) and Hansen and

2See Cover and Thomas (2012) for a textbook treatment of information theory.
3Hansen and Sargent (2001) and Maccheroni et al. (2006) feature model misspecification, but subsequent literature

has extended their approach to the case of prior misspecification. See Hansen and Sargent (2023).
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Sargent (2001). Using a standard duality argument:

W (µ̂) = max
(d,σ)∈Σ

max
ξ≥0

min
µ∈∆(X)

Ed⊗µ (u [x, σ(s)])− λI(d⊗ µ)

+ ξR (µ||µ̂)− ξη

=max
ξ≥0

max
(d,σ)∈Σ

min
µ∈∆(X)

Ed⊗µ (u [x, σ(s)])− λI(d⊗ µ)

+ ξR (µ||µ̂)− ξη.

The inner max-min problem of the second representation is of the same form as the smooth version posed in

Problem 2.

An entirely analogous argument applies if we impose an information constraint that

I(d⊗ µ) ≤ κ

we could add the term λκ to the objective and treat λ as a Lagrange multiplier. More generally, for each choice

of (λ, ξ), we could deduce an implied information constraint and relative entropy constraint. For calibration

purposes, the implied constraints can be informative.

Example 3 We now consider a model selection problem familiar from statistics. Let states be models and an

action be a guess of a model with utility function:

u(x, a) =

{
1 a = x

0 a ̸= x.

While we posited a symmetric utility function, the rewards for the correct identification of a model and penalties

for mistakes could be distinct across partitions. This would be the case, for instance, when the alternative

statistical models might have different implications for future courses of action. Robustness considerations

would come into play in the choice of prior over states.

Now suppose there is a hypothetical data set that defines the upper bound of information, captured by a

distribution d̄(y | x) (or a data-rich likelihood when viewed as a function of x), where y is a realization of

the potentially available data. This upper bound could be formalized using Blackwell (1951)’s ordering and

information quantified using the same Shannon approach applied here by comparing posteriors to the prior.

In other words, a potentially interesting extension of our formulation could impose this upper bound on what

can be revealed by the signals in conjunction with an information cost in a way that preserves convexity as

in Blackwell’s formulation. Robustness considerations could come into play, not only in the choice of prior

over states, but also in the the choice of the probabilistic upper bound on the available information about the

models.4

4Brooks et al. (2004) have recently used a related information restriction, but applied coherently across multi-
ple decision-makers and combined with an f -divergence bound. They deduce implications of games with imperfect
information from the perspective of an outside observer.
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1.2 Simplifying the problem solution

When solving Problem 2, there is no reason to have signals provide more information than what is necessary

to incorporate into decision making since signals are costly to obtain. This suggests an alternative formulation

with a probabilistic decision, p(a | x), and an information cost that imposed directly on p. In effect, the choice

p now serves as both an action and a signal distribution conditioned on the state. In this subsection we pose

and study this alternative formulation.

Observe that a strategy (d, σ) ∈ Σ generates a choice rule p ∈ ∆(A|X) where ∆ (A|X) denotes the set of

conditional distributions p (·|x) on A given by

p (a|x) = Pr (σ (s) = a|x) =
∑

{s∈S:σ(s)=a}

d (s|x) . (2)

Instead of the strategy (d, σ), we now let actions play the role of signals in terms of the attention costs. We

suppose that the DM specifies a choice rule that is a conditional probability of actions given the states. This

conditional distribution along with the prior, µ, over states imply a joint distribution p⊗ µ over X ×A:

(p⊗ µ) (x, a) ≡ p (a|x)µ (x) .

Given this joint distribution, we define the mutual information as

I (p⊗ µ)
def
=

∑
a

[H (µ)−H (µa)] q(a),

where µa ∈ ∆(X) and q ∈ ∆(A) denote the posterior and marginal distributions implied by the joint

distribution p⊗ µ :

q (a) =
∑
x

p (a|x)µ (x) , (3)

µa (x) =
p (a|x)µ (x)∑
x p (a|x)µ (x)

, if q (a) > 0. (4)

Problem 4 (Choice-based robust RI problem)

J(µ̂)
def
= max

p∈∆(A|X)
min

µ∈∆(X)
Ep⊗µ [u (x,a)]− λI (p⊗ µ)

+ξR (µ||µ̂) , (5)

where Ep⊗µ is an expectation operator given distribution p⊗ µ.

In the online appendix, we provide a Recommendation Lemma to establish the equivalence of Problems

2 and 4. Before providing solutions to Problem 4 in the next section, we first present some special limiting

cases. First, when ξ = ∞, Problem 4 is reduced to the standard RI problem. In this case the worst-case prior

is the baseline prior. Second, when ξ = 0, Problem 4 is reduced to the following one:

max
p∈∆(A|X)

min
µ∈∆(X)

Ep⊗µ [u (x,a)]− λI (p⊗ µ) .
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This is the extreme case in which the DM thinks any prior in the feasible set ∆ (X) is possible and the penalty

cost is zero. Third, when λ = 0, the DM can acquire signals to fully observe the state. The DM will select

the highest-payoff action with probability one conditional on each state. Finally, when λ = ∞, the DM does

not acquire any information about the state and selects an action to maximize expected utility given the

worst-case prior.

Remark 5 For the rational intention specification in which there is a commitment to the baseline prior, the

distribution q has meaning as a statement of the ex ante probability of the different actions. Under robustness

there is ambiguity about the prior. The choice of a worst-case prior is not the subjective belief of the DM, but

rather it is a device to obtain a robustly optimal choice of p∗(a | x). Since the distribution, q∗(a), inherits

the worst-case prior, it is not interpretable as the ex ante probability of the alternative actions. Nevertheless,

it may still provide a useful summary of the robust choices p∗(a | x) in comparison to an average using the

baseline prior distribution.

Notice that randomization among the discrete options remains a possibility, as a choice of p that is

independent of the state is feasible for the DM.

2 Model Solution

We include a seemingly superfluous contribution to the maximization problem by including the marginal q

over actions. At the same time, we ignore the constraint linking this marginal to the conditional p(a | x)
and the prior µ(x). That link will follow directly from the optimization that we investigate.5 Along with

the inclusion of q in the optimization, we introduce the corresponding consideration sets defined as the set

of actions chosen with positive probabilities. Formally, for any q ∈ ∆(A) , the associated consideration set is

defined as B (q) = {a ∈ A : q (a) > 0} .
We solve Problem 4 by computing:

J (µ̂)
def
= max

q∈∆(A),p∈∆(A|X)
min

µ∈∆(X)
F (p, q, µ) , (6)

where

F (p, q, µ)
def
=
∑
x

µ(x)

[
G(p, q)(x) + ξ log

µ (x)

µ̂ (x)

]
, (7)

and

G(p, q)(x)
def
=
∑
a

p (a|x)
[
u (x, a)− λ log

p (a|x)
q (a)

]
The function F is concave in (p, q) and convex in µ. By the Minimax Theorem, we can exchange the

5This equivalent formulation utilizes special features of the Shannon entropy cost function. For general uniformly
posterior-separable (UPS) cost functions, Caplin and Dean (2013) and Caplin et al. (2019) introduce a posterior-based
approach. Dynamic problems with UPS cost functions are analyzed by Miao and Xing (2024) and a numerical algorithm
is also proposed therein.
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extremization without effecting the optimized value:

J (µ̂) = min
µ∈∆(X)

max
q∈∆(A),p∈∆(A|X)

F (p, q, µ) . (8)

This also gives an alternative way to compute the robust solution to the rational inattention problem. In what

follows, we implement a hybrid approach.

Consider the inner minimization in the problem (6), taking p = p∗ and q = q∗ as given. This has a well

known solution from robust control theory, large deviation theory and other applications of relative entropy

(for example, see Donsker and Varadhan (1975),Dupuis and Ellis (1997), Petersen et al. (2000)):

µ∗(x) =
exp

[
−
(

1
ξ

)
υ(x)

]
µ̂(x)∑

y exp
[
−
(

1
ξ

)
υ(y)

]
µ̂(y)

(9)

for

υ(x)
def
= G(p∗, q∗)(x). (10)

This displays exponential tilting of µ∗ towards values of x for which the values of υ are relatively low. The

minimized objective is known to be:

J (µ̂) = −ξ log
∑
x

µ̂(x) exp

[
−
(
1

ξ

)
υ(x)

]
. (11)

Consider the inner maximization in the problem (8). This takes µ = µ∗ as given, and as consequence the

last term in the objective F can be ignored. It suffices to study:

max
q∈∆(A),p∈∆(A|X)

∑
x

µ∗(x)G(p, q)(x) (12)

The maximizing solution for (p, q) coincide with those of a standard rational inattention problem. Following

Matêjka and McKay (2015), the first-order conditions for p imply that

p∗(a | x) = q(a) exp [u(x, a)/λ]∑
b q(b) exp [u(x, b)/λ]

µ∗(x) > 0. (13)

While this formula can be deduced by ignoring a nonnegativity constraint on p, the resulting p∗ will be

nonnegative provided that q is.

Next we follow Caplin et al. (2019) by substituting formula (13) into the objective F for Problem 8 and

maximizing the resulting objective as a function of q. Thus we form:

Ĝ(q)(x)
def
= λ log

∑
a

q(a) exp[u(x, a)/λ], (14)

and q∗ solves:

max
q∈∆(A)

λ
∑
x

µ∗(x) log
∑
a

q(a) exp[u(x, a)/λ].

In particular, υ = Ĝ(q∗) where υ is defined in (10).
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We now impose that q be nonnegative, as this constraint could well bind. Following Caplin et al. (2019),

we obtain the relation:

∑
x

µ∗(x)

(
exp [u(x, a)/λ]∑

b q
∗(b) exp [u(x, b)/λ]

) {
≤ 1 ∀a,
= 1 a ∈ B(q∗)

(15)

as a set of first-order conditions. Since F is concave in (p, q), conditions (13) and (15) are both necessary and

sufficient for the maximization given µ = µ∗.

We combine these results in the following proposition.

Proposition 6 The triple (p∗, q∗, µ∗) is the solution to the robust RI problem if, and only if, (9), (13), and

(15) are satisfied. The resulting value function J is given by

J(µ̂) = −ξ log
∑
x

µ̂(x) exp

[
−
(
1

ξ

)
υ(x)

]
.

for υ given by (10).

The robust decision is the conditional distribution p∗(a | x), capturing the signal distribution. Recall that

we “normalized” the problem so that the action coincides with the signal. While our decision maker chooses

µ∗ along with p∗, the worst-case prior, µ∗, is a vehicle for constructing p∗ and together these determine q∗,

and the worst-case posterior distribution is given by:

µ∗
a(x) =

p∗(a | x)µ∗(x)

q∗(a)
,

provided that q∗(x) > 0.

We interpret υ(x) as the ex-post payoff (utility) derived from a standard RI problem for a given prior

µ∗. Moreover, imposing µ∗ on the maximization problem over (p, q) gives the standard RI solution. Thus

one interpretation is that the robust solution replaces µ̂ with µ∗ in an otherwise standard RI problem where

µ∗ tilts the prior distribution by putting more weight on states for which ex-post payoff is relatively lower.

An alternative robust preference interpretation has the analogous slanting for possible pair (p, q) in forming

a ranking over such admissible pairs. Under either interpretation, the resulting value function is smaller as it

reflects the cost of prior misspecification or ambiguity aversion.

Remark 7 As Caplin et al. (2019) note, in the absence of robustness considerations, we could repose problem

to be a choice of (µ, q, µa(·)) subject to ∑
a

µa(x)q(a) = µ(x)

for all states x. The necessary and sufficient conditions are again given by (9), (13) and (15) substituting

µ∗
a(x)q

∗(a)

µ∗(x)

for p∗(a | x). This same insight extends to our analysis with robustness concerns with the following caveat.

In the problem analyzed here, it is the twisted or worst-case probability that adjusts for prior ambiguity and
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limited attention that would be chosen under this strategy. In contrast, the chosen signal distributions that we

feature do not require this qualification.

3 Numerical method

An algorithm of Arimoto (1972) and Blahut (1972) finds numerical solutions to the standard RI problem.

This algorithm is an application of the general block coordinate descent algorithm, which applies to

multivariate optimization problems in which the constraint set has a Cartesian product property. The key

idea is that at each iteration one solves the optimization problem with respect to each of the block coordinate

taken in cyclic order. Based on this idea, we propose the following generalized Arimoto-Blahut algorithm to

solve the robust RI Problem 4:

1. Start with a guess µ(0) ∈ ∆(X) with µ(0) (x) > 0 for all x and a guess p(0) ∈ ∆(A|X) with p(0) (a|x) > 0

for all (x, a) .

2. Given
(
p(k), q(k), µ(k)

)
for step size 0 < s ≤ 1 compute:

q̄(k+1) (a) =
∑
x

µ(k) (x) p(k) (a|x) ,

q(k+1) (a) = q(k) (a) + s
[
q̄(k+1) (a)− q(k) (a)

]
v(k+1) (x) = λ log

∑
a

q(k+1) (a) exp (u (x, a) /λ)

3. Given
(
q(k+1), v(k+1), p(k), µ(k)

)
, for step size 0 < s ≤ 1 construct:

p̄(k+1) (a|x) = q(k+1) (a) exp (u (x, a) /λ)∑
b q

(k+1) (b) exp (u (x, b) /λ)
,

p(k+1) (a | x) = p(k) (a | x)

+ s
[
p̄(k+1) (a | x)− p(k) (a | x)

]
µ̄(k+1) (x) =

exp
(
−v(k+1) (x) /ξ

)
µ̂ (x)∑

y exp
(
−v(k+1) (y) /ξ

) ,
µ(k+1) (x) = µ(k) (x) + s

[
µ̄(k+1) (x)− µ(k) (x)

]
.

4. Iterate over integer k ≥ 0 until convergence.

We applied this algorithm to compute the numerical solutions for some illustrations reported in the next

two sections.6.

6The Github repository for the computational code used in this paper can be found at
https://github.com/lphansen/rational inattention. In particular, a user-friendly notebook can be accessed at
https://lphansen.github.io/rational inattention/intro.html
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4 Finding the good alternative

We begin with a consumer choice problem analyzed previously by Caplin et al. (2019). There is a discrete

set of M possible consumption goods for the consumer to select among. Alternatively, the choices might be

over different investment opportunities. An action is a choice of a good, and the value of the good depends on

the underlying state. For simplicity, we make the action space and the state space identical in this example.

Consumer preferences are captured by the utility function:

u(x, a) =

{
ug if x = a

ub if x ̸= a
(16)

where ug > ub. For convenience, we parameterize ub = λ log ū and ug = λ(log ū+ log(1 + δ)). The numerical

magnitude of ū turns out to be inconsequential to the analysis.7

Let µ̂ (x) be the baseline prior probability that option x yields the good prize. Without loss of generality,

we order states according to µ̂ (xi) ≥ µ̂ (xi+1) ≥ µ̂(xM ) > 0, for i ∈ {1, . . . ,M − 1}.
The DM can learn about the state by paying a mutual information cost. The DM also has concerns about

prior misspecification and seeks robust decision making that performs well when their prior µ may deviate

from µ̂. The decision problem can be formalized as Problem 4.

The solution to this decision problem will have a threshold whereby some actions may lie outside the

consideration set. A central part of the solution is the characterization of this threshold. As we will show,

introducing robustness into the analysis can expand the consideration set.

To construct a threshold, introduce:

ρk
def
=

[
k∑
i=1

[µ̂(xi)]
ψ

(
1

δ + k

)] 1
ψ

where

ψ
def
=

ξ

λ+ ξ
. (17)

Notice that

ρ1 < µ̂(x1).

Find the largest k∗ ≤M such that

ρk < µ̂ (xk) ∀ 1 ≤ k ≤ k∗.

Only the k ≤ k∗ are in the consideration set. Define:

ρ∗
def
= ρk∗ .

7It is straightforward to reinterpret this decision problem as one of model selection.
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Proposition 8 For the robust solution for the consumer choice problem, the choice rule is given by

p∗(a|xk) =
1 + δ

δ

[( µ̂(xk)
ρ∗

)ψ
− 1

]( ρ∗

µ̂(xk)

)ψ
, a = xk,

p∗(a|xk) =
1

δ

[( µ̂(xℓ)
ρ∗

)ψ
− 1

]( ρ∗

µ̂(xk)

)ψ
,∀a = xℓ, k ̸= ℓ ≤ k∗,

p∗(a|xk) =0,∀a = xℓ, ℓ > k∗

for 1 ≤ k ≤ k∗, and

p∗(a|xk) =
1

δ

[( µ̂(xℓ)
ρ∗

)ψ
− 1

]
,∀a = xℓ, ℓ ≤ k∗,

p∗(a|xk) =0,∀a = xℓ, ℓ > k∗

for M ≥ k > k∗.

The worst-case prior is given by

µ∗(xk) =
(ρ∗)

1−ψ
µ̂(xk)

ψ

(ρ∗)
1−ψ∑k∗

i=1 µ̂(xi)
ψ +

∑M
i=k∗+1 µ̂(xi)

for 1 ≤ k ≤ k∗, and

µ∗(xk) =
µ̂(xk)

(ρ∗)
1−ψ∑k∗

i=1 µ̂(xi)
ψ +

∑M
i=k∗+1 µ̂(xi)

for M ≥ k > k∗.

Proposition 8 also implies a worst-case posterior distribution for the underlying states given the signal

(action), and a worst-case marginal distribution for the actions. As is the case for the worst-case prior, these

are not intended to depict the DM’s actual beliefs.

As ξ → ∞, a specification studied by Caplin et al. (2019), deviating from the baseline prior is increasingly

costly and thus the worst-case prior approximates the baseline prior itself. In this case, Proposition 8 converges

to the corresponding findings in Theorem 1 of Caplin et al. (2019).

The robust solution is qualitatively similar to that when ξ = ∞. Specifically, the consideration set is

determined by a threshold strategy: the decision maker will consider only alternatives with a prior probability

that exceeds an endogenously determined threshold ρ∗.

Quantitatively, increasing prior robustness concerns may enlarge the consideration set, leading the decision

maker to consider more options. Formally, decreasing the penalty ξ increases the prior ambiguity concerns.

We verify in the online appendix that it decreases ρk for each k, and thus k∗ is larger. In the extreme, as

ξ ↓ 0, ρk diminishes to zero, k∗ =M, µ∗(x) = 1
M ,

µ∗
a (x) → 1 + δ

δ +M
if x = a,

µ∗
a (x) → 1

δ +M
if x ̸= a,

for any x ∈ X.
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More generally, notice that the solution depends on ξ and λ through the construction of ψ given in (17).

Thus there is a one dimensional curve in the (ξ, λ) space for which the solution remains the same. For instance,

reduction in ξ can be offset by reductions in λ, the attention cost, without altering the solutions for p∗(a | x)
and µ∗(x).8

5 Correlated options

We now consider a static investment problem with three options and two states. Options one and two are

negatively correlated while option three is constant across states and hence risk-free. The two states are

equally likely under the baseline prior µ̂ (x1) = µ̂ (x2) = 1/2. Let

u (xi, j) =
[c(xi, j)]

1−α − 1

1− α

for xi ∈ X, j ∈ A, and 0 ≤ α < 1. Table 1 presents the payoffs c(xi, j) for each of three options as a function

of the two different states.

option \ state x1 x2

1 0 2 ×r

2 r 0

3 5 5

Table 1: This table displays payoffs c(xi, j) for each state xi ∈ X and each option j ∈ A. We will

consider different values of r > 0 in the computations that follow.

Notice that option one has the highest expected payoff and option two has the lowest under the baseline

prior when r < 10. We initially set α = 0, implying risk neutrality. Consider first the special case in which

λ = ∞, so that there is only prior ambiguity but no possibility for the DM to look for information about the

underlying states. Randomization across actions independent of states is still allowed as the implied mutual

information will be zero. In this case, we simply write p(j|xi) = p(j) for any j ∈ A and xi ∈ X.

Consider first the case in which r = 7 as depicted in the left side of Figure 1, and r = 7.5 on the right side

of this same figure. In the absence of prior ambiguity (ξ = ∞), action one maximizes expected utility in both

cases. For r = 7, when ξ is twenty-five or less, the DM randomizes across actions one and three. Option two

is never included as part of the solution. For r=7.5, randomization only occurs at a higher level of ambiguity

aversion (smaller value of ξ), and occurs over all three options.

As ξ declines to zero, the randomized choices converge to a solution to the limiting ξ = 0 case. In the

ξ = 0 limit, all priors over states are entertained. In this case we recover a solution that is familiar from

robust statistical decision theory. We equalize the expected payoffs conditioned on the states, which restricts

p(2) = 2p(1). We then maximize subject to this restriction, by choosing p(1) ∈ [0, 1/3] and setting p(2)

accordingly. When r = 7.5 all such probability choices agree. Thus there are multiple choices including

8This explicit link between and ξ and λ is reminiscent of on observationally equivalent discussion in Kasa (2006) for
a class of linear, Gaussian models.
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the one depicted in Figure 1. When r > 7.5, the optimized solution is p∗(1) = 1/3; and when r < 7.5,

p∗(1) = p∗(2) = 0.

Figure 1: This figure explores the sensitivity to changes in ξ. The attention cost parameter, λ = ∞;
utility curvature parameter, α = 0; and the payoff on option two in state one is r = 7 for the left
figure and r = 7.5 for the right.

We now explore attention allocation. We again report results for r = 7 and set λ = 10 for purposes of

illustration. We report the findings in Figure 2. For lower values of ξ, option two becomes attractive. In

contrast to the λ = ∞ case, this is even true for the value of r < 7.5. In the large ξ limiting case, the solution

coincides with the rational inattention solution. Under this limiting case, Caplin et al. (2019) note that option

two becomes attractive because it helps the decision-maker learn about the true state of nature in contrast to

option three. Robustness considerations about the prior further enhance the attractiveness of option two. This

may be expected given what happens in the absence of attention considerations for r ≥ 7.5. In the presence of

attention costs, increasing r, to say r = 7.5, makes option two all the more attractive for λ = 10, as reported

in the online appendix. Option three is never chosen in this illustration.
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Notice from Figure 2 that the worst-case prior is tilted towards state 1 and more so for small values of ξ

(more prior ambiguity). As expected the resulting relative entropy diminishes with ξ. Also observe that the

implied mutual information is relatively stable across different values of ξ.

Figure 2: This figure explores the sensitivity to changes in ξ. The attention cost parameter, λ = 10;

utility curvature parameter, α = 0, and r = 7.
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Remark 9 Proposition 3 of Matêjka and McKay (2015) shows that if an action becomes more attractive

according to prior beliefs then the rationally inattentive DM will select that action with a higher unconditional

probability. Prior robustness concerns provide a different perspective on this result. Even without attention

considerations, we see from Figure 1 that even if option one is preferred under the benchmark probabilities,

this can get reversed by entertaining robustness concerns. This carries over to Figure 2 and to the r = 7.5

counterpart as option one is clearly preferred under the baseline probabilities when ξ = ∞, but this gets reversed

for low values of ξ. The Matêjka and McKay (2015) monotonicity will hold for the endogenously determined

worst-case probabilities. But our DM has prior ambiguity and the worst-case probabilities are just a device to

impute robust attention choices and are not intended as the actual beliefs.

We next explore if the impact of ambiguity aversion is similar to that of risk aversion. Recall that increases

in ξ are associated with less aversion to ambiguity over priors. Perhaps the most interesting comparison is

between relatively large α and small ξ.

Consider the case in which α = 1. This limit results in u(xi, j) = log c(xi, j). When r > 5, we see

immediately that option one is chosen only if it is known that the realized state is x1, and option two is

chosen only if it is known that the realized state is x1. These options only happen if the attention allocation is

sufficient to reveal the actual state. Otherwise, option 3 is chosen with probability one. Thus attention choice

will be one of two extremes, pay no attention or pay enough attention to reveal underlying state. In what

follows we explore more modest utility curvature.

Figure 3 investigates the implications for more modest values of α, while omitting prior robustness concerns.

The attention cost remains at λ = 10. Option two is considerably less attractive under risk rather than aversion

to prior ambiguity. Indeed, under risk aversion it is set to zero for values of α that exceed .2. At this same

threshold option three begins to be considered and it becomes more prominent for larger α. For α in excess

of .5, only the risk-less option (option three) is considered. Given this, the mutual information drops to zero.

This is in contrast to the risk-neutral case in Figure 2 where option three is not chosen for any of the values

ξ. Overall, increasing α makes option two less attractive. Recall from Figure 2 that increases in ξ also make

option two less attractive, albeit in a smoother way; but these increases imply reductions, not increases, in

ambiguity aversion.
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Figure 3: This figure explores the sensitivity to changes in α. The attention cost parameter, λ = 10;

robustness parameter, ξ = ∞, and r = 7.0
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Figure 4: This figure explores the sensitivity to changes in α. The mutual information is constrained

by I ≤ κ = 0.1; ξ = ∞ and r = 7.0

Since attention costs are depicted in utility units, changing α impacts how we should view the magnitude

of the attention costs. For a different perspective on the impact of risk aversion, we also report results where

attention is imposed as a constraint, I ≤ .1, in Figure 4. The quantitative magnitudes are quite different as

should be expected since the attention allocation in Figure 3 dropped to zero for the larger choices of α. Now

option one remains part of the optimized solution even for larger values of α. Option two is a little bit more

prominent than in the fixed λ case. Recall that probabilistic choice of signals and actions are explicitly linked

in our computation of a solution as describe in Section 1.1.2.

6 Conclusion

Our examples are only meant to be illustrative. Many applications would seem to call for a large number of

potential states. Our proposed computational algorithm could still be analyzed even with many more states.
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Recall that the robustly, optimal rational inattention solution will have the same number of signals as decision

possibilities, which can be exploited in computation. Prior ambiguity may well be even more prominent for

larger state spaces as it may be even more difficult to specify the priors over such spaces with full confidence.

While we adopt a static perspective in this paper, we suspect that many applications would be better suited

for a dynamic or recursive extension to the formulation we investigate in this paper.

While many contributions in the existing literature embrace mutual information to model attention cost,

some of its behavioral implications are inconsistent with experimental evidence (see, e.g., Woodford (2012),

Caplin and Dean (2013), Dean and Neligh (2020), and Dean and Neligh (2023)). Motivated by this evidence,

more flexible cost functions for information acquisition are proposed by Caplin and Dean (2013), Caplin et al.

(2022), Hébert and Woodford (2021), Pomatto et al. (2023), and Bloedel and Zhong (2021). These cost

functions continue to depend on the DM’s prior beliefs and so a robustness analysis over the priors, as we have

illustrated here, continues to be a potentially important ingredient to incorporate.

In empirical or experimental studies, the observable data are state-dependent choice probabilities. To test

theories of discrete choices, one has to make some additional assumptions. Caplin and Martin (2015), Caplin

and Dean (2015), Caplin et al. (2022) make an important assumption that the DM and the econometrician

share the same exogenously specified subjective prior over states of the world. Under these assumptions, there

are unique posteriors over states which can be used when testing implications.9 In our setting with prior

ambiguity, this is no longer the case. Prior ambiguity implies posterior ambiguity, which brings into question

many approaches to test the decision-making model. It remains an interesting challenge as to how best to test

robust versions of the inattention model in the presence of ambiguity.

Here we consider only the potential misspecification of priors over states, but not of the chosen signal

distributions given the state. (For instance, see Hansen and Sargent (2023) for an elaboration of potentially

distinct forms of prior robustness and likelihood robustness with connections to decision theory, control theory

and statistics.) When a decision maker chooses to allocate attention there may well be uncertainty about the

resulting p(a | x). This, too, would be a valuable extension of rational inattention decision theory.

9Specifically, they construct tests based on the ratio of posteriors conditioned on different actions.

18



References

Arimoto, S. 1972. An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE

Transactions on Information Theory 18 (1):14–20.

Blackwell, D. 1951. Comparison of Experiments. Berkley Symp on Math. Stat. and Prob 2:93–101.

Blahut, R. 1972. Computation of channel capacity and rate-distortion functions. IEEE Transactions on

Information Theory 18 (4):460–473.

Bloedel, Alex and Weijie Zhong. 2021. The cost of optimally-acquired information. Working Paper.

Brooks, Benjamin, Songzi Du, and Alexander Haberman. 2004. Robust Predictions with Bounded Information.

Caplin, Andrew and Mark Dean. 2013. Behavioral Implications of Rational Inattention with Shannon Entropy.

NBER working paper 19318.

———. 2015. Revealed preference, rational inattention, and costly information acquisition. American Eco-

nomic Review 105:2183–2203.

Caplin, Andrew and Daniel Martin. 2015. A Testable Theory of Imperfect Perception. Economic Journal

125 (582):184–202.

Caplin, Andrew, Mark Dean, and John Leahy. 2019. Rational inattention, optimal consideration sets, and

stochastic choice. Review of Economic Studies 86:1061–1094.

———. 2022. Rationally Inattentive Behavior: Characterizing and Generalizing Shannon Entropy. Journal

of Political Economy 130:1676–1715.

Cerreia-Vioglio, S, F Maccheroni, M Marinacci, and L Montrucchio. 2013. Ambiguity and Robust Statistics.

Journal of Economic Theory 148:974–1049.

Cover, Thomas M. and Joy A. Thomas. 2012. Elements of Information Theory. Wiley.

Dean, Mark and Nathaniel Neligh. 2020. Estimating information cost functions in models of rational inatten-

tion. Journal of Economic Theory 187:1–32.

———. 2023. Experimental tests of rational inattention. Journal of Political Economy 131 (12):3415–3461.

Denti, Tommaso and Luciano Pomatto. 2022. Model and Predictive Uncertainty: A Foundation for Smooth

Ambiguity Preferences. Econometrica 90 (2):551–584.

Donsker, Monroe D. and S.R. Srinivasa Varadhan. 1975. Asymptotic Evaluation of Certain Markov Process

Expectations for Large Time, I-IV. Communications on Pure and Applied Mathematics 28 (1):1–47.

Dupuis, Paul and Richard Ellis. 1997. A Weak Convergence Approach to the Theory of Large Deviations. John

Wiley and Sons, Inc.

Gilboa, Itzhak and David Schmeidler. 1989. Maxmin Expected Utility with Non-Unique Prior. Journal of

Mathematical Economics 18:141–153.

19



Hansen, Lars Peter and Jianjun Miao. 2018. Aversion to ambiguity and model misspecification in dynamic

stochastic environments. Proceedings of the National Academy of Sciences 115:9163–9168.

Hansen, Lars Peter and Thomas J. Sargent. 2001. Robust Control and Model Uncertainty. The American

Economic Review 91:60–66.

———. 2007. Recursive Robust Estimation and Control without Commitment. Journal of Economic Theory

136:1–27.

———. 2023. Risk, ambiguity, and misspecification: Decision theory, robust control, and statistics. Journal

of Applied Econometrics online (n/a):1–31.
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A Proofs

A.1 A recommendation lemma

We first present the following recommendation lemma similar to Matêjka and McKay (2015).

Lemma 10 Let (µ∗, d∗, σ∗) solve Problem 2. Then (d∗, σ∗) generates a choice rule p such that (µ∗, p) solves

Problem 4. Conversely, let (µ∗, p∗) solve Problem 4. Then p∗ induces a strategy (d, σ) such that (µ∗, d, σ)

solves Problem 2. Moreover, W (µ̂) = J (µ̂) .

Use the Minimax Theorem to exchange the extremization in [1] and [5]. Because the relative entropy

penalty term R(µ||µ̂) is the same in these two problems, it suffices to prove

max
p∈∆(A|X)

Ep⊗µ [u (x,a)]− λI(p⊗ µ) = max
(d,σ)∈Σ

Ed⊗µ [u (x, σ (s))]− λI(d⊗ µ), (18)

for any fixed prior µ ∈ ∆(X) .

Given any strategy (d, σ) ∈ Σ, we can construct a choice rule p as in [2] and hence define I(p ⊗ µ). We

will prove that I(p⊗ µ) ≤ I(d⊗ µ). This statement is equivalent to∑
a

q(a)H(µa) ≥
∑
s

ν(s)H(µs),

where ν(s) is the marginal distribution over signals. Since a = σ (s) , we have

µa(x) =
∑
s

µs(x) Pr(s|a), x ∈ X.

Since Shannon entropy H : ∆ (X) → R is a concave function, it follows from Jensen’s inequality that

H(µa) ≥
∑
s

Pr(s|a)H(µs).

Multiplying both sides by q(a) and summing over a, we obtain∑
a

q(a)H(µa) ≥
∑
s

∑
a

Pr(s|a)q(a)H(µs) =
∑
s

ν(s)H(µs),

as desired. Since Ed⊗µ [u (x, σ (s))] = Ep⊗µ [u (x,a)] by construction, we have

Ed⊗µ [u (x, σ (s))]− λI(d⊗ µ) ≤ Ep⊗µ [u (x,a)]− λI(p⊗ µ).

Let the strategy (d∗, σ∗) achieve the maximum of the problem on the right-hand side of (18). Let p be the

induced choice rule. We then have

max
(d,σ)∈Σ

Ed⊗µ [u (x, σ (s))]− λI(d⊗ µ) ≤ Ep⊗µ [u (x,a)]− λI(p⊗ µ). (19)

Conversely, given any choice rule p, we can construct a strategy (d, σ). Specifically, let S be any finite set
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with |S| = |A| and fix any bijection ϕ : A→ S. Define

d(s|x) = p(a|x), σ(s) = a, for s = ϕ(a).

This construction implies

Ed⊗µ [u (x, σ (s))]− λI(d⊗ µ) = Ep⊗µ [u (x,a)]− λI(p⊗ µ).

Let p∗ achieve the maximum of the problem on the left-hand side of (18) and (d, σ) be the induced strategy.

Then we have

max
p∈∆(A|X)

Ep⊗µ [u (x,a)]− λI(p⊗ µ) = Ed⊗µ [u (x, σ (s))]− λI(d⊗ µ) (20)

Combining (19) and (20), we obtain the desired result.

A.2 Proof of Proposition 6

It is straightforward to check that the objective function F is convex in µ and jointly concave in p and q. We

first solve the inner maximization problem of [8] for a fixed µ. This inner maximization problem is a standard

rational inattention problem. The optimal choice probabilities

p∗(a | x) = q(a) exp [u(x, a)/λ]∑
b q(b) exp [u(x, b)/λ]

, µ(x) > 0, (21)

and the resulting optimal value in [14] are obtained by Matêjka and McKay (2015). Caplin and Dean (2013)

and Caplin et al. (2019) characterize the necessary and sufficient conditions which consistent of (21) and

∑
x

µ(x)

(
exp [u(x, a)/λ]∑

b q
∗(b) exp [u(x, b)/λ]

) {
≤ 1 ∀a,
= 1 a ∈ B(q∗).

(22)

They argue that these conditions are important for identifying the consideration set. They also show that the

value function of the inner rational inattention problem is

V (µ) =
∑
x

µ(x)v(x), v(x) = λ log
∑
a

q∗(a) exp
(
u(x, a)/λ

)
, (23)

and V is convex and satisfies

∂V (µ)

∂µ(x)
= v(x)− v(xM ), x = x1, x2, ..., xM−1. (24)

Now we consider the outer minimization problem of [8], which can be written as

min
µ∈∆(X)

V (µ) + ξ
∑
x

µ (x) log
µ (x)

µ̂ (x)
. (25)
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Since V and the relative entropy are convex in µ, this is a convex optimization problem. Replace µ (xM ) by

µ (xM ) = 1−
M−1∑
i=1

µ (xi) . (26)

Using (24) and taking first-order conditions with respect to µ (x) yields

v (x)− v (xM ) + ξ

[
log

µ∗ (x)

µ̂ (x)
− log

µ∗ (xM )

µ̂ (xM )

]
= 0, (27)

for x = x1, ..., xM−1. Solving for µ (x), summing over x = x1, x2, ..., xM−1, and using (26), we can derive

µ∗ (xM ) =
exp (−v(xM )/ξ) µ̂ (xM )∑
x′ exp (−v(x′)/ξ) µ̂ (x′)

.

Plugging this expression into (27), we can derive

µ∗ (x) =
exp (−v(x)/ξ) µ̂ (x)∑
x′ exp (−v(x′)/ξ) µ̂ (x′)

, x = x1, ..., xM−1.

We then obtain [9]. Replacing µ with µ∗ in (21) and (22) yields [13] and [15]. Plugging µ∗ into (25) and using

(23), we can derive the value function J (µ̂) in the proposition. □

A.3 Proof of Proposition 8:

Notice that we set A = X = {x1, x2, ..., xM}. Choosing an action a ∈ A is the same as choosing some state

xk.

It follows from (23) and [16] that

v(x) = λ log
∑
a

q∗(a) exp(u(x, a)/λ) = λ log (u(1 + δq∗(x))) .

Plugging the above expression into [9], we obtain

µ∗(x) =
(1 + δq∗(x))−

λ
ξ µ̂(x)∑

y(1 + δq∗(y))−
λ
ξ µ̂(y)

. (28)

Let B be the consideration set. For any chosen action a ∈ B, the equality in [15] implies

1 =
∑
x

µ∗(x) exp[u(x, a)/λ]∑
b q

∗(b) exp[u(x, b)/λ]

=
(1 + δ)µ∗(a)

1 + δq∗(a)
+

∑
a′∈B\{a}

µ∗(a′)

1 + δq∗(a′)
+
∑

b∈A\B

µ∗(b)

=
δµ∗(a)

1 + δq∗(a)
+
∑
a′∈B

µ∗(a′)

1 + δq∗(a′)
+
∑

b∈A\B

µ∗(b), (29)

where the second equality follows from
∑
b q

∗(b) exp[u(x, b)/λ] =
∑
b ̸=x q

∗(b)ū+ q∗(x)ū(1 + δ) = ū[1 + δq∗(x)]
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for x ∈ B; and
∑
b q

∗(b) exp[u(x, b)/λ] =
∑
b∈B q

∗(b)ū = ū for x /∈ B. Observe that the last two terms on

the right-hand side of (29) are independent of a. Therefore the first term δµ∗(a)
1+δq∗(a) must be identical for any

chosen action a. Using (28) to replace µ∗(a) and noticing that the denominator of the term on the right-hand

side of (28) is independent of a, we deduce that (1 + δq∗(a))−
λ
ξ−1µ̂(a) is identical for any a ∈ B. Therefore,

we denote

ρ := [1 + δq∗(a)]
−λ
ξ−1

µ̂(a), for any a ∈ B. (30)

Recall ψ = ξ
λ+ξ from [17]. It then follows from (30) and (28) that

1 + δq∗(a) =

[
ρ

µ̂(a)

]−ψ
and µ∗(a) =

ρ1−ψµ̂(a)ψ∑
x(1 + δq∗(x))−

λ
ξ µ̂(x)

. (31)

Combining (28), (29), and (30), we obtain

ρ(δ + |B|)∑
x(1 + δq∗(x))−

λ
ξ µ̂(x)

= 1−
∑

b∈A\B

µ∗(b) =
∑
a∈B

µ∗(a). (32)

Then combining (31) and (32) yields

(δ + |B|)ρψ =
∑
a∈B

µ̂(a)ψ. (33)

Equation (30) implies ρ < µ̂(a) for any chosen action a ∈ B with q∗(a) > 0. It follows from (33) that

µ̂(a) > ρ =

[∑
a∈B µ̂(a)

ψ

δ + |B|

] 1
ψ

, for any a ∈ B. (34)

For a /∈ B, the inequality in [15] yields

1 ≥
∑
x

µ∗(x) exp(u(x, a)/λ)∑
b q

∗(b) exp(u(x, b)/λ)

=
∑
a′∈B

µ∗(a′)

1 + δq∗(a′)
+
∑

b∈A\B

µ∗(b) + δµ∗(a),

which is equivalent to

δµ∗(a) ≤
∑
a′∈B

[
µ∗(a′)− µ∗(a′)

1 + δq∗(a′)

]
=
∑
a′∈B

δq∗(a′)

1 + δq∗(a′)
µ∗(a′). (35)

Because a is not chosen, q∗(a) = 0. Then (28) implies that

µ∗(a) =
µ̂(a)∑

x(1 + δq∗(x))−
λ
ξ µ̂(x)

, for any a /∈ B. (36)

Plugging the previous equation and (28) into (35), we obtain

µ̂(a) ≤
∑
a′∈B

q∗(a′) [1 + δq∗(a′)]
−λ
ξ−1

µ̂(a′) =
∑
a′∈B

q∗(a′) ρ = ρ, for any a /∈ B, (37)
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where the last equality follows from
∑
a′∈B q

∗(a′) = 1.

Combination of (34) and (37) identifies the consideration set B by the following relation

µ̂(a) > ρ, for any a ∈ B; µ̂(a) ≤ ρ, for any a /∈ B, (38)

where

ρ =

[∑
a∈B µ̂(a)

ψ

δ + |B|

] 1
ψ

.

The relationship (38) and the monotonicity of µ̂(xi) imply that the consideration set must be a threshold type:

if a = xk ∈ B, then a = xk′ ∈ B for any k′ ≤ k.

We now identify the consideration set B. To this end, define

ρk =

[∑k
i=1 µ̂(xi)

ψ

δ + k

] 1
ψ

.

Notice that ρ1 < µ̂(x1). Find the largest k∗ ≤M such that

ρk < µ̂(xk), ∀1 ≤ k ≤ k∗. (39)

Then (38) is satisfied when B = {x1, . . . , xk∗} and ρ = ρk∗ . To verify this claim, we use the monotonicity of

µ̂(xi) and (39) to obtain

ρk∗ < µ̂(xk∗) ≤ µ̂(xk), ∀1 ≤ k ≤ k∗. (40)

Meanwhile, being the largest k∗ satisfying (39) implies

ρk∗ ≥ µ̂(xk), ∀k∗ < k ≤M. (41)

Assume otherwise, if ρk∗ < µ̂(xk) for some k satisfying k∗ < k ≤M , then ρk∗ < µ̂(xk∗+1), which is equivalent

to [∑k∗

i=1 µ̂(xi)
ψ

δ + k∗

] 1
ψ

< µ̂(xk∗+1).

Raising to the ψ-th power, multiplying by δ + k∗, and adding µ̂(xk∗+1)
ψ on both sides, we obtain

k∗+1∑
i=1

µ̂(xi)
ψ < (δ + k∗ + 1)µ̂(xk∗+1)

ψ,

which is equivalent to

ρk∗+1 < µ̂(xk∗+1).

This contradicts the choice of k∗.

Next we prove that k∗ is the unique index satisfying both (40) and (41). To this end, we first claim that

ρk ≥ µ̂(xk), ∀k∗ < k ≤M. (42)
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To prove (42), introduce

νk :=

k∑
i=1

µ̂(xi)
ψ − (δ + k)µ̂(xk)

ψ = ν1k + ν2k

where

ν1k :=

k∑
i=1

[
µ̂(xi)

ψ − µ̂(xk)
ψ
]

and ν2k := −δµ̂(xk)ψ.

Both ν1k and ν2k are increasing in k, implying that νk is as well. Notice that ν11 = 0 and ν21 < 0, and thus

ν1 < 0. By the definition of k∗, k∗ is the largest positive integer less than M for which νk∗ is strictly negative.

By the monotonicity, νk is necessarily negative for smaller values of k and nonnegative for larger values of k.

This implies that

ρk < µ̂(xk), 1 ≤ k ≤ k∗

ρk ≥ µ̂(xk), k∗ < k ≤M.

Using (42), we can now show that k∗ is the unique index satisfying both (40) and (41). Suppose that ℓ is

another case where (40) and (41) are satisfied with k∗ replaced by ℓ therein. If ℓ > k∗, it cannot satisfy

ρℓ < µ̂(xℓ),

because it contradicts (42). If ℓ < k∗, (39) implies ρℓ+1 < µ̂(xℓ+1), which is equivalent to

[∑ℓ+1
i=1 µ̂(xi)

ψ

δ + ℓ+ 1

] 1
ψ

< µ̂(xℓ+1).

Raising to the ψ-th power, multiplying by δ + ℓ+ 1, and subtracting µ̂(xℓ+1)
ψ on both sides, we obtain

ℓ∑
i=1

µ̂(xi)
ψ < (δ + ℓ)µ̂(xℓ+1)

ψ,

which is equivalent to ρℓ < µ̂(xℓ+1). Therefore (41), where k∗ replaced by ℓ therein, is violated.

Having shown that k∗ is the unique index such that both (40) and (41) are satisfied, we use the charac-

terization of the consideration set in (38) to conclude that B = {x1, . . . , xk∗} and ρ = ρk∗ .

Using the first equation of (31), we identify q∗ as

q∗(a) =
1

δ

[( µ̂(xk)
ρ∗

)ψ
− 1
]
, if a = xk, 1 ≤ k ≤ k∗,

q∗(a) =0, if a = xk, k
∗ < k ≤M.

(43)
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Using (31) and (36), we identify the worst-case prior µ∗ as

µ∗(xk) =
(ρ∗)

1−ψ
µ̂(xk)

ψ

(ρ∗)
1−ψ∑k∗

i=1 µ̂(xi)
ψ +

∑M
i=k∗+1 µ̂(xi)

, 1 ≤ k ≤ k∗,

µ∗(xk) =
µ̂(xk)

(ρ∗)
1−ψ∑k∗

i=1 µ̂(xi)
ψ +

∑M
i=k∗+1 µ̂(xi)

, k∗ < k ≤M.

(44)

For the optimal choice rule, let us first consider the case conditioning on xk with 1 ≤ k ≤ k∗. When

a = xk,

p∗(a|xk) =
q∗(a) exp(u(xk, a)/λ)∑
b q

∗(b) exp(u(xk, b)/λ)
=

1 + δ

δ

[( µ̂(xk)
ρ∗

)ψ
− 1

]( ρ∗

µ̂(xk)

)ψ
,

where the second equality follows from (43) and

∑
b

q∗(b) exp(u(xk, b)/λ) = ū
(
1 + δq∗(xk)

)
= ū

( µ̂(xk)
ρ∗

)ψ
. (45)

When a = xℓ and k ̸= ℓ ≤ k∗, using (43) and (45), we obtain

p∗(a|xk) =
1

δ

[( µ̂(xℓ)
ρ∗

)ψ
− 1

]( ρ∗

µ̂(xk)

)ψ
.

When a = xℓ and ℓ > k∗, it follows from q∗(a) = 0 that p∗(a|xk) = 0.

Now consider the case conditioning on xk with k∗ < k ≤M . When a = xℓ and ℓ ≤ k∗,

p∗(a|xk) =
q∗(a) exp(u(xk, a)/λ)∑
b q

∗(b) exp(u(xk, b)/λ)
=

1

δ

[( µ̂(xk)
ρ∗

)ψ
− 1

]
,

where the second equality follows from (43) and
∑
b q

∗(b) exp(u(xk, b)/λ) = ū. When a = xℓ and ℓ > k∗,

p∗(a|xk) = 0.

The optimal posterior can also be determined. When a = xk and k ≤ k∗,

µ∗
a(xk) =

exp(u(xk, a)/λ)µ
∗(xk)∑

b q
∗(b) exp(u(x, b)/λ)

=
(1 + δ)µ∗(xk)

1 + δq∗(a)
=

(1 + δ)ρ∗

(ρ∗)1−ψ
∑k∗

i=1 µ̂(xi)
ψ +

∑M
i=k∗+1 µ̂(xi)

.

When a = xℓ and k ̸= ℓ ≤ k∗,

µ∗
a(xk) =

µ∗(xk)

1 + δq∗(a)
=

ρ∗

(ρ∗)1−ψ
∑k∗

i=1 µ̂(i)
ψ +

∑M
i=k∗+1 µ̂(xi)

.

When k > k∗, a = xℓ, and ℓ ≤ k∗, µ∗(xk | a) = µ∗(xk).

When ξ ↓ 0, then ψ ↓ 0 and ρk converges to zero for any k. Equation (44) implies that µ∗(xk) converges

to 1/M for any 1 ≤ k ≤ M . Moreover, q∗(a) converges to 1/M and µ∗
a(x) converges to

1+δ
δ+M when x = a, or

1
δ+M when x ̸= a. The proof is completed. □

Introduce

ρk(ψ) =

[∑k
i=1 µ̂(xi)

ψ

δ + k

] 1
ψ

.
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Because ψ increases with ξ, the following result implies that ρk(ψ) increases with ξ.

Lemma 11 For any fixed k, ρk(ψ) increases with ψ.

Consider ψ < ψ′,

ρk(ψ) =

(∑k
i=1 µ̂(xi)

ψ

δ + k

)ψ′
ψ


1
ψ′

=

( k

δ + k

)ψ′
ψ

(
1

k

k∑
i=1

µ̂(xi)
ψ

)ψ′
ψ


1
ψ′

<

 k

δ + k

(
1

k

k∑
i=1

µ̂(xi)
ψ

)ψ′
ψ


1
ψ′

<

[
k

δ + k

(
1

k

k∑
i=1

µ̂(xi)
ψ′

)] 1
ψ′

= ρk(ψ
′),

where the first inequality follows from k
δ+k < 1 and ψ′

ψ > 1, the second inequality follows from the Jensen’s

inequality.
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B Additional Results

B.1 Comparative statics for Section 4

We use a numerical example to illustrate Proposition 8. Let M = 3, λ = 1, µ̂ (x1) = 0.5, µ̂ (x2) = 0.35,

µ̂ (x3) = 0.15, uG = 1, and uB = 0. Figure 5 plots the solutions for different values of ξ. When ξ approaches

infinite, the worst-case prior approaches the baseline prior and the robust solution approaches the standard

solution for which only action 1 and 2 are considered. When ξ is sufficiently small, action 3 also enters the

consideration set. The worst-case prior puts more weight to x3. As ξ approaches zero, the worst-case prior

approaches a uniform distribution over all states.
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Figure 5: Solutions for the consumer choice problem in Section 4 with different degrees of ambiguity
aversion.
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C Posterior-Based Approach

In this section, we present an equivalent posterior-based approach for the robust RI problem. In contrast to

the rational RI problem, the DM in the robust problem does not have a single posterior that is of interest.

The baseline probabilities imply one posterior and the worst-case prior implies another one. While both are

interesting constructs, neither is intended to capture the unique posterior beliefs of the DM. The analysis here

features the worst-case posterior as a device to provide additional insights into our solution.

Let us first rewrite Problem 4 as

J (µ̂) = min
µ∈∆(X)

V (µ) + ξR (µ||µ̂) ,

where V (µ) is the value function for the standard RI problem with the prior µ.

Caplin and Dean (2013) and Caplin et al. (2019) propose a posterior-based approach to solve the standard

Shannon model for any given prior µ. In the posterior-based approach, the value function is defined as

V (µ) = max
q∈∆(A),µa∈∆(X),a∈A

∑
a

q (a)Na (µa)− λH (µ) (46)

subject to

µ (x) =
∑
a

µa (x) q (a) , x ∈ X, (47)

where Na denotes the net utility function associated with action a and it is defined as

Na (µa) :=
∑
x

µa (x)u (x, a) + λH (µa) .

We can then reformulate the choice-based robust RI problem as an equivalent posterior-based problem of

choosing a worst-case prior µ ∈ ∆(X), a default rule q ∈ ∆(A) , and a posterior probability µa ∈ ∆(X),

a ∈ A. Once q and {µa}a∈A are determined, we can recover the choice rule as

p (a|x) = q (a)µa (x)

µ (x)
, if µ (x) > 0.

Notice that the net utility function Na (µa) is concave in µa due to the concavity of entropy H (µa).

However, the objective function in (46) is not jointly concave in q and {µa}a∈A. Thus one has to solve a

concavification problem. This posterior-based approach has a nice geometric interpretation of the solution,

which helps understand economic intuition. Specifically, for any given prior µ, one graphs the net utilities

associated with all actions and finds the point on the convex hull directly above the prior µ; the optimal

posteriors are the points of tangency of the supporting hyperplane at this point and the net utility functions

(see Figure 6). This generates the value function V (µ) for the standard RI problem without prior ambiguity.

On top of this problem, the robust strategy determines the worst-case prior µ∗ that minimizes V (µ) plus a

penalty cost measured by the entropy relative to the baseline prior µ̂. The robust posteriors and default rule

are optimal relative to µ∗.
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Figure 6: Geometric illustration of standard solutions and robust solutions. The left panel shows
the case with two states x1 and x2 and one action a. The right panel shows the case with two states
x1 and x2 and two actions a and b.

By (23), we have

V (µ∗) =
∑
x

µ∗ (x) v (x) =
∑
x

µ∗ (x) V̂ (x) + λ
∑
x

µ∗ (x) logµ∗ (x) ,

where V̂ (x) := v (x) − λ logµ∗ (x) . Miao and Xing (2024) show that V̂ (x) is the height of the supporting

hyperplane at the point with µ∗ (x) = 1 and µ∗ (x′) = 0 for all x′ ̸= x. Replacing v (x) in the equation above

by the expression from (9), we can show that

µ∗ (x) =
µ̂(x)

ξ
λ+ξ exp

(
− 1
λ+ξ V̂ (x)

)
∑
x′ µ̂(x′)

ξ
λ+ξ exp

(
− 1
λ+ξ V̂ (x′)

) .
Thus the worst-case prior µ∗ puts more weight on a lower payoff V̂ (x) . The payoff V̂ (x) is related to v (x)

and has a better geometric interpretation. Notice that V̂ (x) or v (x) tends to be low when u (x, a) is low for

a chosen action a.

The left panel of Figure 6 illustrates the case with two states x1 and x2 and one action a. For the

standard Shannon model, the tangency point of the supporting plane lies directly above the prior µ̂(x1) so

that the optimal posterior is the prior. For the robust Shannon model, the optimal posterior is the same as
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the worst-case prior µ∗(x1) given only one action a. Since q∗ (a) = 1, we have v (x) = u (x, a) and

µ∗ (x) =
exp (−u (x, a) /ξ) µ̂ (x)∑
x exp (−u (x, a) /ξ) µ̂ (x)

, x = x1, x2.

Since u (x1, a) < u (x2, a) in the left panel of Figure 6, we have µ∗ (x1) > µ̂ (x1) and the tangent hyperplane

tilts down toward state x1.

The right panel of Figure 6 illustrates the case with two states and two actions. The worst-case prior

µ∗ (x1) lies in the convex hull of the tangency points, which give the optimal posteriors µ∗
a (x1) and µ∗

b (x1).

Then both actions a and b are in the consideration set.

As in Caplin et al. (2019), for an action to be in the consideration set, its net utility must touch the

supporting hyperplane. Except in cases of indifference, this means that the net utility function associated

with this action would pierce the hyperplane associated with a problem that did not include this action.

This is more likely if the net utility associated with this action is higher (i.e. the payoffs are higher) or the

hyperplane is lower (i.e. the payoffs to the other actions are lower). The latter case reflects a hedging motive:

an action is more likely to be considered when it pays off more in states in which other actions pay off less.

For the standard Shannon model, Caplin and Dean (2015) establish a locally invariant posteriors (LIP)

property; that is, optimal posterior distributions are locally invariant to changes in priors in the convex hull

of the optimal posteriors. This result is intuitive using the geometric interpretation discussed earlier: local

changes of priors in the convex hull of the tangency points of the hyperplane and net utility functions do not

change these tangency points. In our robust RI model, these priors are not the primitives of the model. They

are the worst-case priors endogenously derived from a robust control problem given a baseline prior µ̂ and

a robustness parameter ξ. Similar to Caplin and Dean (2015), we have the following invariance result. The

proof is similar to that of Corollary 1 in Caplin and Dean (2013) and hence is omitted here.

Corollary 12 Let B and {µa}a∈A be the optimal consideration set and posterior distribution for the robust

RI problem with the baseline prior µ̂ and the penalty parameter ξ. If B′ ⊂ B and µa = µ′
a for any a ∈ B′, then

B′ and {µ′
a}a∈B′ are optimal for a robust RI problem with some baseline prior µ̂′ and penalty parameter ξ′.

It merits emphasis that the LIP of Caplin and Dean (2013) does not hold in our robust RI model. More

specifically, our invariance result only holds for a combination of µ̂′ and ξ′. Local changes of baseline priors µ̂

in the convex hull of the tangency points may affect the optimal posteriors. But a local change of µ̂ such that

the associated worst-case prior µ∗ remains in that convex hull will not change the optimal posteriors. See the

right panel of Figure 1 for the intuition.

Caplin et al. (2019) establish a converse result that finds exogenous priors associated with any given

consideration set. We are unable to provide a similar result. In our model, a baseline prior and a robustness

parameter are primitives. Any given consideration set must be generated by both some baseline prior and

some robustness parameter.
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D Additional Figures for Section 5

In this section, we present the counterpart of Figures 2, 3, and 4 when r = 7.5. In contrast to Figure 1, Figures

7, 8, 9 present quantitatively similar results to Figures 2, 3, and 4, when the information acquisition cost is

finite.

Figure 7: This figure explores the sensitivity to changes in ξ. The attention cost parameter, λ = 10;
utility curvature parameter, α = 0, and r = 7.5.
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Figure 8: This figure explores the sensitivity to changes in α. The attention cost parameter, λ = 10;
robustness parameter, ξ = ∞, and r = 7.5.
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Figure 9: This figure explores the sensitivity to changes in α. The mutual information is constrained
by I ≤ κ = 0.1; ξ = ∞ and r = 7.5.
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