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A B S T R A C T

Applied researchers using structural models under rational expectations (RE) often confront
empirical evidence of misspecification. In this paper we consider a generic dynamic model that
is posed as a vector of unconditional moment restrictions. We suppose that the model is globally
misspecified under RE, and thus empirically flawed in a way that is not econometrically subtle.
We relax the RE restriction by allowing subjective beliefs to differ from the data-generating
probability (DGP) model while still maintaining that the moment conditions are satisfied under
the subjective beliefs of economic agents. We use statistical measures of divergence relative to
RE to bound the set of subjective probabilities. This form of misspecification alters econometric
identification and inferences in a substantial way, leading us to construct robust confidence sets
for various set identified functionals.

1. Introduction

Dynamic models in economics have forward-looking decision makers who form beliefs about their uncertain environment. For
instance, investment decisions depend on forecasts about the future, firms speculate about the future demand for their products,
and strategic players in a dynamic game setting make conjectures about the other players’ actions. One common approach assumes
agents inside the economic model form Rational Expectations (RE). This postulate can be enforced as an equilibrium construct
for a fully specified dynamic stochastic equilibrium model. Under this imposition of RE, the beliefs will be consistent with the
Data Generating Process (DGP) only if the model happens to be correctly specified from a statistical perspective. Alternatively, as
is done in the Generalized Method of Moments (GMM) analysis, RE is imposed by assuming that the beliefs of economic agents
coincide with the probabilities implied by the DGP.1 In effect, economic agents’ beliefs are restricted to be consistent with the
outcomes of the Law of Large Numbers, justified (approximately) by looking at long past histories of data. For this latter approach,
the corresponding optimization and equilibrium conditions lead to moment restrictions that can be estimated and tested via GMM,
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Generalized Empirical Likelihood (GEL), or other related methods. The expectations used in forming the moment conditions are
presumed to coincide with the subjective beliefs of the economic decision makers inside the dynamic economic model. In this
paper, we use RE to mean that beliefs of economic agents inside the economic model are consistent with the DGP implied by Law
of Large Numbers.

1.1. What we do

When formulating dynamic stochastic equilibrium models, it is common to impose RE as a simplifying assumption. Rather than
ursue the often illusive or unrevealing goal of finding a correctly specified model under RE, we take a different approach. We
uppose that the RE model is misspecified. For both substantive and empirical reasons we relax RE assumption to correct the
isspecification. By altering the potential subjective beliefs, we allow the population moment conditions to be satisfied, building on
suggestion in Hansen (2014). Specifically, we allow for forward-looking economic agents to have subjective beliefs that depart from

he Law of Large Limits implied by the DGP. In so doing, we entertain an econometric model that is only partially identified because
here is a potentially large class of subjective beliefs for which the moment conditions are satisfied. This lack of full identification
revails even though the moment conditions may be identified under RE. To characterize this family, we impose statistical bounds
n how far the subjective belief probabilities are from probabilities implied by the DGP. Formally, we use statistical divergence
easures to limit the set of subjective probabilities that are consistent with the population moment conditions. Since our interest

s in dynamic models with forward-looking economic agents, our methodology (i) extracts information on investor beliefs from
quilibrium prices and from survey data, and (ii) provides revealing diagnostics for model builders that embrace specific formulations
f belief distortions.

In this paper we start by considering a generic dynamic model that is posed as a vector of conditional moment restrictions. We
uppose that the conditional moment model is globally misspecified under RE, and thus empirically flawed. We then follow Hansen
nd Singleton (1982) and Hansen and Richard (1987) by using the conditional moment restrictions to generate unconditional
ounterparts. We replace the RE restriction by a statistical divergence bound on the potentially distorted beliefs relative to the
GP. In effect, we use statistical divergence as a formal way to ‘‘bound irrationality’’. By limiting the magnitude of the statistical
ivergence, we avoid excessively large identified sets of potential parameter values. This constraint limits both the set of potential
eliefs and the underlying model parameters. While we allow for considerable flexibility in the choice of the statistical divergences,
e show that some popular statistical divergence measures are problematic: they are poor at revealing some forms of distorted
eliefs that interest us.

Specifying a probability distribution is equivalent to specifying an associated expectation operator applied to a rich class of
easurable functions of the underlying random vector. Extending this insight, we represent bounds on a family of probability
istributions as a nonlinear expectation operator constructed as follows. For each possible function we minimize the expectation of
he function of the random vector (over the set of distributions). Because of the minimization, the resulting expectation operator
s nonlinear. Since the class of functions is sufficiently large to include both a function and its negative, this operator gives both
pper and lower bounds on the admissible set of expectations. Thus we introduce a nonlinear expectation operator as a device to
epresent the restrictions on the empirically plausible family of subject probabilities.

Our paper proposes inference procedures for expectation bounds as well as the corresponding bounds on model parameters.
sing duality arguments, we show how the Lagrange multipliers help to characterize extremal probabilities, which is an important

ntermediate step in our analysis. As a result, our econometric analysis also provides way to make inferences about these multipliers.
hese multipliers have independent interest because they suggest ways that we could reshape the DGP probabilities to match the
oment implications. In our econometric formulation, the parameter values are only set identified. To make inferences about the

ets of implied expectations, parameter values, and the corresponding multipliers, we rely on econometric theory as in Chernozhukov
t al. (2007) and Chen et al. (2018).

.2. Related literature

This paper is similarly motivated and complementary to our recent publication (Chen et al., 2021). The Chen et al. (2021)
ontribution features identification only and does not explore estimation and inference. As a consequence, it does not forge
onnections with the substantial econometrics literature on misspecification that we referenced. On the other hand, the Chen et al.
2021) paper features conditional moment conditions whereas in this paper we presume a finite number of unconditional moment
onditions as the starting point.

The idea of using a nonlinear expectation operator induced by minimization has important antecedents in the applied probability
iterature. For instance, an analogous nonlinear expectation operator is central to Peng (2004)’s development of a novel control
heory designed to confront uncertainty for Brownian motion information structures.

There is a well known and long-standing literature on the important role of subjective beliefs in determining investment and
ther economic decisions. This literature is too vast to summarize but it includes a variety of models of expectations in addition to
ational expectations. More recently, there has been interest in collecting additional data on agents’ beliefs and using these often
parse data to estimate parametric/semiparametric models of subjective beliefs. For instance, see Manski (2018), Meeuwis et al.
2018), Bordalo et al. (2020), Bhandari et al. (2019), and Attanasio et al. (2019). We allow for the incorporation of even limited
2

urvey data by adding them into moment restrictions in our framework.
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Prior contributions have used stochastic dual programs and 𝜙-divergence balls. For instance, there is a mathematical overlap
between our work and recent contributions such as Shapiro (2017), Duchi and Namkoong (2021) and Christensen and Connault
(2019) and prior literature referenced by those papers.2 None of these papers, however, motivates the misspecification in terms of
ynamic settings with a potentially large set of subjective beliefs of the decision makers being modeled.

A substantial body of research has emerged in operations research and statistics that studies optimization in the presence of
tatistical model uncertainty about the underlying DGP pertinent for the decision problem. This research explores robustness bounds
or parameter estimation and statistical decision rules, typically restricting the misspecification to be ‘‘local.’’ We deliberately shun
pproaches that assume this misspecification is local. In such approaches, the misspecification vanishes at a rate that is exogenously
inked to sample size. While a local approach is common in much of the related theoretical literature on estimation and inference, we
ind it to be unappealing for the problem that we investigate. An important part of our econometric ambition is to make inferences
bout the subjective beliefs of economic agents without imposing RE, and thus the potential misspecifications we explore are global
n nature.

Our approach is loosely related to the GEL literature on estimation and testing of moment restriction models in that both use
tatistical 𝜙-divergence measures. GEL estimates point-identified parameters and probabilities jointly in hopes of improving second-
rder statistical efficiency over GMM estimates for correctly specified moment restrictions. It presumes the expectation used in
epresenting the moment conditions coincides with DGP (i.e., imposing RE). See, for example, Qin and Lawless (1994), Imbens
1997), Kitamura and Stutzer (1997), Smith (1997), Imbens et al. (1998) and Newey and Smith (2004). As in the operations
esearch literature, the GEL literature also explores local sensitivity by assuming that the misspecification is within a root-𝑇 shrinking
eighborhood around the unique ‘‘true’’ parameter value that satisfies the unconditional moment conditions (under RE). See,
.g., Kitamura et al. (2013), Bonhomme and Weidner (2018), Armstrong and Kolesár (2018), and Andrews et al. (2020). The global
ature of our perspective differentiates our work from this approach since our analysis features subjective beliefs of economic agents
hat diverge from the DGP.

Many econometric contributions that entertain global misspecification assume that the pseudo true parameter vector is uniquely
etermined. For example, Luttmer et al. (1995), Almeida and Garcia (2012), Gagliardini and Ronchetti (2019) and Antoine et al.
2018) use meaningful bounds on pricing errors for asset pricing models to make inferences about their unique pseudo true parameter
ectors. This literature, however, does not target misspecification induced by belief distortions. See Hall and Inoue (2003), Ai and
hen (2007), Schennach (2007), Lee (2016), and Hansen and Lee (2021) for a more generic global approach to misspecification

n moment restrictions, again featuring uniquely identified pseudo true parameters. Minimizing specification errors measured with
tatistical divergence is a starting point for us; but we are interested in the implications of larger divergence bounds for both beliefs
nd parameters while imposing an economic structure to the misspecification. Our approach deliberately puts the notion of a pseudo
rue parameter vector to the wayside.

Our approach has several connections to work by James Heckman. Unlike many behavioral finance papers which pose specific
arametric models of investor beliefs, our approach is ‘‘nonparametric’’ in allowing for general subjective belief distributions. This
pproach is analogous to that taken by Heckman and Singer (1984) for avoiding misspecification coming from distributional
ssumptions in duration models. Moreover, while the type misspecification we consider is motivated by subjective beliefs of
conomic agents which differ from RE, a similar methodology could be applied to address misspecification coming from sample
election as considered by Heckman (1979).

.3. Organization

The rest of the paper is organized as follows. Section 2 presents our model framework. Section 3 bounds agents’ beliefs from
he RE using the Cressie and Read (1984) family of divergences. Within this family of 𝜙-divergences, we illustrate how divergences
onstructed from convex functions 𝜙 that are strictly decreasing are problematic for identifying misspecification in moment condition
odels. This implies that Hellinger and minus log-likelihood divergences are problematic, but relative entropy and quadratic
ivergences remain applicable for our analysis. In Section 4, using 𝜙-divergences, we propose a nonlinear expectation functional for
epresenting restrictions on the subjective expectations subject to model-implied moment conditions and a divergence constraint. We
ive dual representations that make the nonlinear expectation computationally tractable. As illustrated in Section 5.1, our approach
s not restricted to 𝜙-divergences and applies to any convex divergences including the Wasserstein distance between the probability
easure that underlies subjective beliefs and probabilities implied by the DGP. Specifically, we consider two econometric challenges
osed by our methods. Section 6 considers inference on minimal 𝜙-divergence measure over all probabilities that satisfy moment
onditions. This is important because smaller divergence bounds imply an empty constraint set. This section also proposes and
ustifies confidence sets for the parameter values that attain the minimal divergence. This set is a subset of the parameters of interest
onsistent with divergence bounds that exceed the minimal threshold. Section 7 studies estimation and inference on nonlinear
xpectation functionals associated with the family of probabilities satisfying unconditional moment restrictions and a 𝜙-divergence
onstraint. It proposes a flexible procedure to construct confidence sets both for the nonlinear expectations as well as bounds on
ndividual model parameters of interest. Section 8 briefly concludes.

2 While Shapiro (2017) and Duchi and Namkoong (2021) constructed confidence intervals assuming a unique ‘‘true’’ parameter value, Christensen and Connault
3

2019) construct bootstrapped confidence set allowing for partial-identification while imposing separable moment conditions.
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2. Model specification

In dynamic economic applications, moment conditions are often justified via an assumption of RE. This assumption equates
opulation expectations with those used by economic agents inside the model. These expectations are therefore presumed to be
evealed by the Law of Large Numbers implied by the DGP.

Let (𝛺,G, 𝑃 ) denote the underlying probability space and I ⊂ G represent information available to an economic agent. The
riginal moment equations under RE are of the form

E [𝑓 (𝑋, 𝜃) ∣ I] = 0 for some 𝜃 ∈ 𝛩.

here the vector-valued function 𝑓 captures the parameter dependence (𝜃) of either the payoff or the stochastic discount factor
long with variables (𝑋) observed by the econometrician and used to construct the payoffs, prices, and the stochastic discount
actor. By applying the Law of Iterated Expectations,

E [𝑓 (𝑋, 𝜃)] = 0 for some 𝜃 ∈ 𝛩. (1)

he vector-valued function 𝑓 may include scaling by I measurable random variables as a device to bring conditioning information
hrough the ‘‘back door’’.

In this paper we allow for agents’ beliefs that are revealed by the data to differ from the RE beliefs implied by (infinite) histories
f stationary ergodic data. We represent agents’ belief by a positive random variable 𝑀 with a unit conditional expectation. Thus,

we consider moment restrictions of the form: for any 𝜃 ∈ 𝛩,

E [𝑀𝑓 (𝑋, 𝜃)] = 0. (2)

The random variable 𝑀 provides a flexible change in the probability measure, and is sometimes referred to as a Radon–Nikodym
derivative or a likelihood ratio. The dependence of 𝑀 on random variables not in the information captured by I defines a relative
density that informs how RE are altered by agent beliefs. By changing 𝑀 , we allow for alternative densities. Notice that we are
restricting the implied probability measures to be absolutely continuous with respect to the original probability measure implied
by RE. That is, we restrict the agent beliefs so that any event that has probability measure zero under the DGP will continue to
have probability zero under this change in distribution. We will, however, allow for agents to assign probability zero to events that
actually have positive probability.

Next, we give examples of how to construct moment restriction of the form (2).

Example 2.1. Consider a modification of the standard consumption-based asset pricing model with constant relative risk aversion
(CRRA) utility considered in Hansen and Singleton (1982) where the investor is allowed to have subjective beliefs that differ from
RE. We can construct a moment condition as in Eq. (2) by letting

𝑓 (𝑋, 𝜃) = 𝛿𝐺−𝛾𝑅 − 𝟏𝑛

here 𝜃 = (𝛿, 𝛾) consists of the subjective discount factor 𝛿 and constant relative risk aversion 𝛾, and 𝑋′ = (𝐺,𝑅′) where 𝐺 represents
the consumption growth of the investor and 𝑅 is an n-dimensional vector of contemporaneous returns available to the investor and
𝟏𝑛 is an 𝑛-dimensional vector of ones.

Example 2.2. Consider the same consumption-based asset pricing model from Example 2.1. However, suppose that the
conometrician has access to a matrix of lagged conditioning variables, 𝑍, with 𝑛 rows of variables that are available to the investor

when deciding on a portfolio allocation. We construct a moment condition as in Eq. (2) using

𝑓 (𝑋, 𝜃) =
(

𝛿𝐺−𝛾𝑅 − 𝟏𝑛
)

𝑍. (3)

The vector 𝑋 now also includes the entries of 𝑍. This approach to conditioning information is analogous to that used in Hansen
nd Singleton (1982).

xample 2.3. Consider an investor with a unitary risk aversion but an inter-temporal elasticity of substitution parameter,
arameterized as 1

𝜌 , that is unknown to the econometrician. Preferences are formulated using recursive utility as in Kreps and

orteus (1978) and Epstein and Zin (1991). Suppose data is available on the implied return to the wealth portfolio, denoted 𝑅𝑤.
Again the investor has subjective beliefs. We now replace the 𝑓 in (3) with

𝑓1(𝑋) =
[

(

𝑅𝑤
)−1 𝑅 − 𝟏𝑛

]

𝑍,

as a first component of the function 𝑓 . There are no unknown parameters in this specification. In addition we use a so-called
consumption Euler equation to form the second component of the function 𝑓 :3

𝑓2(𝑋, 𝜃) =
[

log𝑅𝑤 + log 𝛿 + (𝜌 − 1) log𝐺
]

𝑍

3 This is a substantive change from the so-called IS equation typically used in new Keynesian models. Those models use the logarithm of the riskless return
𝑤

4

nstead of 𝑅 .
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where 𝑍 is a vector of variables available to the investors. The 𝑓2 component of 𝑓 depends on two unknown parameters: 𝜃 = (𝛿, 𝜌).
Thus

𝑓 (𝑋, 𝜃) =
[

𝑓1(𝑋)
𝑓2(𝑋, 𝜃)

]

where 𝑋 includes the entries 𝑅𝑤, 𝑅,𝑍 and 𝑍. There will typically be overlap in the conditioning variables used to construct 𝑍 and
̃.

xample 2.4. Suppose the econometrician observes survey forecasts 𝑌 of a variable of interest 𝑌 . Given a vector 𝑍 of conditioning
variables available at the time the forecast is made, one can construct a moment condition as in Eq. (2) using

𝑓 (𝑋, 𝜃) =
(

𝑌 − 𝑌
)

𝑍̃

here 𝑋′ = (𝑌 ,𝑍′) and no inclusion of parameters is necessary. This restriction corresponds to the survey forecasts being interpreted
as subjective beliefs of survey participants, which could distinct from the forecasts implied by the DGP.

Remark 2.5. The approaches described in the previous examples are not mutually exclusive. Rather, the econometrician can
combine survey evidence captured by Example 2.4 with moment restrictions given in Examples 2.2 and 2.3.

For any parameter vector 𝜃 in Eq. (2), there are typically many specifications of beliefs 𝑀 that will satisfy the model implied
moment conditions. Rather than imposing ad hoc assumptions to resolve this identification failure, we will characterize the
multiplicity by using bounds on statistical divergence. A statistical divergence quantifies how close two probability measures are. In
our analysis, one of these probability measures governs the data evolution while the other governs the investment decisions or the
equilibrium pricing relations. We define a range of allowable probability measures, and consider a family of divergences commonly
used in the statistics and machine learning literature.

3. Bounding beliefs with 𝝓-divergences

In this section we study a family of so-called 𝜙-divergences and explore within this family which divergences are most revealing
for assessing misspecification in dynamic economic models.4 For the moment, fix 𝜃 in Eq. (2) and write 𝑓 (𝑋, 𝜃) as 𝑓 (𝑋). Initially

e also abstract from the role of conditioning information, but the expectations can be interpreted as being conditioned on a sigma
lgebra I as in our earlier paper, Chen et al. (2021).

.1. Constructing 𝜙-divergences

Introduce a convex function 𝜙 defined on R+ for which 𝜙(1) = 0. As a scale normalization we will assume that 𝜙′′(1) = 1. The
orresponding divergence of a belief 𝑀 from the underlying data generation is defined by E[𝜙(𝑀)]. By Jensen’s inequality, we know
hat

E[𝜙(𝑀)] ⩾ 𝜙(1) = 0

ince E[𝑀] = 1. The divergences E[𝜙(⋅)] are known as 𝜙-divergences. Special cases include:

(i) 𝜙(𝑚) = − log𝑚 (negative log likelihood)
(ii) 𝜙(𝑚) = 4

(

1 −
√

𝑚
)

(Hellinger distance)

(iii) 𝜙(𝑚) = 𝑚 log𝑚 (relative entropy)
(iv) 𝜙(𝑚) = 1

2 (𝑚
2 − 𝑚) (Euclidean divergence).

These four cases are widely used and are nested in the family of 𝜙-divergences introduced by Cressie and Read (1984) defined
y

𝜙(𝑚) =

⎧

⎪

⎨

⎪

⎩

1
𝜂(1+𝜂)

[

(𝑚)1+𝜂 − 1
]

𝜂 < 0
1

𝜂(1+𝜂)

[

(𝑚)1+𝜂 − 𝑚
]

𝜂 ⩾ 0
(4)

For 𝜂 = −1 or 0, we can apply L’Hôpital’s rule to obtain cases (i) and (iii) respectively. The divergence corresponding to 𝜂 = − 1
2 is

equivalent to the Hellinger distance between probability densities. Empirical likelihood methods use the 𝜂 = −1 divergence.5 Two
ases of particular interest to us are 𝜂 = 0 and 𝜂 = 1. We refer to the divergence for 𝜂 = 0 as relative entropy. We refer to the 𝜂 = 1

case as a quadratic or Euclidean divergence.6

4 Proofs and supporting analyses for this section are given in Appendix A.
5 This same divergence is also featured in the analysis of Alvarez and Jermann (2005) in their characterization of the martingale component to stochastic

iscount factors.
6 Given our interest is in sets of belief distortions, our method is distinct from those designed for estimation under correct specification. In particular, our

otivation and assumptions differ substantially from the literature on GEL methods. The so-called pseudo-true parameter value that is often the centerpiece of
5

isspecification analysis in the econometrics literature plays a tangential role in our analysis as does point identification.
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3.2. Problematic divergences

For the purposes of misspecification analysis, we show that monotone decreasing divergence functions are problematic. For
nstance, the Cressie and Read divergences defined by (4) and used in the GEL literature are decreasing whenever 𝜂 < 0. Our
inding that the empirical likelihood (𝜂 = −1) and Hellinger (𝜂 = − 1

2 ) divergences are problematic under model misspecification
is noteworthy, as both have been widely used in statistics and econometrics. Our negative conclusion about monotone decreasing
divergences leads us to focus on divergences for which 𝜂 ⩾ 0 as robust measures of probability distortions.

To understand why monotone decreasing divergences are problematic, we study the corresponding population problem7:

Problem 3.1.

𝜅 ≝ inf
𝑀>0

E[𝜙(𝑀)]

subject to

E[𝑀] = 1

E[𝑀𝑓 (𝑋)] = 0.

When the constraint set is empty, we adopt the convention that the optimized objective is ∞. We call a model misspecified if

E [𝑓 (𝑋)] ≠ 0.

For a divergence to be of interest to us, the greatest lower bound on the objective should inform us as to how big of a statistical
iscrepancy is needed to satisfy Eq. (2). Therefore the infimum should be strictly positive whenever E[𝑓 (𝑋)] ≠ 0. Conversely, notice
hat under correct specification, E[𝑓 (𝑋)] = 0, and 𝑀 = 1 is in the constraint set of Problem 3.1. By the design of a divergence
easure, for 𝑀 = 1 the minimized objective for Problem 3.1 is zero.

heorem 3.2. Assume that 𝜙(𝑚) is decreasing in 𝑚, E[𝑓 (𝑋)] ≠ 0, 𝑓 (𝑋) is absolutely continuous w.r.t. the Lebesgue measure on R𝑑 , and
here exists a convex cone 𝐶 ⊂ R𝑑 such that 𝑓 (𝑋) has strictly positive density on 𝐶 and −E[𝑓 (𝑋)] ∈ int(𝐶). Then for any 𝜅 > 0 there exists
belief distortion 𝑀 such that (i) 𝑀 > 0 on supp[𝑓 (𝑋)]; (ii) E[𝑀] = 1; (iii) E[𝑀𝑓 (𝑋)] = 0; (iv) E[𝜙(𝑀)] < 𝜅.

Theorem 3.2 shows dramatically that when the vector 𝑓 (𝑋) has unbounded support, Problem 3.1 can become degenerate. The
nfimized divergence can be equal to zero even though E[𝑓 (𝑋)] ≠ 0 so the model is misspecified. In this case the infimum is not
ttained by any particular 𝑀 , but can be approximated by sequences that assign small probability to extreme realizations of 𝑓 (𝑋).8
e view the assumption of unbounded support as empirically relevant, since moment conditions coming from asset pricing typically

ave terms that are multiplicative in the returns. Note that gross returns have no a priori upper bound, and excess returns have no a
riori upper or lower bounds. The condition in Theorem 3.2 that 𝜙(𝑚) is decreasing in 𝑚 is crucial to the degeneracy. As we noted,
his condition is satisfied for the Cressie-Read family whenever 𝜂 < 0.

emark 3.3. Previously (Schennach, 2007) demonstrated problematic aspects of empirical likelihood estimators under misspecifica-
ion. She assumed the existence of a unique pseudo-true parameter value that is additionally consistently estimated by the empirical
ikelihood estimator computed using the dual problem, but pointed out that such an estimator may fail to be root-𝑇 consistent under
odel misspecification, where 𝑇 is the sample size for iid data. In relation to this, we showed that the primal problem may also fail

o detect misspecification for any monotone decreasing divergence. This includes the 𝜂 = −1 divergence used in empirical likelihood
ethods. As we emphasized previously, our paper is not concerned with the point identification of pseudo-true parameter values.

For future reference, consider the dual to Problem 3.1:

sup
𝜆,𝜈

inf
𝑀>0

E [𝜙(𝑀) +𝑀𝜆 ⋅ 𝑓 (𝑋) + 𝜈 (𝑀 − 1)] (5)

here 𝜆 and 𝜈 are Lagrange multipliers, and 𝜆 ⋅ 𝑓 (𝑋) denote the inner product between the vectors 𝜆 and 𝑓 (𝑋). This problem is
f interest because it is typically easier to solve than the primal problem, especially when the inner minimization over 𝑀 has a
uasi-analytical solution.

.3. Relative entropy divergence

This section considers the relative entropy divergence (i.e., 𝜙(𝑚) = 𝑚 log𝑚 or 𝜂 = 0). Among the class of 𝜙 divergences, relative
ntropy has same convenient mathematical properties and interpretations.

As known from a variety of sources and reproduced in the appendix, the dual to Problem 3.1 with relative entropy divergence
s:

7 In this paper we use ≝ as a definition.
8 An explicit construction of such sequences is given in Appendix A. Heuristically, we perturb the original distribution of 𝑓 (𝑋) by shifting a very small

amount of probability mass into an extreme tail so that the moment condition E[𝑀𝑓 (𝑋)] = 0 is satisfied. These perturbed distributions will converge weakly to
6

the original distribution, and the divergence will approach zero.
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Problem 3.4.

sup
𝜆

− logE
[

exp (−𝜆 ⋅ 𝑓 (𝑋))
]

.

In this problem we have already maximized over the scalar multiplier 𝜈. The first-order conditions for Problem 3.4 are
E[𝑀∗𝑓 (𝑋)] = 0 where 𝑀∗ is constructed using

𝑀∗ =
exp (−𝜆∗ ⋅ 𝑓 (𝑋))

E
[

exp (−𝜆∗ ⋅ 𝑓 (𝑋))
] (6)

where 𝜆∗ is the maximizing choice of 𝜆.
For this candidate 𝑀∗ to be a valid solution, we must restrict the probability distribution of 𝑓 (𝑋). Denote 𝜓(𝜆) ≝ E

[

exp (−𝜆⋅
𝑓 (𝑋))], when viewed as a function of −𝜆, is the multivariate moment-generating function for the random vector 𝑓 (𝑋). We include
∞ as a possible value of 𝜓 in order that it be well defined for all 𝜆. The negative of its logarithm is a concave function in 𝜆, which

s the objective for the optimization problem that interests us. A unique solution to the dual problem exists under the following
estrictions on this generating function.

estriction 3.5. The moment generating function 𝜓(⋅) satisfies:

(i) 𝜓(⋅) is continuous in 𝜆;
(ii) lim

|𝜆|→∞ 𝜓(𝜆) = +∞.9

A moment generating function is infinitely differentiable in neighborhoods in which it is finite. To satisfy condition (i) of
Restriction 3.5, we allow for 𝜓 to be infinite as long as it asymptotes to +∞ continuously on its domain. In particular, 𝜓 does
not have to be finite for all values of 𝜆. Condition (ii) requires that 𝜓 tends to infinity in all directions. Restriction 3.5 is satisfied

hen the support sets of the entries of 𝑓 (𝑋) are not subsets of either the positive real numbers or negative real numbers. Importantly
or us, Restriction 3.5 allows for 𝑓 (𝑋) to have unbounded support.

heorem 3.6. Suppose that Restriction 3.5 is satisfied. Then Problem 3.4 has a unique solution 𝜆∗. Using this 𝜆∗ to form 𝑀∗ in (6),
which satisfies the two constraints imposed in Problem 3.1. Thus the optimized objective for both problems (with relative entropy) is

𝜅 = − logE exp[−𝜆∗ ⋅ 𝑓 (𝑋)].

. Bounding expectations

Computing minimal divergences in Problem 3.1 is merely a starting point for our analysis. Our primary aim is to construct
isspecified sets of expectations, we use 𝜅 > 𝜅 to bound the divergence of belief misspecification. This structure will allow us to

explore belief distortions other than the one implied by minimal divergence. While we represent alternative probability distributions
with alternative specifications of the positive random variable 𝑀 with unit expectation, we find it most useful and revealing to depict
bounds on the resulting expectations. Larger values of 𝜅 will lead to bigger sets of potential expectations.

Given a measurable function 𝑔 of 𝑋, we consider the following problem:

Problem 4.1.

K(𝑔) ≝ min
𝑀⩾0

E [𝑀𝑔(𝑋)]

subject to the three constraints:

E [𝜙 (𝑀)] ⩽ 𝜅

E [𝑀𝑓 (𝑋)] = 0,

E [𝑀] = 1.

As before we can solve this problem using convex duality.10 The function 𝑔 could define a moment of an observed variable of
particular interest or it could be the product of the stochastic discount factor and an observed payoff to a particular security whose
price we seek to bound.

9 This condition rules out redundant moment conditions as well as choices of 𝑓 which only take on nonnegative or nonpositive values with probability one.
10 There is an extensive literature studying the mathematical structure of more general versions of this problem including more general specifications of
ntropy. Representatives of this literature include the insightful papers Csiszar and Matus (2012) and Csiszar and Breuer (2018). We find it pedagogically simpler
7

o study the dual problem directly and verify that the solution is constraint feasible rather than to verify regularity conditions in this literature.
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a

P

4.1. A nonlinear expectation operator

Formally, we represent the bounds on subjective expectations as a nonlinear expectation operator. While we are potentially
nterested in more general functions 𝑔, we initially focus on the set  of bounded Borel measurable functions 𝑔 to be evaluated
t alternative realizations of the random vector 𝑋. The mapping K from  to the real line can be thought of as a ‘‘nonlinear
xpectation’’, as formalized in the following proposition.

roposition 4.2. The mapping K ∶  → R has the following properties11:

(i) if 𝑔2 ⩾ 𝑔1, then K(𝑔2) ⩾ K(𝑔1).
(ii) if 𝑔 constant, then K(𝑔) = 𝑔.
(iii) K(𝗋𝑔) = 𝗋K(𝑔), for a scalar 𝗋 ⩾ 0
(iv) K(𝑔1) +K(𝑔2) ⩽ K(𝑔1 + 𝑔2)

All four properties follow from the definition of K. Property (iv) includes an inequality instead of an equality because we compute
K by solving a minimization problem, and the 𝑀 ’s that solve this problem can differ depending on 𝑔. This nonlinear expectation
operator can be extended to more general functions 𝑔 depending on the application.

Remark 4.3. While K(𝑔) gives a lower bound on the expectation of 𝑔(𝑋), by replacing 𝑔 with −𝑔, we construct an upper bound on
he expectation of 𝑔(𝑋). The upper bound will be given by −K(−𝑔). The interval

[K(𝑔),−K(−𝑔)]

aptures the set of possible values for the distorted expectation of 𝑔(𝑋) consistent with divergence less than or equal to 𝜅.12

There is a closely related problem that is often more convenient to work with. We revert back to a minimum discrepancy
ormulation and augment the constraint set to include expectations of 𝑔(𝑋) subject to alternative upper bounds. We then characterize
ow changing this upper bound alters the divergence objective. Stated formally,

roblem 4.4.

L(𝜗; 𝑔) ≝ inf
𝑀>0

E [𝜙 (𝑀)]

ubject to:

E [𝑀𝑓 (𝑋)] = 0,

E [𝑀𝑔(𝑋)] ⩽ 𝜗

E [𝑀] = 1.

otice that, as stated, L(𝜗; 𝑔) increases as we decrease 𝜗 because smaller values of 𝜗 make the constraint set more limiting. Thus
e may decrease 𝜗 till L(𝜗; 𝑔) attains a prespecified value 𝜅 used in constructing the nonlinear expectation K(𝑔) in Problem 4.1.
dditionally, it is straightforward to verify that L(𝜗; 𝑔) is convex in 𝜗.

We can slightly modify this approach to obtain the lower and upper bounds simultaneously. Impose the equality constraint

E [𝑀𝑔(𝑋)] = 𝜗

instead of the current inequality constraint in Problem 4.4. Let L̂(𝜗; 𝑔) denote the resulting objective function. The minimizer over 𝜗
ecovers the expectation of 𝑔 under the minimal divergence 𝑀 . For 𝜅 > 𝜅, two values of 𝜗 attain the relaxed divergence constraint.

These values of 𝜗 give us the lower and upper bounds on E [𝑀𝑔(𝑋)] of interest to us as described in Remark 4.3.

.2. Bounding conditional expectations

Consider an event 𝛬 with 𝖯(𝛬) = E[𝟏𝛬] > 0 where 𝟏𝛬 is the indicator function for the event 𝛬. Given a function 𝑔(𝑋) of the data
, we can extend our previous arguments to produce a bound on the conditional expectation. Instead of entering E [𝑀𝑔(𝑋)] ⩽ 𝜗 as

n additional moment condition in Problem 4.4, we include

E
[

𝑀𝟏𝛬 (𝑔(𝑋) − 𝜗)
]

⩽ 0

11 The first two of these properties are taken to be the definition of a nonlinear expectation by Peng (2004). Properties (𝑖𝑖𝑖) and (𝑖𝑣) are referred to as ‘‘positive
homogeneity’’ and ‘‘superadditivity’’.

12 All values in the interval [K(𝑔),−K(−𝑔)] are attained by some belief distortion 𝑀 consistent with divergence less than or equal to 𝜅. To see this note that
8

roblem 4.1 is always attained and that 𝜙-divergences are convex.
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in the constraint set and vary 𝜗 to attain a divergence target. This moment inequality is essentially equivalent to the conditional
moment bound:

E
[

𝑀𝟏𝛬 (𝑔(𝑋))
]

E
[

𝑀𝟏𝛬
] ⩽ 𝜗

rovided that the denominator is strictly positive. The left side is recognizable as the conditional expectation of 𝑔(𝑋) conditioned
on 𝛬.

4.3. Relative entropy reconsidered

Next we give a dual representation of K(𝑔) in Problem 4.1 for the special case of the relative entropy divergence:13

K(𝑔) = sup
𝜉>0

sup
𝜆

−𝜉 logE
[

exp
(

−1
𝜉
𝑔(𝑋) − 𝜆 ⋅ 𝑓 (𝑋)

)]

− 𝜉𝜅. (7)

Notice that conditioned on 𝜉, the maximization over 𝜆 does not depend on 𝜅 because −𝜉𝜅 is additively separable. This makes it
convenient to explore the supremum over 𝜆 for each 𝜉 > 0. Write:

K̂(𝜉; 𝑔) ≝ sup
𝜆

−𝜉 logE
[

exp
(

−1
𝜉
𝑔(𝑋) − 𝜆 ⋅ 𝑓 (𝑋)

)]

. (8)

We deduce 𝜉 and the resulting moment bound by solving:

K(𝑔) = sup
𝜉>0

[

K̂(𝜉; 𝑔) − 𝜉𝜅
]

. (9)

Remark 4.5. For sufficiently large values of 𝜅, it is possible the constraint on relative entropy actually does not bind. The additional
moment restrictions by themselves limit the family of probabilities, and might do so in ways that restrict the implied entropy of the
probabilities. Appendix A gives sufficient conditions under which the relative entropy constraint will bind, and provides examples
suggesting that the relative entropy constraint may bind in many cases of interest even for arbitrarily large choices of 𝜅.

By imitating our previous logic for the minimum divergence problem subject to moment conditions, the dual for Problem 4.4
with relative entropy divergence is:

Problem 4.6.

sup
𝜌⩾0,𝜆

− logE
[

exp (−𝜌𝑔(𝑋) − 𝜆 ⋅ 𝑓 (𝑋))
]

− 𝜗𝜌.

The variable 𝜌 is a Lagrange multiplier on the moment restriction involving 𝑔.
A natural starting point is to take the solution 𝑀∗ given in (6) from Problem 3.4 and compute

𝗎𝑔 = E
[

𝑀∗𝑔(𝑋)
]

.

By setting 𝜗 = 𝗎𝑔 , the solution to Problem 4.6 sets 𝜌 = 0 and 𝜆 = 𝜆∗. This choice satisfies the first-order conditions. Lowering 𝜗 will
imply a binding constraint:

E [𝑀𝑔(𝑋)] − 𝜗 = 0.

Given the binding constraint, we may view Problem 4.4 as an extended version of Problem 3.1 (for 𝜂 = 0) with an additional moment
restriction added. This leads to the following analog to Theorem 3.6.

Theorem 4.7. Suppose

(i) 𝜗 < 𝗎𝑔 ;
(ii) Restriction 3.5 is satisfied for the random vector:

[

𝑔(𝑋) 𝑓 (𝑋)′
]′ .

Then Problem 4.6 has a unique solution (𝜌∗, 𝜆∗) for which

𝑀∗ =
exp [−𝜌∗𝑔(𝑋) − 𝜆∗ ⋅ 𝑓 (𝑋)]

E
[

exp [−𝜌∗𝑔(𝑋) − 𝜆∗ ⋅ 𝑓 (𝑋)]
] .

This choice of 𝑀∗ satisfies E[𝑀∗] = 1, E[𝑀∗𝑓 (𝑋)] = 0, and E[𝑀∗𝑔(𝑋)] = 𝜗. Thus objectives for Problems 4.4 (with 𝜂 = 0) and 4.6
oincide, and the optimized objective is14

L(𝜗; 𝑔) = − logE
[

exp
(

−𝜌∗𝑔(𝑋) − 𝜆∗ ⋅ 𝑓 (𝑋)
)]

− 𝜗𝜌∗.

13 See Appendix A for a justification.
14 While 𝜌∗ , 𝜆∗ ,𝑀∗ depend on the choice of 𝜗, to simplify notation we leave this dependence implicit.
9



Journal of Econometrics 243 (2024) 105653X. Chen et al.

h
c
b

4

p

P

s

P

d
c

5

A
W
s

The relative entropy objective for Problem 4.4 increases as we decrease 𝜗. For instance, by decreasing 𝜗 in this way we could
it the relative entropy threshold 𝜅 of Problem 4.1. Both approaches feature the same intermediate problem in which we initially
ondition on 𝜉 or 𝜌 and optimize over 𝜆. For computational purposes we deduce the implied expectation of 𝑔(𝑋) and relative entropy
y tracing out both as functions of the scalars 𝜉 or 𝜌.

.4. Quadratic divergence

While the relative entropy (𝜂 = 0) divergence has many nice properties, it imposes restrictions on thinness of tails of the
robability distribution of 𝑓 (𝑋) that may be too severe for some applications.15 As an alternative, we now consider the quadratic

or Euclidean divergence obtained when we set 𝜂 = 1. We will not repeat the analysis of alternative bounds. Since a key input is
the dual to a divergence bound problem, we will characterize the resulting solution for bounds and leave the extensions to the
Appendix. We study the counterpart to Problem 4.1.

We impose two assumptions to ensure non-degenerate bounds.

Restriction 4.8.

(i) 𝑓 (𝑋) and 𝑔(𝑋) have finite second moments.
(ii) There exists an 𝑀 > 0 such that E[𝑀] = 1, E [𝑀𝑓 (𝑋)] = 0 and 1

2E[𝑀
2 −𝑀] ⩽ 𝜅.

The problem of interest is:

roblem 4.9.

Q(𝑔) ≝ inf
𝑀⩾0

E[𝑀𝑔(𝑋)]

ubject to:
1
2
E
[

𝑀2 −𝑀
]

⩽ 𝜅

E[𝑀𝑓 (𝑋)] = 0

E[𝑀] = 1.

We allow 𝑀 to be zero with positive probability for mathematical convenience. Since there exists an 𝑀 > 0 for which
E [𝑀𝑓 (𝑋)] = 0, we can form a sequence of strictly positive𝑀 ’s with divergences that are arbitrarily close to bound we derive. Solving
this problem for alternative bounded 𝑔’s gives us a nonlinear expectation function Q satisfying the properties in Proposition 4.2.

As before, we give a dual characterization of the nonlinear expectation operator. In the following [𝑎]+ = max{𝑎, 0}.

roblem 4.10.

Q̂(𝑔) ≝ sup
𝜉>0,𝜈,𝜆

−
𝜉
2
E

[

([

1
2
− 1
𝜉
[𝑔(𝑋) + 𝜆 ⋅ 𝑓 (𝑋) + 𝜈]

]+)2]

− 𝜉𝜅 − 𝜈.

Proposition 4.11. Assume that Restriction 4.8 holds and that the supremum in Problem 4.9 is attained with 𝜉∗ > 0. Then Q(𝑔) = Q̂(𝑔).
Furthermore, the solution (𝜉∗, 𝜈∗, 𝜆∗) to Problem 4.10, corresponds to the belief distortion

𝑀∗ =
[

1
2
− 1
𝜉∗

[

𝑔(𝑋) + 𝜆∗ ⋅ 𝑓 (𝑋) + 𝜈∗
]

]+

which satisfies the constraints of Problem 4.9 with equality, and attains the infimum, i.e. E[𝑀∗𝑔(𝑋)] = Q(𝑔).

Proposition 4.11 follows from theorem 6.7 of Borwein and Lewis (1992). It characterizes the solution to Problem 4.9 when the
ivergence constraint binds. Otherwise, we can obtain the expectation bound by solving Problem 4.10 for a fixed sequence of 𝜉’s
onverging to zero where we maximize with respect to 𝜆 and 𝜈 given any 𝜉 in this sequence.

. Other divergences

Our analysis thus far used 𝜙-divergences as the relevant notion of statistical discrepancy between probability measures.
lternative measures, which have gained some recent interest in the operations research and machine learning literature, are the
asserstein distance and the maximum mean discrepancy.16 Here we briefly discuss how to extend our analysis to accommodate

tatistical neighborhoods constructed using these alternative measures.

15 For instance, Restriction 3.5 may be violated for some exponentially affine models of stochastic discount factors with normally distributed shocks.
16 See for instance Arjovsky et al. (2017).
10
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5.1. Wasserstein distance and regularization

Consider a joint distribution between two random vectors 𝑋 and 𝑍. Now fix the marginal distributions while searching over
alternative joint distribution to minimize the expectation of |𝑋 −𝑍|

𝑝 for an integer 𝑝 ⩾ 1. The 𝑝th root of the objective gives a
Wasserstein distance between the pre-specified marginal distributions. The resulting optimization problem is recognizable as an
optimal transport problem.

For our analysis we combine minimization required for computing the Wasserstein distance with the minimization problems that
interest us when deducing the moment bounds. To accomplish this, let 𝑍 be statistically independent of 𝑋 in accordance with the
E expectation. In addition, let 𝑀 denote a positive random variable used to change the distribution of 𝑋 conditioned on 𝑍 while
leaving the distribution for 𝑍 intact. This is enforced by restricting E [𝑀 ∣ 𝑍] = 1.17 We then solve:

inf
𝑀⩾0

E
[

𝑀 |𝑋 −𝑍|

𝑝]

where

E [𝑀𝑓 (𝑋)] = 0

E [𝑀𝑔(𝑋)] ⩽ 𝜗

E [𝑀 ∣ 𝑍] = 1

When 𝑋 is a continuous random vector the above problem is difficult to solve. We can follow Cuturi (2013) to add a small relative
entropy penalty to the objective function:

E
[

𝑀 |𝑋 −𝑍|

𝑝] + 𝜖E
[

𝑀 log𝑀
]

To characterize the solution to the penalized problem, we form the Lagrangian:

max
𝜆,𝜌⩾0

max
𝜈

min
𝑀⩾0

E
[

𝑀
(

|𝑋 −𝑍|

𝑝 + 𝜖 log𝑀 + 𝜆 ⋅ 𝑓 (𝑋) + 𝜌𝑔(𝑋) + 𝜈
)]

− E𝜈 − 𝜌𝜗

where 𝜌 is a nonnegative scalar, 𝜆 is a vector of real numbers and 𝜈 can depend on 𝑍. We may solve the ‘‘inner problem’’ by first
conditioning on 𝑍:

max
𝜈

min
𝑀⩾0

E
[

𝑀
(

|𝑋 −𝑍|

𝑝 + 𝜖 log𝑀 + 𝜆 ⋅ 𝑓 (𝑋) + 𝜌𝑔(𝑋) + 𝜈
)

∣ 𝑍
]

− 𝜈

= −𝜖 logE
[

exp
(

−1
𝜖
[

|𝑋 −𝑍|

𝑝 + 𝜆 ⋅ 𝑓 (𝑋) + 𝜌𝑔(𝑋)
]

)

|

|

|

|

𝑍
]

where we use an argument that is entirely similar to an earlier derivation for the relative entropy discrepancy. This leads to solve
an outer optimization problem:

max
𝜆,𝜌⩾0

−𝜖E
[

logE
[

exp
(

−1
𝜖
[

|𝑋 −𝑍|

𝑝 + 𝜆 ⋅ 𝑓 (𝑋) + 𝜌𝑔(𝑋)
]

)

|

|

|

|

𝑍
]]

− 𝜌𝜗.

sing this approach, we may approximate the solution to the original Wasserstein distance problem by setting 𝜖 to be sufficiently
small.

Remark 5.1. Regularized Wasserman distances for a given 𝜖 may be computed efficiently using ‘‘Sinkhorn Iterations’’. See Léger
(2020) for a recent formal justification for the convergence of these iterations for the case in which 𝑝 = 2. Notice the relative entropy
enalization in our formulation has 𝑋 and 𝑍 independent while the term E |𝑋 −𝑍|

𝑝 will be zero only when 𝑍 = 𝑋. Thus even
nder correct specification, penalized discrepancy will not be zero. This tension gets reduced as we make 𝜖 arbitrarily small.

emark 5.2. Xie et al. (2019) note some difficulties in implementing the relative entropy regularization for small values of 𝜖.
hey propose an alternative approach whereby the approximation to the minimizing 𝑀 is obtained through an iterative scheme
ithin which 𝜖 tends to zero. Moreover, they propose replacing the baseline probability used to measure relative entropy by the
ne computed in a previous iteration. We cannot directly implement their approach since our optimization problem differs for the
easons that we explained. Nevertheless, their strategy for reducing 𝜖 as part of the iterations and changing the baseline probability
sed in the relative entropy penalty may have a tractable counterpart for our problem.

emark 5.3. Moment conditions of the type (2) can be defined in terms of 𝑋, or they could be reconstructed in terms of a
onsingular transformation of 𝑋. One potentially nice property of a 𝜙-divergence, in contrast to Wasserstein distance is that the
ivergence remains the same when applied to the probability distributions induced by the change-of-variables. Thus 𝜙-divergences
ay be more easily interpretable in certain applications.

17 To see that this preserves the marginal distribution over 𝑍, note that by the law of iterated expectations, for any Borel-measurable function 𝜑 of 𝑍 we
have that

E[𝑀𝜑(𝑍)] = E[E[𝑀𝜑(𝑍)|𝑍]] = E[𝜑(𝑍)E[𝑀|𝑍]] = E[𝜑(𝑍)]..
11
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5.2. Maximum mean discrepancy

Let  be the set of all probabilities over a space  of potential realizations of 𝑋. Let 𝑃 denote the probability implied by the
DGP, which is an element of . We now consider a divergence measure over probabilities without reference to absolute continuity.

e solve

inf
𝑄∈

sup
ℎ∈ ∫ ℎ(𝑥)𝑑𝑄(𝑥) − ∫ ℎ(𝑥)𝑑𝑃 (𝑥)

subject to:

∫ 𝑓 (𝑥)𝑑𝑄(𝑥) = 0

∫ 𝑔(𝑥)𝑑𝑄(𝑥) ⩽ 𝜗

and  is a conveniently chosen collection of test functions that is rich enough so that expectations reveal probabilities.
This problem is most tractable to implement when  is the unit ball of a reproducing kernel Hilbert space (RKHS). Such a space

is most conveniently constructed using a kernel 𝑘(𝑥, 𝑦), that is symmetric, 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥), positive definite, 𝑘(𝑥, 𝑦) > 0, and bounded.
For instance, 𝑘 could be the Gaussian radial kernel:

𝑘(𝑥, 𝑦) = exp
(

−𝜖|𝑦 − 𝑥|2
)

By design, the implied inner product, ⟨⋅, ⋅⟩ for the RKHS satisfies:

⟨𝑘(⋅, 𝑥), ℎ(⋅)⟩ = ℎ(𝑥).

The Moore–Aronszajn Theorem informs us that such a Hilbert space can be constructed given the kernel 𝑘. Thus for any 𝑄 ∈ ,

∫ ℎ(𝑥)𝑑𝑄(𝑥) = ∫ ⟨𝑘(⋅, 𝑥), ℎ(⋅)⟩𝑑𝑄(𝑥) = ⟨𝜇𝑄, ℎ⟩

where

𝜇𝑄(𝑦) = ∫ 𝑘(𝑦, 𝑥)𝑑𝑄(𝑥).

It then follows immediately from a standard Hilbert space argument that

sup
ℎ∈ ∫ ℎ(𝑥)𝑑𝑄(𝑥) − ∫ ℎ(𝑥)𝑑𝑃 (𝑥) =

√

⟨𝜇𝑄 − 𝜇𝑃 , 𝜇𝑄 − 𝜇𝑃 ⟩.

Since the kernel, 𝑘, is symmetric, we have ∫ 𝜇𝑄(𝑥)𝑑𝑃 (𝑥) = ∫ 𝜇𝑃 (𝑥)𝑑𝑄(𝑥), and

⟨𝜇𝑄 − 𝜇𝑃 , 𝜇𝑄 − 𝜇𝑃 ⟩ = ⟨𝜇𝑄, 𝜇𝑄⟩ − 2⟨𝜇𝑄, 𝜇𝑃 ⟩ + ⟨𝜇𝑃 , 𝜇𝑃 ⟩

= ∫ 𝜇𝑄(𝑥)𝑑𝑄(𝑥) − 2∫ 𝜇𝑄(𝑥)𝑑𝑃 (𝑥) + ∫ 𝜇𝑃 (𝑥)𝑑𝑃 (𝑥).

n conclusion,

sup
ℎ∈ ∫ ℎ(𝑥)𝑑𝑄(𝑥) − ∫ ℎ(𝑥)𝑑𝑃 (𝑥) =

√

∫ 𝜇𝑄(𝑥)𝑑𝑄(𝑥) − 2∫ 𝜇𝑄(𝑥)𝑑𝑃 (𝑥) + ∫ 𝜇𝑃 (𝑥)𝑑𝑃 (𝑥)

where 𝑘 is associated with a RKHS. Thus we can leave the Hilbert space implicit and work directly with the kernel.

Remark 5.4. To obtain a non-degenerate divergence measure, we want the RKHS to be sufficiently rich so that the family of
expectations of the functions in this space determine a unique probability. For this reason, the kernels of interest are typically
ones that are ‘‘universal’’. For such kernels, functions in the Hilbert space can approximate a continuous function on a compact set
uniformly arbitrarily well. It is common to use radial kernels, which are represented as:

𝑘(𝑥, 𝑦) = 𝑘̄
(

|𝑥 − 𝑦|2
)

.

Provided that 𝑘̄ is the Laplace transform of a Borel measure on the positive real numbers that is not concentrated at zero, the radial
kernel is universal.18

Remark 5.5. While the coordinates of 𝑓 may not be in a RKHS, when the kernel is universal, we may be able to approximate 𝑓
with elements in the RKHS so that the optimization problem within the RKHS could be solved by standard methods.

18 See Theorem 17 of Micchelli et al. (2006). Simon-Gabriel and Schölkopf (2018) and Simon-Gabriel et al. (2023) provide some refinements and corrections.
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Remark 5.6. The direct interpretation of the divergence measure in terms of unit ball  of a RKHS could be of particular interest
when the 𝑔 functions of interest are known to reside in this ball, perhaps achieved by a suitable scaling. Alternatively, an applied
researcher could provide a thoughtful defense of the particular kernel that is chosen, while sidestepping the characterization of the
RKHS.

Remark 5.7. Similar to the Wasserstein distance, the maximum mean discrepancies depend on the particular construction of 𝑋,
and are sensitive to non-singular transformations of the underlying data.

6. Minimum divergence estimation and inference with unknown parameters

So far, we have suppressed the parameter dependence and focused solely on characterizing probability measures that are
consistent with moment conditions. We now include an unknown parameter vector 𝜃, residing in a parameter space, in the
specification of the moment conditions and suggest some large sample approximations to inference. As before, we use a divergence
measured relative to the probability implied by the DGP to identify extremal probabilities of interest. As a preliminary step towards
a more complete analysis of the problem of interest, we explore inference for the following nested procedure. As an inner problem,
for each given parameter value 𝜃, we find the probability that minimizes the divergence among those probability measures that
atisfy the moment conditions (2). As an outer problem, we then minimize this parameter-dependent divergence bound over the
arameter space.

We could view the outcome of this analysis as a way to identify what in the misspecification literature is called a ‘‘pseudo
rue’’ parameter vector. Our aim is different, however. We use this analysis as input into our characterization of probabilities that
atisfy the moment conditions of interest. The fact that 𝜃 is unknown increases the family of probability of interest as the moment

restrictions only need to be satisfied for one value of the 𝜃 in the parameter space. Our model is only ‘‘misspecified’’ under the
probability implied by the DGP, and point identification of a ‘‘pseudo true’’ parameter vector is of no particular interest.

We focus our discussion on the use of 𝜙-divergences in this and the next sections, although some of our results have clear
extensions to other divergence measures. In view of the arguments made in the previous sections, we focus only on the 𝜙-divergences
that are not strictly decreasing. For convenience, we use the divergence in the family given by (4) for 𝜂 ⩾ 0. With this family, we lever
the well known Legendre transforms of these convex functions in formulated tractable dual problems. In addition to the unknown
parameters, the Lagrange multipliers are of interest for our analysis because they identify an extremal distribution, which provides
guidance on how one might reshape the distributions to satisfy the moment conditions.19 While the econometric objective posed
sing duality is concave in the multipliers for each 𝜃, this property only holds conditionally (on 𝜃). We do restrict the multipliers
e unique for each 𝜃 in the parameter space. Recall that Theorem 3.6 gives sufficient conditions for this uniqueness for the relative
ntropy divergence (i.e., 𝜂 = 0).

.1. Extended dual problem

In this section we show how to extend our previous analysis to include parameter uncertainty. We impose the following
estrictions on the parameter space and moment conditions.

ssumption 6.1. (i) 𝛩 is compact with non-empty interior 𝛩𝑜; (ii) For each 𝜃 ∈ 𝛩, there is no nondegenerate linear combination
f the 𝑓 (𝜃, 𝑥) that is independent of 𝑥 for all potential realizations 𝑥 of 𝑋; and (iii) for each 𝜃 ∈ 𝛩𝑜 and each 𝑥 ∈ 𝑠𝑢𝑝𝑝(𝑋), 𝑓 (𝑥, 𝜃) is
ontinuously differentiable in 𝜃.

The problem of interest inclusive of the unknown parameter 𝜃 is:

roblem 6.2.

𝜅 ≝ min
𝜃∈𝛩

(𝜃)

where for any fixed 𝜃 ∈ 𝛩,

(𝜃) ≝ inf
𝑀⩾0

E [𝜙(𝑀)]

subject to:

E [𝑀𝑓 (𝑋, 𝜃)] = 0,

E [𝑀] = 1.

19 This is a substantial extension of an original idea suggested by Back and Brown (1993).
13
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Problem 6.2 differs from Problem 3.1 in that it minimizes over the set of model parameters. In particular, it gives the minimum
alue of the divergence 𝜅 such that there exists a model parameter 𝜃 and belief distortion 𝑀∗(𝜃) with divergence 𝜅 which satisfy

the given moment conditions. Estimation of 𝜅 is important because it gives guidance to the econometrician about the minimum
divergence from rational expectations they must allow to obtain non-degenerate results.

Next we consider the dual formulation of Problem 6.2. Let 𝜇 ≝ (𝜆′, 𝜈)′ denote the composite multipliers for the two sets of
equality constraints. The minimized divergence for a given 𝜃 solves the dual problem

(𝜃) = max
𝜇

inf
𝑀⩾0

E [𝜙(𝑀) − 𝜆 ⋅ 𝑓 (𝑋, 𝜃)𝑀 − 𝜈(𝑀 − 1)] . (10)

We further simplify this problem by bringing the minimization with respect to 𝑀 inside the expectation. Let 𝑀(𝑥, 𝜇, 𝜃) denote the
resulting solution, which is given by

𝑀(𝑥, 𝜇, 𝜃) =

⎧

⎪

⎨

⎪

⎩

(

[

𝜂[𝜆 ⋅ 𝑓 (𝑥, 𝜃) + 𝜈] + 1
1+𝜂

]+
)

1
𝜂
, 𝜂 > 0

exp [𝜆 ⋅ 𝑓 (𝑥, 𝜃) + 𝜈 − 1] , 𝜂 = 0

(11)

for almost all 𝑥. Substituting this solution back in to the objective (10) gives the following dual alternative to Problem 6.2:

Problem 6.3.

𝜅 ≝ min
𝜃∈𝛩

(𝜃)

where for any fixed 𝜃 ∈ 𝛩,

(𝜃) = max
𝜇

E [𝐹 (𝑋, 𝜇, 𝜃)] (12)

where

𝐹 (𝑥, 𝜇, 𝜃) ≝
⎧

⎪

⎨

⎪

⎩

− 1
1+𝜂

(

[

𝜂[𝜆 ⋅ 𝑓 (𝑥, 𝜃) + 𝜈] + 1
1+𝜂

]+
)

1+𝜂
𝜂

+ 𝜈 , 𝜂 > 0

− exp [𝜆 ⋅ 𝑓 (𝑥, 𝜃) + 𝜈 − 1] + 𝜈 , 𝜂 = 0

(13)

We note that

𝐹 (𝑥, 𝜇, 𝜃) =

{

− 1
1+𝜂 [𝑀(𝑥, 𝜇, 𝜃)]1+𝜂 + 𝜈 , 𝜂 > 0

−𝑀(𝑥, 𝜇, 𝜃) + 𝜈 , 𝜂 = 0

For each 𝜃, the solution 𝜇∗(𝜃) to (12) of Problem 6.3 is given by the first-order conditions wrt 𝜇:

E
[

𝜕𝐹
𝜕𝜇

(𝑋, 𝜇, 𝜃)
]

= E
[

−𝑓 (𝑋, 𝜃)𝑀(𝑋, 𝜇, 𝜃)
1 −𝑀(𝑋, 𝜇, 𝜃)

]

= 0. (14)

Since the moment constraints must be satisfied, these first-order conditions imply a function 𝜇∗ of 𝜃 so that

E
[

𝜕𝐹
𝜕𝜇

(𝑋, 𝜇∗(𝜃), 𝜃)
]

= 0 for all 𝜃 ∈ 𝛩𝑜. (15)

The corresponding optimized probability distortion as a function of 𝜃 using formula (11) is given by

𝑀∗(𝜃) ≝𝑀(𝑋, 𝜇∗(𝜃), 𝜃) , (16)

and the optimized dual objective function is

(𝜃) = E
[

𝐹 (𝑋, 𝜇∗(𝜃), 𝜃)
]

= E
[

𝜙(𝑀∗(𝜃))
]

.

Consider the set of model parameter values

𝛩∗ ≝ argmin
𝜃∈𝛩

(𝜃) = {𝜃 ∈ 𝛩 ∶ E
[

𝐹 (𝑋, 𝜇∗(𝜃), 𝜃)
]

= 𝜅}

which is the set of minimal 𝜙-divergence implied parameter values. Under correct specification, 𝜅 = 0, and 𝑀∗(𝜃) = 1 for 𝜃 ∈ 𝛩∗.
Our interest is when 𝜅 > 0. While 𝛩∗ is assumed to be a singleton in many investigations of misspecification, we deliberately avoid
mposing this restriction.

ssumption 6.4. 𝛩∗ ⊂ 𝛩𝑜.

By an application of the envelope theorem, we have
𝜕(𝜃)
𝜕𝜃

= E
[ 𝜕𝐹
𝜕𝜃

(𝑋, 𝜇∗(𝜃), 𝜃)
]

for all 𝜃 ∈ 𝛩𝑜. (17)

Let

𝛩 ≝
{

𝜃 ∈ 𝛩𝑜 ∶ E
[ 𝜕𝐹 (𝑋, 𝜇∗(𝜃), 𝜃)

]

= 0
}

(18)
14

𝜕𝜃
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denote the set of 𝜃 solutions to the first-order conditions. Under Assumption 6.4 we have:

𝛩∗ =
{

𝜃 ∈ 𝛩 ∶ E
[

𝐹 (𝑋, 𝜇∗(𝜃), 𝜃)
]

= 𝜅
}

⊆ 𝛩 . (19)

To provide additional formulas of interest in our supporting analysis, we assume:

Assumption 6.5. For each 𝜃 in 𝛩, (i) the matrix

𝐇(𝜇, 𝜃) ≝ E
[

𝜕2𝐹
𝜕𝜇𝜕𝜇′

(𝑋, 𝜇, 𝜃)
]

is continuous in a neighborhood of 𝜇∗(𝜃).

(ii) the matrix 𝐇∗(𝜃) ≝ 𝐇(𝜇∗(𝜃), 𝜃) is negative definite.

Remark 6.6. The formula for 𝐇 in Assumption 6.5 is directly applicable for 0 ⩽ 𝜂 < 1. As we discussed previously, we are also
interested in the case in which 𝜂 = 1. In this case the 𝐹 may fail to be twice continuously differentiable for some realizations 𝑥 of
𝑋. We may include this more general case provided that the expectation smooths out the kink points in the first derivative of 𝐹 .

By the implicit function theorem, we have that 𝜇∗(𝜃) is continuously differentiable in 𝜃 ∈ 𝛩𝑜:

𝜕𝜇∗(𝜃)
𝜕𝜃

= −
[

𝐇∗(𝜃)
]−1 E

(

𝜕2𝐹
𝜕𝜇𝜕𝜃′

(

𝑋, 𝜇∗(𝜃), 𝜃
)

)

.

Remark 6.7. For the relative entropy (𝜂 = 0) case, we have
𝜕𝐹 (𝑥, 𝜇, 𝜃)

𝜕𝜃
= −

𝜕𝑀(𝑥, 𝜇, 𝜃)
𝜕𝜃

= −𝑀(𝑥, 𝜇, 𝜃)𝜆 ⋅ 𝑓 (𝑥, 𝜃).

Further, the 𝜈∗(𝜃) can be solved explicitly as a function of 𝜆∗(𝜃), and the implied minimal divergence probability is

𝑀∗(𝜃) =
exp [𝜆∗(𝜃) ⋅ 𝑓 (𝑋, 𝜃)]

E (exp [𝜆∗(𝜃) ⋅ 𝑓 (𝑋, 𝜃)])
.

Finally,

(𝜃) = E
[

𝜙(𝑀∗(𝜃))
]

= − logE
(

exp
[

𝜆∗(𝜃) ⋅ 𝑓 (𝑋, 𝜃)
])

, and

𝜕𝜆∗(𝜃)
𝜕𝜃

= −
(

E[𝑀∗(𝜃)𝑓 (𝑋, 𝜃)𝑓 (𝑋, 𝜃)′]
)−1 E

[

𝑀∗(𝜃)(1 + 𝜆∗(𝜃) ⋅ 𝑓 (𝑋, 𝜃))
𝜕𝑓 (𝑋, 𝜃)
𝜕𝜃

]

.

6.2. Estimation

We first study the estimation of the Lagrange multipliers conditioned on the parameter 𝜃, and then we explore the estimation
f the lower bound on the divergence.

.2.1. Estimation of the Lagrange multipliers
By conditioning on the parameters, the minimum divergence problem has a nice mathematical structure because the dual

bjective function is concave in the Lagrange multipliers.
We restrict the DGP as follows.

ssumption 6.8. The process {𝑋𝑡 ∶ 𝑡 ⩾ 0} is strictly stationary and 𝛽-mixing.

In what follows the notation 𝑋 refers to a random vector distributed according to the stationary distribution of the process {𝑋𝑡}.
The estimation of 𝜇∗(𝜃) for each 𝜃 is a special case of an 𝑀-estimation problem with a concave objective function where the

ample counterpart to (12) of Problem 6.3 is as follows:

roblem 6.9.

𝑇 (𝜃) = max
𝜇

1
𝑇

𝑇
∑

𝑡=1
𝐹 (𝑋𝑡, 𝜇, 𝜃) =

1
𝑇

𝑇
∑

𝑡=1
𝐹 (𝑋𝑡, 𝜇𝑇 (𝜃), 𝜃)

where 𝜇𝑇 (𝜃) is the corresponding estimate for 𝜇∗(𝜃) defined in (15).

This problem fits within the framework analyzed by Haberman (1989), and Hjort and Pollard (1993) among others. Since our
data is assumed to be 𝛽 − 𝑚𝑖𝑥𝑖𝑛𝑔, we apply Chen and Shen (1998) for results on time series 𝑀-estimation.

We proceed by obtaining a functional central limit approximation for:

√

𝑇
[

𝑇 (𝜃) − (𝜃)
]

= 1
√

𝑇
∑

[

𝐹 (𝑋𝑡, 𝜇𝑇 (𝜃), 𝜃) − 𝐹 (𝑋𝑡, 𝜇
∗(𝜃), 𝜃)

]

+ 𝐹 ∗
𝑇 (𝜃) (20)
15

𝑇 𝑡=1
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R

√

where

𝐹 ∗
𝑇 (𝜃) ≝

1
√

𝑇

𝑇
∑

𝑡=1

[

𝐹 (𝑋𝑡, 𝜇
∗(𝜃), 𝜃) − E𝐹 (𝑋𝑡, 𝜇

∗(𝜃), 𝜃)
]

. (21)

Only the term 𝐹 ∗
𝑇 (𝜃) contributes to the asymptotic approximation. To see why, note that since 𝐹 is concave in 𝜇 for each 𝜃, a gradient

inequality for such functions implies that

0 ⩽ 1
√

𝑇

𝑇
∑

𝑡=1

[

𝐹 (𝑋𝑡, 𝜇𝑇 (𝜃), 𝜃) − 𝐹 (𝑋𝑡, 𝜇
∗(𝜃), 𝜃)

]

⩽ [𝜇𝑇 (𝜃) − 𝜇∗(𝜃)] ⋅ ℎ∗𝑇 (𝜃),

where

ℎ∗𝑇 (𝜃) ≝
1

√

𝑇

𝑇
∑

𝑡=1

𝜕𝐹
𝜕𝜇

(𝑋𝑡, 𝜇
∗(𝜃), 𝜃).

This leads us to focus on a joint functional central limit approximation for 𝐹 ∗
𝑇 (𝜃) and ℎ∗𝑇 for making approximate inferences using

𝑇 (𝜃).

ssumption 6.10.

(i) {𝐹 ∗
𝑇 (𝜃) ∶ 𝜃 ∈ 𝛩} is Donsker, converges weakly to a tight Gaussian process {(𝜃) ∶ 𝜃 ∈ 𝛩} with zero mean and covariance

function

𝐶∗(𝜃1, 𝜃2) ≝ lim
𝑇→∞

𝐶𝑜𝑣
[

𝐹 ∗
𝑇 (𝜃1), 𝐹

∗
𝑇 (𝜃2)

]

=
∞
∑

𝑗=−∞
𝐶𝑜𝑣

[

𝐹 (𝑋1, 𝜇
∗(𝜃1), 𝜃1), 𝐹 (𝑋1+𝑗 , 𝜇

∗(𝜃2), 𝜃2)
]

(ii) The process {ℎ∗𝑇 (𝜃) ∶ 𝜃 ∈ 𝛩} is Donsker, converges weakly to a tight Gaussian process {ℎ∗ (𝜃) ∶ 𝜃 ∈ 𝛩} with zero mean and
covariance function

𝐕∗(𝜃1, 𝜃2) ≝ lim
𝑇→∞

𝐶𝑜𝑣
[

ℎ∗𝑇 (𝜃1), ℎ
∗
𝑇 (𝜃2)

]

=
∞
∑

𝑗=−∞
𝐶𝑜𝑣

[

𝜕𝐹
𝜕𝜇

(𝑋1, 𝜇
∗(𝜃1), 𝜃1),

𝜕𝐹
𝜕𝜇

(𝑋1+𝑗 , 𝜇
∗(𝜃2), 𝜃2)

]

Sufficient conditions for the central limit approximations entail verifying weak convergence for any finite collections of 𝜃’s in
onjunction a tightness restriction implied by some form of stochastic equicontinuity. Such an approximation may be obtained from
ore primitive assumptions on the 𝛽-mixing coefficients of data-generating process {𝑋𝑡 ∶ 𝑡 ⩾ 0} and restrictions on the functions of
𝑡 and 𝜃. See Doukhan et al. (1995), and Dedecker and Louhichi (2002).

Applying theorem 2 of Kato (2009) we obtain the following result part 2, together with (20) implies result part 1.

esult 6.11. Under Assumptions 6.1, 6.5 and 6.10, we obtain:

1. The estimated minimal divergence 𝑇 (𝜃) has the asymptotic representation
√

𝑇
[

𝑇 (𝜃) − (𝜃)
]

= 𝐹 ∗
𝑇 (𝜃) + 𝑜𝑝(1) uniformly in 𝛩,

and converges weakly to a tight Gaussian process {(𝜃) ∶ 𝜃 ∈ 𝛩} uniformly over 𝛩.
2. The estimated family of Lagrange multipliers 𝜇𝑇 (𝜃) has the asymptotic representation

√

𝑇
[

𝜇𝑇 (𝜃) − 𝜇∗(𝜃)
]

= −
[

𝐇∗(𝜃)
]−1 ℎ∗𝑇 (𝜃) + 𝑜𝑝(1) uniformly in 𝛩,

and converges weakly to a tight Gaussian process {[𝐇∗(𝜃)]−1 ℎ∗ (𝜃) ∶ 𝜃 ∈ 𝛩}.

6.2.2. Estimation of 𝜅
We use a simple plug-in estimator for 𝜅

𝜅𝑇 = min
𝜃∈𝛩

𝑇 (𝜃),

for 𝑇 (𝜃) given in Problem 6.9. We obtain a corresponding set estimate of 𝛩∗ as

𝛩∗
𝑇 = {𝜃 ∈ 𝛩 ∶ 𝑇 (𝜃) ⩽ 𝜅𝑇 + 𝜂𝑇 }, for some 𝜂𝑇 ⩾ 0, 𝜂𝑇 = 𝑜𝑃 (𝑇 −1) .

Under mild conditions including those ensuring the uniqueness of 𝜇∗(𝜃), we obtain a direct extension of Theorem 3.6 of Shapiro
1991) from iid data to stationary 𝛽 − 𝑚𝑖𝑥𝑖𝑛𝑔 data,

esult 6.12.
√

𝑇 (𝜅𝑇 − 𝜅) = min𝜃∈𝛩∗ 𝐹 ∗
𝑇 (𝜃) + 𝑜𝑝(1) ⇝ min𝜃∈𝛩∗ (𝜃).

For any finite sample we have E[𝜅𝑇 ] ⩽ 𝜅 but E[𝜅𝑇 ] increases as 𝑇 increases. Observe that if 𝛩∗ is a singleton {𝜃0}, then
𝑇 (𝜅 − 𝜅) ⇝ (𝜃 ), which is a mean zero normal random variable with variance 𝐶∗(𝜃 , 𝜃 ).
16
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6.3. Confidence sets via quasi-posteriors

In devising inferential methods, we target sets of solutions to the first-order conditions. In the case of the unknown model
arameter 𝜃, this leads us to construct confidence sets for 𝛩 defined in (18). When 𝛩 is a singleton then 𝛩 coincides with 𝛩∗, and
he FOC approach provides an asymptotic exact coverage for 𝛩∗. When 𝛩 is allowed to be a set that contains at least two solutions
o the first-order conditions, then 𝛩 could be larger than 𝛩∗, which might make our inferences for 𝛩∗ conservative.20

We find the estimated multiplier to be of interest because it allows to characterize the extremal probability density relative to
he probability distribution implied by the DGP. This leads us to combine the first-order conditions for 𝜃 with those for 𝜇:

∇𝐹 (𝑥, 𝜇, 𝜃) =
⎡

⎢

⎢

⎣

𝜕𝐹
𝜕𝜇 (𝑥, 𝜇, 𝜃)
𝜕𝐹
𝜕𝜃 (𝑥, 𝜇, 𝜃)

⎤

⎥

⎥

⎦

,

with 𝐹 (𝑥, 𝜇, 𝜃) given in (13). Then the joint set of first-order conditions with respect to 𝛽 = (𝜇′, 𝜃′)′ is:

E[∇𝐹 (𝑋, 𝛽)] = 0. (22)

We let 𝐁 be the space of admissible parameter values for 𝛽. To formulate a tractable inference approach, we view (22) as the moment
conditions for a ‘‘just-identified’’ GMM estimation problem.

Remark 6.13. If 𝛩 is assumed to be a singleton {𝜃0}, then the sample analog of Problem 6.3 will lead to the joint asymptotically
normal frequentist estimates for (𝜇∗(𝜃0), 𝜃0). Several papers, such as Schennach (2007), Broniatowski and Keziou (2012), and Lee
(2016), have used these just-identified moment conditions to establish root-𝑇 asymptotic normality of their estimators for (𝜇∗(𝜃0), 𝜃0)
ointly for possibly E[𝑓 (𝑋, 𝜃)] ≠ 0 with iid data. Almeida and Garcia (2012) establish root-𝑇 asymptotic normality for (𝜇∗(𝜃0), 𝜃0)
nder stationary strongly mixing data. In what follows we do not restrict 𝛩 to be a singleton.

We follow a recently developed approach of Chen et al. (2018) to compute critical values for confidence sets based on a ‘‘quasi
osterior’’ designed to allow for set-valued 𝛩. We implement their approach using a continuously-updated GMM criterion function

of Hansen et al. (1996):

𝐿𝑇 (𝛽) = −1
2

[

1
𝑇

𝑇
∑

𝑡=1
∇𝐹 (𝑋𝑡, 𝛽)

]′

[𝛴𝑇 (𝛽)]−
[

1
𝑇

𝑇
∑

𝑡=1
∇𝐹 (𝑋𝑡, 𝛽)

]

(23)

here, for each 𝛽, [𝛴𝑇 (𝛽)]− is the generalized inverse of 𝛴𝑇 (𝛽), which is a consistent estimator of 𝛴(𝛽):

𝛴(𝛽) = lim
𝑇→∞

𝑉 𝑎𝑟

(

1
√

𝑇

𝑇
∑

𝑡=1
∇𝐹 (𝑋𝑡, 𝛽)

)

(24)

where 𝑉 𝑎𝑟(⋅) denotes the covariance matrix of the argument in parentheses. Given 𝐿𝑇 (𝛽), the data 𝐗 ≝ {𝑋𝑡}𝑇𝑡=1, and a prior 𝛱 over
, the quasi-posterior distribution 𝛱𝑇 for 𝛽 given 𝐗 is defined as

𝑑𝛱𝑇 (𝛽 ∣ 𝐗) =
exp[𝑇𝐿𝑇 (𝛽)]𝑑𝛱(𝛽)

∫𝐁 exp[𝑇𝐿𝑇 (𝛽)]𝑑𝛱(𝛽)
. (25)

Next we explore how to make (i) joint inferences for the multipliers and parameters and (ii) marginal inferences for the parameter
vector.

6.3.1. Confidence sets for the parameter and multiplier vectors
Let

𝐁 ≝ {𝛽 = (𝜇∗(𝜃), 𝜃) ∶ 𝜃 ∈ 𝛩}

be the potentially enlarged composite parameter space. Draw a sample 𝛽’s from the quasi-posterior 𝛱𝑇 using a numerically
tractable Monte Carlo sampler. Chen et al. (2018) suggested to use an adaptive sequential Monte Carlo (SMC) algorithm that
is known to perform well for drawing from irregular, multi-modal distributions. Construct a confidence set 𝐁𝛼𝑇 for 𝐁 such that
im𝑇→∞ 𝑃𝑟(𝐁 ⊆ 𝐁𝛼𝑇 ) = 𝛼 as follows:21

1. Draw a sample {𝛽1,… , 𝛽𝑁} from the quasi-posterior distribution 𝛱𝑇 in (25).
2. Calculate the (1 − 𝛼) quantile of {𝐿𝑇 (𝛽1),… , 𝐿𝑇 (𝛽𝑁 )}; call it 𝜁𝑚𝑐𝑇 ,𝛼 .
3. Our 100𝛼% confidence set for 𝐁 is then:

𝐁𝛼𝑇 = {𝛽 ∈ 𝐁 ∶ 𝐿𝑇 (𝛽) ⩾ 𝜁𝑚𝑐𝑇 ,𝛼} . (26)

20 Such an outcome could be checked in the actual estimation.
21 This is procedure 1 in Chen et al. (2018).
17
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Remark 6.14. As Chen et al. (2018) note, confidence sets for individual components of the 𝛽 vector can be constructed by
minimizing over the remaining parameters and using a chi-square one threshold.22 An analogous approach can be used to construct
confidence sets for sub-vectors of 𝛽 such as the vector of Lagrange multipliers.

6.3.2. Confidence sets for 𝜃 based on the profiled moment condition
While the multipliers provide valuable diagnostics, in this subsection we suppose the focus is on the underlying model parameters

𝜃 ∈ 𝛩. This leads us to modify the previous approach to achieve further computational simplicity by using the quasi-analytical
ormula for the multipliers as a function of the underlying parameters. This opens the door to a plug-in procedure that allows us to
xtend the previous approach in a tractable way.

Recall that 𝜇∗(𝜃) satisfies (15). Importantly, 𝜇∗ is treated as a function of 𝜃. Provided that the multipliers are uniquely identified
as a function of the parameters, we can easily deduce a point-wise (in 𝜃) limiting distribution for the resulting estimator 𝜇𝑇 (𝜃) at the
sual parametric rate of convergence. We may deduce either by applying a standard GMM approximation for inference. By using a
unctional central limit theory we can get a full characterization of the limiting distribution for 𝜇𝑇 as it depends on 𝜃.

We then wish to base estimation of 𝜃 ∈ 𝛩 on the moment condition:

E
[ 𝜕𝐹
𝜕𝜃

(𝑋, 𝜇∗(𝜃), 𝜃)
]

= 0 (27)

plugging 𝜇𝑇 (𝜃) for 𝜇∗(𝜃). Plug-in approaches require an adjustment for the estimation of 𝜇𝑇 (𝜃) when making inferences about the
𝜃 ∈ 𝛩 of interest. This leads us to construct:

𝜕𝐹
𝜕𝜃

(𝑥, 𝜃) ≝ 𝜕𝐹
𝜕𝜃

(𝑥, 𝜇∗(𝜃), 𝜃) +
[

𝜕𝜇∗

𝜕𝜃
(𝜃)

]′ 𝜕𝐹
𝜕𝜇

(𝑥, 𝜇∗(𝜃), 𝜃)

= 𝜕𝐹
𝜕𝜃

(𝑥, 𝜇∗(𝜃), 𝜃) − E
[

𝜕2𝐹
𝜕𝜃𝜕𝜇′

(𝑋, 𝜇∗(𝜃), 𝜃)
](

E
[

𝜕2𝐹
𝜕𝜇𝜕𝜇′

(𝑋, 𝜇∗(𝜃), 𝜃)
])−1 𝜕𝐹

𝜕𝜇
(𝑥, 𝜇∗(𝜃), 𝜃)

he second-term in this adjustment is needed for making inferences that adjust for the estimation of 𝜇∗(𝜃). This adjustment includes
wo terms that contribute multiplicatively to central limit approximation:

(i) the term:

E
[

𝜕2𝐹
𝜕𝜃𝜕𝜇′

(𝑋, 𝜇∗(𝜃), 𝜃)
]

captures the local impact of estimation of 𝜇∗ in moment condition (27),
(ii) and the term:

−
(

E
[

𝜕2𝐹
𝜕𝜇𝜕𝜇′

(𝑋𝑡, 𝜇
∗(𝜃), 𝜃)

])−1 𝜕𝐹
𝜕𝜇

(𝑋, 𝜇∗(𝜃), 𝜃)

adjusts for the estimation of 𝜇∗(𝜃) using 𝜇𝑇 (𝜃) based on the moment condition (15), say 1
𝑇
∑𝑇
𝑡=1

𝜕𝐹
𝜕𝜇 (𝑋𝑡, 𝜇𝑇 (𝜃), 𝜃) = 𝑜𝑝(𝑇 −1∕2)

uniformly in 𝜃.

We make inferences about the identified set 𝛩 for 𝜃 of interest using a continuously-updated GMM criterion function:

𝐿̃𝑇 (𝜃) = −1
2
𝐺𝑇 (𝜃)′[𝛴𝑇 (𝜃)]−𝐺𝑇 (𝜃) (28)

where

𝐺𝑇 (𝜃) ≝
1
𝑇

𝑇
∑

𝑡=1

𝜕𝐹
𝜕𝜃

(𝑋𝑡, 𝜇𝑇 (𝜃), 𝜃),

and 𝛴𝑇 (𝜃) is a consistent estimator of 𝛴∗(𝜃) ≝ lim𝑇→∞ 𝑉 𝑎𝑟
(

1
√

𝑇

∑𝑇
𝑡=1

𝜕𝐹
𝜕𝜃 (𝑋𝑡, 𝜃)

)

. Importantly, 𝛴∗(𝜃) will differ from lim𝑇→∞ 𝑉 𝑎𝑟

1
√

𝑇

∑𝑇
𝑡=1

𝜕𝐹
𝜕𝜃 (𝑋𝑡, 𝜇∗(𝜃), 𝜃)

)

since the latter ignores the impact of the plug-in estimation 𝜇𝑇 (𝜃). While 𝜕𝐹
𝜕𝜃 (𝑋𝑡, 𝜃) depends on 𝜇∗, as is

standard in plug-in approaches, we may replace 𝜇∗ and its partial derivatives with consistent estimators and compute an asymptotic
covariance estimate 𝛴𝑇 (𝜃) based on:

{

𝜕𝐹
𝜕𝜃

(𝑋𝑡, 𝜇𝑇 (𝜃), 𝜃) +
[

𝜕𝜇𝑇
𝜕𝜃

(𝜃)
]′ 𝜕𝐹
𝜕𝜇

(𝑋𝑡, 𝜇𝑇 (𝜃), 𝜃) ∶ 𝑡 = 1, 2,… , 𝑇
}

.

Remark 6.15. There has been substantial research on plug-in approaches to estimation. For instance, Hansen (1982) provides
an GMM characterization for a finite-dimensional plug-in estimator.23 This does not cover our application because 𝜇∗ is infinite-
dimensional. On the hand, 𝜇∗(𝜃) can be estimated at a standard parametric rate, making the analysis very similar. For a treatment
of plug-estimators allowing for more general nonparametric auxiliary estimator, see Ackerberg et al. (2014).

22 See their procedure 3 and theorem 4.4 for details.
23 See Hansen (2008) Section 4.2 for an elaboration,
18
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With plug-in adjustment, we follow the previous approach to provide confidence sets for 𝛩. Given 𝐿̃𝑇 (𝜃), the data 𝐗 = {𝑋𝑡}𝑇𝑡=1,
nd a prior 𝛱 over 𝛩, the quasi-posterior distribution 𝛱𝑇 for 𝜃 is

𝑑𝛱𝑇 (𝜃 ∣ 𝐗) =
exp[𝑇 𝐿̃𝑇 (𝜃)]𝑑𝛱(𝜃)

∫𝛩 exp[𝑇 𝐿̃𝑇 (𝜃)]𝑑𝛱(𝜃)
. (29)

We draw a sample {𝜃1,… , 𝜃𝑁} from the quasi-posterior 𝛱𝑇 . We seek a CS 𝛩̂𝛼 for 𝛩 such that lim𝑇→∞ 𝑃𝑟(𝛩 ⊆ 𝛩̂𝛼) = 𝛼.
Confidence sets for 𝛩:

1. Draw a sample {𝜃1,… , 𝜃𝑁} from the quasi-posterior distribution 𝛱𝑇 in (29).
2. Calculate the (1 − 𝛼) quantile of {𝐿̃𝑇 (𝜃1),… , 𝐿̃𝑇 (𝜃𝑁 )}; call it 𝜁𝑚𝑐𝑇 ,𝛼 .
3. Our 100𝛼% confidence set for 𝛩 is then:

𝛩̂𝛼 = {𝜃 ∈ 𝛩 ∶ 𝐿̃𝑇 (𝜃) ⩾ 𝜁𝑚𝑐𝑇 ,𝛼} . (30)

7. Estimation of nonlinear expectation functionals and inference

This section presents estimation and inference for the nonlinear expectation functionals we constructed in Section 4. In other
words, we show how the econometrician can estimate bounds on the subjective expectations consistent with pre-specified moment
conditions and a given statistical divergence neighborhood.

Many prior treatments of misspecification use a divergence objective for estimation and for identifying a unique ‘‘pseudo-true’’
parameter. The results in Section 6 could be applied directly to support such an analysis while allowing for a non-singleton set of
‘‘pseudo-true’’ parameters. Our aim in this section is different, however. We characterize extremal distributions for the expectations
of functions, 𝑔, and the corresponding parameters vector when divergence bound is constrained to be less than a pre-specified 𝜅 > 𝜅.
We reveal the full probability bound by repeating this exercise for alternative choices of 𝑔. In some applications, a specific 𝑔 may
be motivated by investor preferences. We allow 𝑔 to depend on the unknown parameter vector 𝜃. This gives us the flexibility to
deduce and estimate model-based ambiguity sets of parameters implied by a given statistical divergence bound, 𝜅. We reveal the
ull nonlinear expectation bound by repeating this exercise for alternative choices of 𝑔.

We consider two approaches to constructing confidence sets. First, we propose a direct approach which approximates the
onlinear expectation by a finite-sample counterpart. Next we suggest an alternative simulation-based approach which relies on
ugmenting the moment conditions and the parameter space by including the expectation of 𝑔 as an additional parameter. This

augmented approach allows us to apply the results of Section 6 for estimation of the non-linear expectation.

7.1. Bounding expectation functionals using divergence balls

We first extend the previous results by letting 𝜅 be a parameter satisfying 𝜅 ⩾ 𝜅. We start with a real-valued measurable function
𝑔 of 𝑥 and 𝜃. We are interested in applications to multiple choices of 𝑔, but for notational convenience we leave the dependence
of solutions on 𝑔 implicit, and similarly for 𝜅.24 For a given 𝑔, we consider the following problem designed to confront parameter
ependence:

roblem 7.1.

K ≝ min
𝜃∈𝛩

(𝜃) where

(𝜃) ≝ inf
𝑀⩾0

E [𝑀𝑔(𝑋, 𝜃)] subject to

E [𝑀𝑓 (𝑋, 𝜃)] = 0,

E [𝑀] = 1,

E [𝜙(𝑀)] ⩽ 𝜅.

Problem 7.1 is analogous to Problem 4.1 but with two differences. The first is that it includes a minimization over the unknown
odel parameter 𝜃 to reflect the econometrician’s parameter uncertainty. Second, it allows additional flexibility for the model
arameter 𝜃 to enter the agent’s function 𝑔 to be bounded. Notice that to characterize agent’s subjective probabilities it would
uffice to let 𝑔 be a measurable function of 𝑋𝑡 only. We allow for the additional generality in 𝑔(𝑋𝑡, 𝜃) to give researchers more
lexibility in diverse applications. This additional flexibility will be useful in making inferences about model parameters.

Since 𝜅 ⩾ 𝜅, the constraint set for 𝑀 is not empty at least for some values of 𝜃 ∈ 𝛩.
Similar to the previous section, the dual problem is

(𝜃) = sup
𝜉>0

max
𝜇

inf
𝑀⩾0

E [𝑀𝑔(𝑋, 𝜃) + 𝜉(𝜙(𝑀) − 𝜅) − 𝜆 ⋅ 𝑓 (𝑋, 𝜃)𝑀 − 𝜈(𝑀 − 1)] (31)

24 A consequence of this simplicity is that we recycle some notation in this section relative to previous sections that we use in analogous ways.
19
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where 𝜇 ≝ (𝜆′, 𝜈)′ denotes vector of the composite multipliers for the equality constraints. We solve the inner problem inf𝑀⩾0[⋅] by
ringing 𝑀 inside the expectation. Let 𝑀(𝑥, 𝜉, 𝜇, 𝜃) denote the resulting solution:

𝑀(𝑥, 𝜉, 𝜇, 𝜃) =

⎧

⎪

⎨

⎪

⎩

(

[

𝜂(𝜉)−1[𝜆 ⋅ 𝑓 (𝑥, 𝜃) + 𝜈 − 𝑔(𝑥, 𝜃)] + 1
1+𝜂

]+
)

1
𝜂
, 𝜂 > 0

exp
[

(𝜉)−1[𝜆 ⋅ 𝑓 (𝑥, 𝜃) + 𝜈 − 𝑔(𝑥, 𝜃)] − 1
]

, 𝜂 = 0

(32)

for 𝜉 > 0 and almost all 𝑥 under the stationary distribution for {𝑋𝑡}. By substituting this solution into the objective (31), we restate
the dual problem as:

Problem 7.2. For 𝜃 ∈ 𝛩,

(𝜃) = sup
𝜉>0

max
𝜇

E [𝐹 (𝑋, 𝜉, 𝜇, 𝜃)] ,

where

𝐹 (𝑥, 𝜉, 𝜇, 𝜃) ≝
⎧

⎪

⎨

⎪

⎩

− 𝜉
1+𝜂

(

[

𝜂(𝜉)−1[𝜆 ⋅ 𝑓 (𝑥, 𝜃) + 𝜈 − 𝑔(𝑥, 𝜃)] + 1
1+𝜂

]+
)

1+𝜂
𝜂

+ 𝜈 − 𝜉𝜅 , 𝜂 > 0

−𝜉 exp
[

(𝜉)−1[𝜆 ⋅ 𝑓 (𝑥, 𝜃) + 𝜈 − 𝑔(𝑥, 𝜃)] − 1
]

+ 𝜈 − 𝜉𝜅 , 𝜂 = 0

We note that

𝐹 (𝑥, 𝜇, 𝜃) =

{

− 𝜉
1+𝜂 [𝑀(𝑥, 𝜇, 𝜃)]1+𝜂 + 𝜈 − 𝜉𝜅 , 𝜂 > 0
−𝜉𝑀(𝑥, 𝜇, 𝜃) + 𝜈 − 𝜉𝜅 , 𝜂 = 0

The solutions to Problem 7.2 are given by the first-order conditions wrt (𝜇, 𝜉 > 0):

E
[

𝜕𝐹
𝜕𝜇

(𝑋, 𝜉, 𝜇, 𝜃)
]

= 0, E
[

𝜕𝐹
𝜕𝜉

(𝑋, 𝜉, 𝜇, 𝜃)
]

= 0,

where:
𝜕𝐹
𝜕𝜇

(𝑥, 𝜉, 𝜇, 𝜃) =
[

−𝑓 (𝑥, 𝜃)𝑀(𝑥, 𝜉, 𝜇, 𝜃)
1 −𝑀(𝑥, 𝜉, 𝜇, 𝜃)

]

, 𝜕𝐹
𝜕𝜉

(𝑥, 𝜉, 𝜇, 𝜃) = 𝜙(𝑀(𝑥, 𝜉, 𝜇, 𝜃)) − 𝜅.

As to be expected from the dual problem, these first order-conditions capture the constraints:

− E [𝑓 (𝑋, 𝜃)𝑀(𝑋, 𝜉, 𝜇, 𝜃)] =0

1 − E [𝑀(𝑋, 𝜉, 𝜇, 𝜃)] =0

E[𝜙(𝑀(𝑋, 𝜉, 𝜇, 𝜃))] − 𝜅 =0 (33)

Remark 7.3. More generally we should allow for 𝜉 ⩾ 0 in (33) by replacing the 3rd equation by

𝜉 ⩾ 0, 𝜉 (E[𝜙(𝑀(𝑋, 𝜉, 𝜇, 𝜃))] − 𝜅) = 0.

Appendix A gives sufficient conditions under which the relative entropy constraint binds. This rules out 𝜉 = 0 as an optimal solution.

Let 𝜇𝑜(𝜃), 𝜉𝑜(𝜃) denote the solution to (33), and

𝑀𝑜(𝜃) ≝𝑀
(

𝑋, 𝜉𝑜(𝜃), 𝜇𝑜(𝜃), 𝜃
)

given in (32) denote the implied extremal probability.

Remark 7.4. In this section we focus on moment functions 𝑓 and 𝑔 such that, for any 𝜃 ∈ 𝛩, there is are unique multipliers
(𝜇𝑜(𝜃), 𝜉𝑜(𝜃)) and a unique belief 𝑀𝑜(𝜃) =𝑀(𝑋, 𝜉𝑜(𝜃), 𝜇𝑜(𝜃), 𝜃) given in (32) solves the dual Problem 7.2.

The optimized dual objective function in Problem 7.2 becomes

(𝜃) = E
[

𝐹 (𝑋, 𝜉𝑜(𝜃), 𝜇𝑜(𝜃), 𝜃)
]

= E
[

𝑀𝑜(𝜃)𝑔(𝑋, 𝜃)
]

.

Let

𝛩𝓁 ≝ argmin
𝜃

(𝜃) = {𝜃 ∈ 𝛩 ∶ E
[

𝑀𝑜(𝜃)𝑔(𝑋, 𝜃)
]

= K}, (34)

which informs us of the parameter configurations that are needed to attain the lower bound on the expectation of 𝑔. Using a parallel
construction and substituting −𝑔 for 𝑔, a set 𝛩𝑢 informs us of the parameter configurations that are needed to attain the upper bound
on the expectation of 𝑔. Suppose that 𝛩𝓁 ⊂ 𝛩𝑜, then we have

𝛩𝓁 ⊆ 𝛩 ≝
{

𝜃 ∈ 𝛩𝑜 ∶
𝜕(𝜃)

= 0
}

=
{

𝜃 ∈ 𝛩𝑜 ∶ E
[ 𝜕𝐹 (𝑋, 𝜉𝑜(𝜃), 𝜇𝑜(𝜃), 𝜃)

]

= 0
}

.

20
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Remark 7.5. For relative entropy (𝜂 = 0) divergence, we have

𝜕𝐹
𝜕𝜃

(𝑥, 𝜉, 𝜇, 𝜃) = −𝜉 𝜕𝑀
𝜕𝜃

(𝑥, 𝜉, 𝜇, 𝜃) = −𝑀(𝑥, 𝜉, 𝜇, 𝜃)
[

𝜆 ⋅
𝜕𝑓 (𝑥, 𝜃)
𝜕𝜃

−
𝜕𝑔(𝑥, 𝜃)
𝜕𝜃

]

.

And

𝑀𝑜(𝜃) =
exp

[

𝜉𝑜(𝜃)−1(𝜆𝑜(𝜃) ⋅ 𝑓 (𝑋, 𝜃) − 𝑔(𝑋, 𝜃))
]

E
(

exp
[

𝜉𝑜(𝜃)−1(𝜆𝑜(𝜃) ⋅ 𝑓 (𝑋, 𝜃) − 𝑔(𝑋, 𝜃))
]) .

7.1.1. Sample analog estimation of the nonlinear expectation functional
We conclude this subsection by exploring estimation and inference using the sample counterpart to Problem 7.1 for 𝜅 ⩾ 𝜅𝑇 ∶

Problem 7.6.

K𝑇 ≝ min
𝜃∈𝛩

𝑇 (𝜃) where

𝑇 (𝜃) ≝ max
𝜉>0

max
𝜇

1
𝑇

𝑇
∑

𝑡=1
𝐹 (𝑋𝑡, 𝜉, 𝜇, 𝜃) =

1
𝑇

𝑇
∑

𝑡=1
𝐹 (𝑋𝑡, 𝜉(𝜃), 𝜇̂(𝜃), 𝜃) , (35)

where 𝜉(𝜃), 𝜇̂(𝜃) are the estimates of 𝜉𝑜(𝜃), 𝜇𝑜(𝜃)

We proceed in an analogous way as in Section 6.2 with the following modifications:

(i) we use the augmented multiplier vector (𝜉, 𝜇) instead of 𝜇;
(ii) our minimized objective from Problem 7.6 recovers our lower bound on the expectation of 𝑔 instead of 𝜅.

Denote

𝐹 𝑜𝑇 (𝜃) ≝
1

√

𝑇

𝑇
∑

𝑡=1

[

𝐹 (𝑋𝑡, 𝜉𝑜(𝜃), 𝜇𝑜(𝜃), 𝜃) −(𝜃)
]

.

Under these analogous assumptions, by a slight extension of theorem 3.6 of Shapiro (1991) from iid data to stationary 𝛽 − 𝑚𝑖𝑥𝑖𝑛𝑔
data, we obtain the following asymptotic result for the estimated nonlinear expectation K𝑇 :

Result 7.7.
√

𝑇 (K𝑇 −K) = min𝜃∈𝛩𝓁
𝐹 𝑜𝑇 (𝜃) + 𝑜𝑝(1) ⇝ min𝜃∈𝛩𝓁

𝑜(𝜃), where 𝑜 is a tight Gaussian process on 𝛩.

Precise assumptions and expressions for the asymptotic covariance function are given in Appendix B. For any finite sample size
we have E[K𝑇 ] ⩽ K, but E[K𝑇 ] increases as 𝑇 increases. If 𝛩𝓁 = {𝜃0} is a singleton, then

√

𝑇 (K𝑇 −K) ⇝ 𝑜(𝜃0), which is a mean
ero normal random variable with variance 𝐶𝑜(𝜃0, 𝜃0) given in Appendix B.

When 𝛩𝓁 might not be a singleton, in the stochastic programming literature, there are currently four popular approaches for
onfidence sets construction using the above Result 7.7: (i) Monte Carlo simulations, (ii) non-asymptotic large deviation bounds
see, e.g., chapter 5 of Shapiro et al., 2014), (iii) subsampling and (iv) the extended bootstrap (see, e.g., Eichhorn and Römisch,
007). To the best of our knowledge, most papers on DRO using convex divergence have simply assumed that 𝛩𝓁 is a singleton
hen constructing confidence intervals (see, e.g., Shapiro, 2017; Duchi and Namkoong, 2021).

In the statistics and econometrics literature, both the subsampling approach (see, e.g., Chernozhukov et al., 2007; Romano and
haikh, 2010) and various modified bootstrap approaches (see, e.g., Dümbgen, 1993; Fang and Santos, 2019; Hong and Li, 2020)
ave been used to construct confidence intervals for Hadamard directional differentiable functionals such as K for iid data. We note
hat both approaches lead to less powerful inference when 𝛩𝓁 is a singleton.

In principle, any of these existing approaches can be extended to our framework with 𝛽-mixing weakly dependent time series
ata. For concreteness, we will describe in the next subsection a procedure to construct confidence sets for K via the numerical
ootstrap method of Hong and Li (2020) with a modified weighted bootstrap for time series data.

.2. Confidence sets for K via numerical weighted bootstrap

Next, we describe a numerical weighted bootstrap procedure to obtain confidence sets for K based on the method of Hong and
i (2020).

The first step in the bootstrap iteration is to simulate positive random weights {𝑊𝑡 ∶ 𝑡 = 1, 2,… , 𝑇 } with autocorrelation satisfying
he following conditions

(i) {𝑊𝑡 ∶ 𝑡 = 1, 2,… , 𝑇 } is strictly stationary and independent of {𝑋𝑡 ∶ 𝑡 = 1, 2,… , 𝑇 }
(ii) E[𝑊𝑡] = 1, E[𝑊 3

𝑡 ] < ∞, and 𝐶𝑜𝑣(𝑊𝑡,𝑊𝑡+𝑗 ) = 𝜔(𝑗∕𝐽 ) where 𝜔(⋅) is a positive symmetric kernel function with 𝜔(0) = 1 and
integrates to one with lag truncation parameter 𝐽 .25

25 When data are weakly temporally dependent, choosing 𝐽 = 𝑂(𝑇 1∕3) ensures asymptotically consistent coverage.
21
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One example is to simulate the random weights {𝑊𝑡}𝑇𝑡=1 as exp(1) random variables. When data is iid this is known as the Bayesian
ootstrap. Another example is to let (𝑊𝑡 − 1) have standard normal marginal distribution as in Chen and Fan (1999) for time series
ata. They term this a ‘‘conditional Monte-Carlo approach’’. We include more general random weights along with an adjustment for
emporal dependence.

The second step is to draw the following bootstrap quantities. Let 𝐹 𝑏𝑇 (𝜃) denote the weighted bootstrap counterpart to 𝐹 𝑜𝑇 (𝜃):

𝐹 𝑏𝑇 (𝜃) ≝
1

√

𝑇

𝑇
∑

𝑡=1

[

(𝑊𝑡 − 1)[𝐹 (𝑋𝑡, 𝜉(𝜃), 𝜇̂(𝜃), 𝜃) −𝑇 (𝜃)]
]

.

Conditional on the data {𝑋𝑡}𝑇𝑡=1, the process {𝐹 𝑏𝑇 (𝜃) ∶ 𝜃 ∈ 𝛩} converges weakly to the Gaussian process {𝑜(𝜃) ∶ 𝜃 ∈ 𝛩} (see
ppendix B). Given a positive deterministic sequence 𝜖𝑇 such that 𝜖𝑇 → 0 and 𝜖𝑇

√

𝑇 → ∞, define

D𝑏𝑇 ≝ 1
𝜖𝑇

{

min
𝜃∈𝛩

[

𝑇 (𝜃) + 𝜖𝑇𝐹 𝑏𝑇 (𝜃)
]

− min
𝜃∈𝛩

𝑇 (𝜃)
}

(36)

Result 7.8. Let 𝜖𝑇 → 0 and 𝜖𝑇
√

𝑇 → ∞. Under some mild regularity conditions, we have: conditional on the data, D𝑏𝑇 ⇝ min𝜃∈𝛩𝓁
𝑜(𝜃).

Result 7.8 implies that the sampling distribution of the bootstrap quantity D𝑏𝑇 converges to the asymptotic distribution of
𝑇 (K𝑇 − K). See Appendix B for details. Applying this insight, one can use the following procedure to obtain a confidence set

or K with asymptotic coverage probability 𝛼:
Confidence sets for K:

1. For 𝑏 = 1,… , 𝑁 , compute the weighted bootstrap statistic D𝑏𝑇
2. Calculate the 1−𝛼

2 and 1+𝛼
2 quantiles of D𝑏𝑇 . Call them 𝑞𝑏

𝑇 , 1−𝛼2
and 𝑞𝑏

𝑇 , 1+𝛼2
respectively.

3. Form the confidence set as the interval

𝐂𝐒𝛼𝑇 =
[

K𝑇 + 𝑇 − 1
2 ⋅ 𝑞𝑏

𝑇 , 1−𝛼2
,K𝑇 + 𝑇 − 1

2 ⋅ 𝑞𝑏
𝑇 , 1+𝛼2

]

. (37)

Remark 7.9. If one chooses 𝑔(𝑋, 𝜃) = 𝜃𝑖, i.e. an individual component of the parameter vector, then the corresponding estimate
K𝑇 gives a lower bound on values of 𝜃𝑖 which rationalize the moment conditions with divergence no greater than 𝜅.

Remark 7.10. This same weighted bootstrap approach can be used to make inferences about the parameter dependent minimum
divergence ({

√

𝑇
[

𝑇 (𝜃) − (𝜃)
]

∶ 𝜃 ∈ 𝛩}) and the corresponding Lagrange multiplier process ({
√

𝑇
[

𝜇𝑇 (𝜃) − 𝜇∗(𝜃)
]

∶ 𝜃 ∈ 𝛩})
uilding on Result 6.11 in Section 6.2. This same approach also would support inference for the augmented Lagrange multipliers
𝜉𝑜(𝜃), 𝜇𝑜(𝜃)) from Problem 7.2. See Appendix B for details.

.3. Bounding expectation functionals by augmenting the moment conditions

We next describe an alternative approach framed in terms of a vector of moment conditions augmented to include expectations
f 𝑔, which is a direct target of estimation. This opens the door to using a quasi-posterior method analogous to what we described
n Section 6.3.

Consider the following problem that is analogous to Problem 6.2 for any fixed 𝜗:

roblem 7.11. For any fixed 𝜗,

L(𝜗) ≝ min
𝜃∈𝛩

(𝜃, 𝜗)

here

(𝜃, 𝜗) ≝ inf
𝑀⩾0

E [𝜙(𝑀)]

ubject to:

E [𝑀𝑓 (𝑋, 𝜃)] = 0,

E [𝑀𝑔(𝑋, 𝜃)] − 𝜗 = 0,

E [𝑀] = 1.

For a given value of 𝜗, this problem has the same mathematical form as that in Section 6, except that we now have an additional
oment condition:

E [𝑀 ⋅ [𝑔(𝑋, 𝜃) − 𝜗]] = 0.

.

22

ince we added a moment restriction, L(𝜗) ⩾ 𝜅
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Denote 𝜃𝑎 ≝ (𝜃′, 𝜗)′ and

𝑓 𝑎(𝑥, 𝜃𝑎) ≝
(

𝑓 (𝑥, 𝜃)′, 𝑔(𝑥, 𝜃) − 𝜗
)′ .

e slightly strengthen Assumption 6.1(ii)(iii) to hold for 𝜃𝑎 and 𝑓 𝑎(𝑥, 𝜃𝑎). Let 𝜆𝑎 ≝ (𝜆′, 𝜆𝑔)′ and 𝜇𝑎 ≝ ((𝜆𝑎)′, 𝜈)′.
As input into Problem 7.11, we construct (𝜃, 𝜗) by solving the dual problem with optimized objective,

(𝜃, 𝜗) = max
𝜇𝑎

E
[

𝐹 𝑎(𝑋, 𝜇𝑎, 𝜃𝑎)
]

= E
[

𝐹 𝑎(𝑋, 𝜇𝑎∗(𝜃𝑎), 𝜃𝑎)
]

= E
[

𝜙(𝑀∗(𝜃𝑎))
]

here 𝐹 𝑎(𝑥, 𝜇𝑎, 𝜃𝑎) and 𝑀∗(𝜃𝑎) are defined in the same ways as those in (13) and (16) respectively, with 𝜇𝑎, 𝜃𝑎, 𝑓 𝑎(𝑥, 𝜃𝑎) replacing
, 𝜃, 𝑓 (𝑥, 𝜃) respectively.

To obtain the bounds and parameters of interest, we search over 𝜗 until L(𝜗) equals the 𝜅 > 𝜅 of interest. As mentioned in
Section 4.1, L(𝜗) is convex in 𝜗. Let 𝜗𝓁 < 𝜗𝑢 be the two solutions to

L(𝜗𝓁) = L(𝜗𝑢) = 𝜅 .

Then by the convexity of L, {𝜗 ∶ L(𝜗) ⩽ 𝜅} = [𝜗𝓁 , 𝜗𝑢] and {𝜗 ∶ L(𝜗) > 𝜅} = (−∞, 𝜗𝓁)
⋃

(𝜗𝑢,+∞).
We consider the following sample analog of Problem 7.11

Problem 7.12. For any fixed 𝜗

L𝑇 (𝜗) ≝ min
𝜃∈𝛩

𝑇 (𝜃, 𝜗)

where

𝑇 (𝜃, 𝜗) ≝ max
𝜇𝑎

1
𝑇

𝑇
∑

𝑡=1
𝐹 𝑎(𝑋𝑡, 𝜇

𝑎, 𝜃𝑎) = 1
𝑇

𝑇
∑

𝑡=1
𝐹 𝑎(𝑋𝑡, 𝜇

𝑎
𝑇 (𝜃

𝑎), 𝜃𝑎).

We then solve for

L𝑇 (𝜗̂𝓁) = L𝑇 (𝜗̂𝑢) = 𝜅 for 𝜗̂𝓁 < 𝜗̂𝑢 .

Note that 𝜗̂𝓁 is an estimator for 𝜗𝓁 = K (in Problem 7.1), and −𝜗̂𝑢 is an estimator for the counterpart K when 𝑔 is replaced by −𝑔.
We propose a method for inference about the solution to Problem 7.11 that is entirely analogous to what we proposed for

roblem 6.2, with 𝜃𝑎, 𝜇𝑎, 𝑓 𝑎(𝑥, 𝜃𝑎) replacing 𝜃, 𝜇𝑎, 𝑓 (𝑥, 𝜃), respectively. In particular, confidence sets for 𝜃𝑎 can be constructed in
ways analogous to those described in Section 6.

We base inferences on E
[

𝛹 (𝑋𝑡, 𝜇𝑎, 𝜃𝑎)
]

= 0 where

𝛹 (𝑥, 𝜇𝑎, 𝜃𝑎) ≝

⎡

⎢

⎢

⎢

⎢

⎣

𝐹 𝑎(𝑥, 𝜇𝑎, 𝜃𝑎) − 𝜅
𝜕𝐹 𝑎

𝜕𝜇𝑎 (𝑥, 𝜇
𝑎, 𝜃𝑎)

𝜕𝐹 𝑎

𝜕𝜃 (𝑥, 𝜇𝑎, 𝜃𝑎)

⎤

⎥

⎥

⎥

⎥

⎦

,

mportantly, we do not include the partial of 𝐹 𝑎 with respect to 𝜗 among the set of moment conditions used for inference, as it is
not included in the construction of 𝛹 . It is replaced by the first entry of 𝛹 that we include to enforce the divergence restriction.
There will be two sets of solutions to the moment conditions corresponding to the upper and lower bounds on the expectation of 𝑔.

Form the sample objective

𝐿𝑇 (𝜇𝑎, 𝜃𝑎) = −1
2

[

1
𝑇

𝑇
∑

𝑡=1
𝛹 (𝑋𝑡, 𝜇

𝑎, 𝜃𝑎)

]′

[𝛴𝑇 (𝜇𝑎, 𝜃𝑎)]−
[

1
𝑇

𝑇
∑

𝑡=1
𝛹 (𝑋𝑡, 𝜇

𝑎, 𝜃𝑎)

]

(38)

here 𝛴𝑇 (𝜇𝑎, 𝜃𝑎) is a consistent estimator of 𝛴(𝜇𝑎, 𝜃𝑎) = lim𝑇→∞ 𝑉 𝑎𝑟
(

1
√

𝑇

∑𝑇
𝑡=1 𝛹 (𝑋𝑡, 𝜇𝑎, 𝜃𝑎)

)

. With this approach, the profile
uasi-likelihood ratio statistics for 𝜗 is defined as

𝑄𝐿𝑅(𝜗) ≝ 2𝑇
[

max
𝜇𝑎 ,𝜃𝑎

𝐿𝑇 (𝜇𝑎, 𝜃𝑎) − max
𝜇𝑎 ,𝜃

𝐿𝑇 (𝜇𝑎, 𝜃, 𝜗)
]

e can compute a simple 100𝛼% confidence set for 𝜗 as:
{

𝜗 ∶ 𝑄𝐿𝑅(𝜗) ⩽ 𝜒2
1,𝛼

}

, (39)

here 𝜒2
1,𝛼 denotes the 𝛼 quantile of the 𝜒2

1 distribution.

emark 7.13. In the relative entropy (𝜂 = 0) case, we have

𝑀(𝑥, 𝜇𝑎, 𝜃𝑎) = exp
[

𝜆𝑎 ⋅ 𝑓 𝑎(𝑥, 𝜃𝑎) + 𝜈 − 1
]

used in representing beliefs as a function of the multipliers: 𝜆𝑎 = (𝜆′, 𝜆𝑔)′ and 𝜈. Form:

𝐹 𝑎(𝑥, 𝜇𝑎, 𝜃, 𝜗) = − exp
[

𝜆 ⋅ 𝑓 (𝑥, 𝜃) + 𝜆 [𝑔(𝑥, 𝜃) − 𝜗] + 𝜈 − 1
]

+ 𝜈
23

𝑔



Journal of Econometrics 243 (2024) 105653X. Chen et al.

w

= −𝑀(𝑥, 𝜇𝑎, 𝜃𝑎) + 𝜈

ith partial derivatives given by:

𝜕𝐹 𝑎

𝜕𝜇𝑎
(𝑥, 𝜇𝑎, 𝜃𝑎) =

[

−𝑓 𝑎(𝑥, 𝜃𝑎)𝑀(𝑥, 𝜇𝑎, 𝜃𝑎)
1 −𝑀(𝑥, 𝜇𝑎, 𝜃𝑎)

]

𝜕𝐹 𝑎

𝜕𝜃
(𝑥, 𝜇𝑎, 𝜃𝑎) = −𝜆𝑎 ⋅

𝜕𝑓 𝑎(𝑥, 𝜃𝑎)
𝜕𝜃

𝑀(𝑥, 𝜇𝑎, 𝜃𝑎).

We use the moment restriction: E[𝛹 (𝑋, 𝜇𝑎, 𝜃𝑎)] = 0 for statistical inference, where

𝛹 (𝑥, 𝜇𝑎, 𝜃𝑎) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝑀(𝑥, 𝜇𝑎, 𝜃𝑎) + 𝜈 − 𝜅

−𝑓 𝑎(𝑥, 𝜃𝑎)𝑀(𝑥, 𝜇𝑎, 𝜃𝑎)

1 −𝑀(𝑥, 𝜇𝑎, 𝜃𝑎)

−𝜆𝑎 ⋅ 𝜕𝑓
𝑎(𝑥,𝜃𝑎)
𝜕𝜃 𝑀(𝑥, 𝜇𝑎, 𝜃𝑎)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Remark 7.14. While the method in Section 7.2 is applicable more generally, we only know of convenient sufficient conditions for
the method in this subsection under the point identification of the 𝜃 parameters and multipliers (and two-point identification of 𝜗.)
For justifications of this method in a fully point-identified GMM setting, see Gallant and Jorgenson (1979), Eichenbaum et al. (1988),
and Newey and West (1987). Chen et al. (2018) justify this method (procedure 3 in their paper) allowing for partial identification
(of 𝜃) but impose an additional domination condition, which we have not verified. Nevertheless, we suspect that the approach in
this subsection may be more generally applicable, but leave it for future exploration.

8. Discussion and conclusion

In this paper, we assume that a generic dynamic model of finite-dimensional unconditional moment restrictions is misspecified
under rational expectations, but is valid under agents’ subjective beliefs. The subjective beliefs, however, are not uniquely identified.
We view the subjective belief specification as a form of ‘‘bounded irrationality’’. This leads to use a statistical measure of divergence
of the subjective probabilities relative to the probabilities implied by the data generation as a way to formally bound this irrationality.
This paper devises and justifies econometric methods that support this empirical approach. We are naturally led to replace point
identification by set identification of both the subjective beliefs and the parameters of the moment restrictions. We represent the
implied probability bounds of the empirically relevant subjective beliefs with a nonlinear expectation functional. To support this
approach, we present several estimation and confidence set construction for the nonlinear expectation functional.

Our recently published paper (Chen et al., 2021) uses a similar perspective to explore identification using conditional moment
restrictions and dynamic counterparts to the divergence measures we consider in this paper. A future challenge is to extend the
econometric methods in this paper to apply to the population characterizations given in Chen et al. (2021).

Several papers (including a suggestion in Hansen, 2014 and the analysis in Ghosh and Roussellet, 2020; Korsaye, 2022) treat the
minimal divergent beliefs and corresponding model parameter (assuming point-identified) as the target of estimation. In contrast,
we view the distorted probability recovered in this way merely as one possible measure of subjective beliefs; but we do not view
it as the only plausible measure of these beliefs. Additionally, we do not necessarily view an identified parameter vector associated
with the minimal divergent beliefs as the only parameter value of interest. We take a more eclectic approach because we do not
see why the subjective probabilities used by market participants must appear to the econometrician to have minimal divergence
relative to rational expectations. Instead we consider it more fruitful to characterize and bound sets of plausible beliefs and model
parameters consistent with certain levels of divergence from the data generating process, and to perform a sensitivity analysis with
respect to the level of divergence.

Acknowledgments

L. P. Hansen’s research was partially supported by the Macro Finance Research Program, and X. Chen’s research was partially
supported by the Cowles Foundation for Research in Economics.

Appendix A. Proofs and derivations for Section 2

A.1. Proof of Theorem 3.2

Construct a sequence 𝜋𝑗 ↘ 0 such that 𝜋𝑗 <
1
2 for all 𝑗. Then choose 𝑟𝑗 ∈ R𝑑 such that

(1 − 𝜋𝑗 )E[𝑓 (𝑋)] + 𝜋𝑗𝑟𝑗 = 0

i.e.

𝑟𝑗 = −
(1 − 𝜋𝑗

)

E[𝑓 (𝑋)]
24
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Let 𝐵(𝑟, 𝜖) denote an open ball with center 𝑟 and radius 𝜖. Since −E[𝑓 (𝑋)] ∈ int(𝐶) there exists an 𝜖 > 0 such that the open ball
𝐵(−E[𝑓 (𝑋)], 𝜖) ⊂ 𝐶. Since 𝐶 is a cone and 𝜋𝑗 <

1
2 it follows that 𝐵(𝑟𝑗 , 𝜖) ⊂ 𝐶. Write 𝑣(𝜖) = vol[𝐵(0, 𝜖)] > 0.26 Now, construct a

equence of belief distortions 𝑀𝑗 as follows:

𝑀𝑗 (𝑥) = (1 − 𝜋𝑗 ) + 𝜋𝑗
1

𝑣(𝜖)ℎ0[𝑓 (𝑥)]
𝟏{𝑓 (𝑥) ∈ 𝐵(𝑟𝑗 , 𝜖)}

where ℎ0(𝑦) is the density of the random variable 𝑌 = 𝑓 (𝑋) under the objective probability measure 𝑃 . By construction, we have
that for all 𝑗 ∈ N

• 𝑀𝑗 > 0
• E[𝑀𝑗 ] = 1
• E[𝑀𝑗𝑓 (𝑋)] = 0.

Additionally note that 𝑀𝑗 ⩾ (1 − 𝜋𝑗 ) with probability one. Since 𝜙(⋅) is decreasing, we have that 𝜙(𝑀𝑗 ) ⩽ 𝜙(1 − 𝜋𝑗 ) with probability
one. By continuity, 𝜙(1 − 𝜋𝑗 ) → 𝜙(1) = 0. By monotonicity of expectations we see that

0 ⩽ E[𝜙(𝑀𝑗 )] ⩽ E[𝜙((1 − 𝜋𝑗 ))] = 𝜙(1 − 𝜋𝑗 ) → 0.

The statement follows immediately. □

A.2. Proof of Theorem 3.6

The negative of a log moment generating function is strictly concave. Conditions (i) and (ii) guarantee that the function
𝜓 is continuous and coercive. It follows from Ekeland and Témam (1999, Proposition 1.2, Ch. II.1, p.35) that the supremum
in Problem 3.1 with relative entropy divergence is attained uniquely at vector we denote 𝜆∗. Since 𝜓 is differentiable, 𝜆∗ is
determined uniquely by solving the first-order conditions. Moreover, from known results about moment generating functions we
may differentiate inside the expectation to conclude that the first-order conditions with respect to 𝜆 imply

E
[

exp(𝜆∗ ⋅ 𝑓 (𝑋))
E[exp(𝜆∗ ⋅ 𝑓 (𝑋))]

𝑓 (𝑋)
]

= E[𝑀∗𝑓 (𝑋)] = 0.

This can be seen directly via the dominated convergence theorem. Thus 𝑀∗ is feasible for Problem 3.1.
To verify that 𝑀∗ solves Problem 3.1, note that for any other 𝑀 ⩾ 0 with E[𝑀] = 1,

E[𝑀(log𝑀 − log𝑀∗)] ⩾ 0,

and thus

E[𝑀 log𝑀] ⩾ E[𝑀 log𝑀∗].

The first expression is nonnegative because it is the entropy of 𝑀 relative to 𝑀∗.27 Compute

E[𝑀 log𝑀∗] = E[𝑀(𝜆∗ ⋅ 𝑓 (𝑋))] − logE
[

exp
(

𝜆∗ ⋅ 𝑓 (𝑋)
)]

.

Thus if E[𝑀𝑓 (𝑋)] = 0,

E[𝑀 log𝑀∗] = − logE
[

exp
(

𝜆∗ ⋅ 𝑓 (𝑋)
)]

.

We conclude that

inf
𝖡
E[𝑀 log𝑀] ⩾ − logE

[

exp
(

𝜆∗ ⋅ 𝑓 (𝑋)
)]

where 𝖡 = {𝑀 ∈ 𝐿1(𝛺,G, 𝑃 ) ∶ E[𝑀] = 1,E[𝑀𝑓 (𝑋)] = 0}. Furthermore, the right-hand side is attained by setting 𝑀 =𝑀∗ and that
other 𝑀 ∈ 𝖡 that attains the infimum is equal to 𝑀∗ with probability one. □

A.3. Derivation of Eq. (7)

By standard duality arguments, the dual formulation of Problem 4.1 is the saddlepoint equation

sup
𝜉>0,𝜆,𝜈

inf
𝑀⩾0

E
[

𝑀𝑔(𝑋) + 𝜉(𝑀 log𝑀 − 𝜅) + 𝜆 ⋅𝑀𝑓 (𝑋) + 𝜈(𝑀 − 1)
]

(40)

where 𝜉, 𝜆 and 𝜈 are Lagrange multipliers. Since the objective function is separable in 𝑀 , we minimize

𝑀𝑔(𝑋) + 𝜉(𝑀 log𝑀 − 𝜅) + 𝜆 ⋅𝑀𝑓 (𝑋) + 𝜈(𝑀 − 1)

26 Here we use the definition vol(𝑆) = ∫ 𝟏(𝑦 ∈ 𝑆)𝑑𝑦.
27 Formally E[𝑀(log𝑀 − log𝑀∗)] = E[𝑀∗𝜙(𝑀∕𝑀∗)] with 𝜙(𝑥) = 𝑥 log 𝑥, so the expectation is non-negative by Jensen’s inequality.
25
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with respect to 𝑀 . The first-order condition is

𝑔(𝑋) + 𝜉 + 𝜉 log𝑀 + 𝜆 ⋅ 𝑓 (𝑋) + 𝜈 = 0.

Thus,

𝑀 =
exp

(

− 1
𝜉 [𝑔(𝑋) + 𝜆 ⋅ 𝑓 (𝑋)]

)

E
[

exp
(

− 1
𝜉 [𝑔(𝑋) + 𝜆 ⋅ 𝑓 (𝑋)]

)] .

Substituting back into Eq. (40) gives Eq. (7).
We can connect these results to our earlier analysis of dual Problem 3.4 by defining an alternative expectation Ê using a relative

density:

exp
[

− 1
𝜉 𝑔(𝑋)

]

E exp
[

− 1
𝜉 𝑔(𝑋)

]

Then write the objective as

K̂(𝜉; 𝑔) ≐ sup
𝜆

−𝜉 log Ê exp [−𝜆 ⋅ 𝑓 (𝑋)] − 𝜉 logE exp
[

−1
𝜉
𝑔(𝑋)

]

.

Since the last term does not depend on 𝜆, we may appeal to Theorem 3.6 for the existence of a solution where Restriction 3.5 is
mposed under the change of measure.28

.4. When will the relative entropy constraint bind?

We first give a high-level sufficient condition under which the relative entropy constraint in Problem 4.1 binds. Write

K(𝑔; 𝜉) = max
𝜆

−𝜉 logE
[

exp
(

−1
𝜉
𝑔(𝑋) + 𝜆 ⋅ 𝑓 (𝑋)

)]

− 𝜉𝜅.

Let 𝜆(𝑔; 𝜉) denote the maximizer in the definition of K(𝑔, 𝜉), and define

𝑀1(𝑔; 𝜉) =
exp

[

− 1
𝜉 𝑔(𝑋)

]

E
(

exp
[

− 1
𝜉 𝑔(𝑋)

])

𝑀2(𝑔; 𝜉) =
exp

[

− 1
𝜉 𝑔(𝑋) + 𝜆(𝜉)𝑓 (𝑋)

]

E
(

exp
[

− 1
𝜉 𝑔(𝑋) + 𝜆(𝜉)𝑓 (𝑋)

])

Restriction A.1.

lim
𝜉↓0

E
[

𝑀1(𝑔; 𝜉)𝑔(𝑋)
]

− E
[

𝑀2(𝑔; 𝜉)𝑔(𝑋)
]

> 0

Proposition A.2. Under Restriction A.1,

lim
𝜉↓0

𝜕
𝜕𝜉

K(𝑔; 𝜉) = ∞

nd therefore the relative entropy constraint in Problem 4.1 binds for any value of 𝜅 > 𝜅.

Proof. An application of the Envelope Theorem gives that

𝜕
𝜕𝜉

K(𝑔; 𝜉) = − logE
(

exp
[

−1
𝜉
𝑔(𝑋) + 𝜆(𝑔; 𝜉) ⋅ 𝑓 (𝑋)

])

− 1
𝜉
E[𝑀2(𝑔; 𝜉)𝑔(𝑋)] − 𝜅

= 1
𝜉
H(𝑔; 𝜉) − 𝜅

here

H(𝑔; 𝜉) = −𝜉 logE
(

exp
[

−1
𝜉
𝑔(𝑋) + 𝜆(𝑔; 𝜉)𝑓 (𝑋)

])

− E[𝑀2(𝑔; 𝜉)𝑔(𝑋)].

Applying L’Hôpital’s rule, we see that

lim
𝜉↓0

H(𝑔; 𝜉) = lim
𝜉↓0

E
[

𝑀1(𝑔; 𝜉)𝑔(𝑋)
]

− E
[

𝑀2(𝑔; 𝜉)𝑔(𝑋)
]

> 0.

The result follows. □

28 For computational purposes, there may be no reason to use the change of measure.
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Restriction A.1 is difficult to verify in practice. To make things more concrete, we give two somewhat general examples under
hich the relative entropy constraint will bind.

Example A.3 establishes that the relative entropy constraint will bind in Problem 4.1 whenever the target random variable 𝑔(𝑋)
as a lower bound 𝑔 with arbitrarily small probability near that bound.

Example A.3. For simplicity, omit the moment condition E[𝑀𝑓 (𝑋)] = 0. Suppose that

(i) 𝑒𝑠𝑠 𝑖𝑛𝑓 [𝑔(𝑋)] = 𝑔 > −∞,
(ii) lim𝜖→0 𝖯

{

𝑔(𝑋) ⩽ 𝑔 + 𝜖
}

= 0,

Then for any 𝜅 > 0, the relative entropy constraint in Problem 4.1 will bind.

Example A.3 rules out indicator functions for the choice of 𝑔. Bounding such functions may be of interest if the econometrician
wishes to consider bounds on distorted probabilities. We consider a version that allows for these in Example A.4

Example A.4. We consider a scalar moment condition with a support condition and consider bounds on indicator functions of the
moment function. Suppose

(i) 𝑓 (𝑋) is a scalar random variable;
(ii) 𝑒𝑠𝑠 𝑠𝑢𝑝(𝑓 (𝑋)) = 𝗎 < ∞,

(iii) lim𝜖→0 𝖯 {𝑓 (𝑋) ⩾ 𝗎 − 𝜖} = 0.
(iv) 𝑔(𝑋) = 𝟏{𝑓 (𝑋)⩾−𝗋} for 𝗋 > 0;

Then for any 𝜅 > 0, the relative entropy constraint in Problem 4.1 will bind.

The statement that the relative entropy constraint binds for any 𝜅 > 0 in Examples A.3 and A.4 follows immediately from
Lemmas A.5 and A.6 respectively. These two examples suggest that the relative entropy constraint will bind in many cases of
interest even for arbitrarily large choices of 𝜅.

A.5. Auxiliary results

Lemma A.5. Let 𝑔 = 𝑒𝑠𝑠 𝑖𝑛𝑓𝑔(𝑋) and assume that

lim
𝜖→0

𝖯
{

𝑔(𝑋) ⩽ 𝑔 + 𝜖
}

= 0.

hen for any 𝜅 > 0, there exists a constant 𝜁 > 𝑔 such that for any belief distortion 𝑀 satisfying 𝑀 ⩾ 0, E[𝑀] = 1, and E[𝑀𝑔(𝑋)] ⩽ 𝜁 ,
e must have that E[𝑀 log𝑀] > 𝜅.

roof. Write

ℎ(𝜖) = 𝖯
{

𝑔(𝑋) ⩽ 𝑔 + 𝜖
}

and observe that ℎ(𝜖) > 0 and ℎ(𝜖) → 0 as 𝜖 → 0. Define an event 𝐴(𝜖) by

𝐴(𝜖) =
{

𝑔(𝑋) ⩽ 𝑔 + 𝜖
}

Now, let 𝜁 = 𝑔 + 𝜖
2 . Then for any 𝑀 satisfying the constraints, we have that

𝑔 + 𝜖
2
⩾ E[𝑀𝑔(𝑋)]

= E
[

𝑀𝑔(𝑋)𝟏𝐴(𝜖)
]

+ E
[

𝑀𝑔(𝑋)𝟏𝐴(𝜖)𝑐
]

⩾ 𝑔 E
[

𝑀𝟏𝐴(𝜖)
]

+ (𝑔 + 𝜖)E
[

𝑀𝟏𝐴(𝜖)𝑐
]

⩾ 𝑔 + 𝜖E
[

𝑀𝟏𝐴(𝜖)𝑐
]

= 𝑔 + 𝜖 (1 −𝑄(𝜖;𝑀))

where 𝑄(𝜖;𝑀) = E
[

𝑀𝟏𝐴(𝜖)
]

. Rearranging, we obtain the bound

1
2
⩾ 1 −𝑄(𝜖)

hich simplifies to

𝑄(𝜖) ⩾ 1
2
.

It follows that

E [𝑀|𝐴(𝜖)] =
E[𝑀𝟏𝐴(𝜖)]

[ ] =
𝑄(𝜖) ⩾ 1 .
27
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Additionally, since 𝑀 ⩾ 0 we have the trivial inequality

E
[

𝑀|𝐴(𝜖)𝑐
]

⩾ 0.

Now, let  (𝜖) denote the 𝜎-algebra generated by the event 𝐴(𝜖). Applying Jensen’s inequality conditional on  (𝜖) to the relative
ntropy, we obtain

E[𝑀 log𝑀] ⩾ E
[

E[𝑀| (𝜖)] log (E[𝑀| (𝜖)])
]

= ℎ(𝜖)
𝑄(𝜖)
ℎ(𝜖)

log
[

𝑄(𝜖)
ℎ(𝜖)

]

+ [1 − ℎ(𝜖)]
(

−1
𝑒

)

⩾ 1
2
log

[

1
2ℎ(𝜖)

]

− 1
𝑒

here the second term comes from the fact that the function 𝜙(𝑚) = 𝑚 log𝑚 is bounded from below by −𝑒−1. Choosing 𝜖 sufficiently
small so that the lower bound exceeds 𝜅 gives the desired result. □

Lemma A.6. Let 𝑓 (𝑋) be a scalar random variable. Assume that 𝑀 ⩾ 0, E[𝑀] = 1, E[𝑀𝑓 (𝑋)] = 0 and that 𝖯 {𝑓 (𝑋) ⩽ 𝗎} = 1. Then
or any 𝗋 > 0

E[𝑀𝟏(𝑓 (𝑋) ⩽ −𝑟)] ⩽ 𝗎
𝗎 + 𝗋

Proof.

0 = E[𝑀𝑓 (𝑋)]

= E
[

𝑀𝑓 (𝑋)𝟏{𝑓 (𝑋)⩽−𝗋}
]

+ E
[

𝑀𝑓 (𝑋)𝟏{𝑓 (𝑋)>−𝗋}
]

⩽ −𝗋E
[

𝑀𝟏{𝑓 (𝑋)⩽−𝗋}
]

+ 𝗎E
[

𝑀𝟏{𝑓 (𝑋)>−𝗋}
]

⩽ −(𝗎 + 𝗋)E
[

𝑀𝟏{𝑓 (𝑋)⩽−𝗋+𝗎}
]

.

earranging gives the desired result. □

Note that this upper bound is sharp so long as 𝑋 has strictly positive density near 𝑥 and −𝑟. It can be approximated by letting
approach a two-point distribution with a point mass at 𝑥 with probability 𝜋 = 𝑥

𝑥+𝑟 and a point mass at −𝑟 with probability
1 − 𝜋 = 𝑟

𝑥+𝑟 .

Lemma A.7. Let 𝗎 = ess sup 𝑓 (𝑋) and assume that

lim
𝜖→0

𝖯(𝑓 (𝑋) ⩾ 𝗎 − 𝜖) = 0

Then for any 𝜅 > 0 and 𝗋 > 0 such that 𝖯{𝑓 (𝑋) ⩽ −𝗋} > 0, there exists a constant 𝛿 > 0 such that for any belief distortion 𝑀 satisfying
𝑀 ⩾ 0, E[𝑀] = 1, E[𝑀𝑓 (𝑋)] = 0 and

E[𝑀𝟏{𝑓 (𝑋)⩽−𝗋}] ⩾
𝗎

𝗎 + 𝗋
− 𝛿,

e must have that E[𝑀 log𝑀] > 𝜅.

roof. Write

ℎ(𝜖) = 𝑃 (𝑓 (𝑋) ⩾ 𝗎 − 𝜖)

and observe that ℎ(𝜖) > 0 and ℎ(𝜖) → 0 as 𝜖 → 0.
Now, take 𝜖 ∈ (0, 𝗎 + 𝗋) and define the following events

𝐴 = {𝑓 (𝑋) ⩽ −𝗋}

𝐵(𝜖) = {−𝗋 < 𝑓 (𝑋) < 𝗎 − 𝜖}

𝑆(𝜖) = {𝑓 (𝑋) ⩾ 𝗎 − 𝜖}.

Observe that 𝐴, 𝐵(𝜖) and 𝑆(𝜖) are mutually exclusive. Using the fact that 𝟏𝐵(𝜖) = 1 − 𝟏𝐴 − 𝟏𝑆(𝜖) with probability one, we obtain

0 = E[𝑀𝑓 (𝑋)]

= E[𝑀𝑓 (𝑋)𝟏𝐴] + E[𝑀𝑓 (𝑋)𝟏𝐵(𝜖)] + E[𝑀𝑓 (𝑋)𝟏𝑆(𝜖)]
⩽ −𝗋E[𝑀𝟏𝐴] + (𝗎 − 𝜖)E[𝑀𝟏𝐵(𝜖)] + 𝗎E[𝑀𝟏𝑆(𝜖)]
= −𝗋E[𝑀𝟏𝐴] + (𝗎 − 𝜖)E[𝑀(1 − 𝟏𝐴 − 𝟏𝑆(𝜖))] + 𝗎E[𝑀𝟏𝑆(𝜖)]
⩽ (𝗎 − 𝜖) − (𝗎 + 𝗋 − 𝜖)E[𝑀𝟏𝐴] + 𝜖E[𝑀𝟏𝑆(𝜖)].
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Rearranging, we obtain the lower bound

E[𝑀𝟏𝑆(𝜖)] ⩾
(𝗎 + 𝗋 − 𝜖)

𝜖

(

E[𝑀𝟏𝐴] −
𝗎 − 𝜖

(𝗎 + 𝗋 − 𝜖)

)

Now, for any 𝑀 such that

E[𝑀𝟏𝐴] ⩾
𝗎

𝗎 + 𝗋
− 𝜖

2
𝗋

(𝗎 + 𝗋)(𝗎 + 𝗋 − 𝜖)

we have that

E[𝑀𝟏𝑆(𝜖)] ⩾
(𝗎 + 𝗋 − 𝜖)

𝜖

(

𝗎
𝗎 + 𝗋

− 𝜖
2

𝗋
(𝗎 + 𝗋)(𝗎 + 𝗋 − 𝜖)

− 𝗎 − 𝜖
(𝗎 + 𝗋 − 𝜖)

)

⩾ (𝗎 + 𝗋 − 𝜖)
𝜖

(

𝜖
2

𝗋
(𝗎 + 𝗋)(𝗎 + 𝗋 − 𝜖)

)

⩾ 1
2

𝑟
𝗎 + 𝗋

t follows that

E[𝑀|𝑆(𝜖)] =
E[𝑀𝟏𝑆(𝜖)]
E[𝟏𝑆(𝜖)]

⩾ 1
2ℎ(𝜖)

𝗋
𝗎 + 𝑟

.

ow, let  (𝜖) denote the 𝜎-algebra generated by the event 𝑆(𝜖). Applying Jensen’s inequality conditional on  (𝜖) to the function
(𝑚) = 𝑚 log𝑚, we obtain

E[𝑀 log𝑀] ⩾ E
[

E[𝑀| (𝜖)] log (E[𝑀| (𝜖)])
]

⩾ ℎ(𝜖)
E[𝑀𝟏𝑆(𝜖)]

ℎ(𝜖)
log

(E[𝑀𝟏𝑆(𝜖)]
ℎ(𝜖)

)

+ (1 − ℎ(𝜖))
(

−1
𝑒

)

⩾ 1
2

𝗋
𝗎 + 𝗋

log
(

1
2ℎ(𝜖)

𝗋
𝗎 + 𝗋

)

− 1
𝑒
.

Note that we have used the inequality 𝑥 log 𝑥 ⩾ − 1
𝑒 for all 𝑥 ∈ R. Now choosing 𝜖 sufficiently small so that the lower bound exceeds

𝜅 gives the desired result. □

Appendix B. More details for Section 7

To simplify notation we let 𝜇𝑎 = (𝜉, 𝜇′)′ and 𝜇𝑎𝑜 = (𝜉𝑜, 𝜇′𝑜)
′. Similar to Problem 6.9, for each fixed 𝜃, the optimization problem (35),

is a standard 𝑀-estimation problem with concave criterion in 𝜇𝑎. Therefore we easily obtain that problem (35) provides consistent
estimators 𝜇̂𝑎(𝜃) = (𝜉(𝜃), 𝜇̂(𝜃)′)′ for 𝜇𝑎𝑜 (𝜃), and

𝑇 (𝜃) = max
𝜇𝑎

1
𝑇

𝑇
∑

𝑡=1
𝐹 (𝑋𝑡, 𝜇

𝑎, 𝜃) = 1
𝑇

𝑇
∑

𝑡=1
𝐹 (𝑋𝑡, 𝜇̂

𝑎(𝜃), 𝜃) .

We also obtain similar asymptotic results as follows:

√

𝑇
[

𝑇 (𝜃) −(𝜃)
]

= 1
√

𝑇

𝑇
∑

𝑡=1

[

𝐹 (𝑋𝑡, 𝜇̂
𝑎(𝜃), 𝜃) − 𝐹 (𝑋𝑡, 𝜇

𝑎
𝑜 (𝜃), 𝜃)

]

+ 𝐹 𝑜𝑇 (𝜃) (41)

here

𝐹 𝑜𝑇 (𝜃) ≝
1

√

𝑇

𝑇
∑

𝑡=1

[

𝐹 (𝑋𝑡, 𝜇
𝑎
𝑜 (𝜃), 𝜃) −(𝜃)

]

.

We again show that only the term 𝐹 𝑜𝑇 (𝜃) contributes to the approximation (41). Again due to the concavity of 𝐹 in 𝜇𝑎 for each 𝜃, a
gradient inequality for such functions implies that

0 ⩽ 1
√

𝑇

𝑇
∑

𝑡=1

[

𝐹 (𝑋𝑡, 𝜇̂
𝑎(𝜃), 𝜃) − 𝐹 (𝑋𝑡, 𝜇

𝑎
𝑜 (𝜃), 𝜃)

]

⩽ [𝜇̂𝑎(𝜃) − 𝜇𝑎𝑜 (𝜃)] ⋅ ℎ
𝑜
𝑇 (𝜃),

where

ℎ𝑜𝑇 (𝜃) ≝
1

√

𝑇

𝑇
∑

𝑡=1

𝜕𝐹
𝜕𝜇𝑎

(𝑋𝑡, 𝜇
𝑎
𝑜 (𝜃), 𝜃).

This leads us to make the following assumption similar to Assumption 6.10.
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Assumption B.1.

(i) The empirical process {𝐹 𝑜𝑇 (𝜃) ∶ 𝜃 ∈ 𝛩} is Donsker, which converges weakly to a tight Gaussian process {𝑜(𝜃) ∶ 𝜃 ∈ 𝛩} with
zero mean and covariance function

𝐶𝑜(𝜃1, 𝜃2) ≝ lim
𝑇→∞

𝐶𝑜𝑣
[

𝐹 𝑜𝑇 (𝜃1), 𝐹
𝑜
𝑇 (𝜃2)

]

=
∞
∑

𝑗=−∞
𝐶𝑜𝑣

[

𝐹 (𝑋1, 𝜇
𝑎
𝑜 (𝜃1), 𝜃1), 𝐹 (𝑋1+𝑗 , 𝜇

𝑎
𝑜 (𝜃2), 𝜃2)

]

for any 𝜃1, 𝜃2 ∈ 𝛩.
(ii) The empirical process {ℎ𝑜𝑇 (𝜃) ∶ 𝜃 ∈ 𝛩} is Donsker, which converges weakly to a tight Gaussian process {ℎ𝑜 (𝜃) ∶ 𝜃 ∈ 𝛩} with

zero mean and covariance function

𝐕𝑜(𝜃1, 𝜃2) ≝ lim
𝑇→∞

𝐶𝑜𝑣
[

ℎ𝑜𝑇 (𝜃1), ℎ
𝑜
𝑇 (𝜃2)

]

=
∞
∑

𝑗=−∞
𝐶𝑜𝑣

[

𝜕𝐹
𝜕𝜇𝑎

(𝑋1, 𝜇
𝑎
𝑜 (𝜃1), 𝜃1),

𝜕𝐹
𝜕𝜇𝑎

(𝑋1+𝑗 , 𝜇
𝑎
𝑜 (𝜃2), 𝜃2)

]

esult B.2. Under Assumption B.1, we obtain the following result:

1.
√

𝑇
[

𝑇 (𝜃) −(𝜃)
]

= 𝐹 𝑜𝑇 (𝜃) + 𝑜𝑝(1) uniformly in 𝜃 ∈ 𝛩,
and converges weakly to the Gaussian process {𝑜(𝜃) ∶ 𝜃 ∈ 𝛩}.

2.
√

𝑇
[

𝜇̂𝑎(𝜃) − 𝜇𝑎𝑜 (𝜃)
]

= −
[

𝐇𝑎
𝑜(𝜃)

]−1 ℎ𝑜𝑇 (𝜃) + 𝑜𝑝(1) uniformly in 𝜃 ∈ 𝛩,
and converges weakly to a tight Gaussian process {

[

𝐇𝑎
𝑜(𝜃)

]−1 ℎ𝑜 (𝜃) ∶ 𝜃 ∈ 𝛩}.

Here for any 𝜃 ∈ 𝛩, 𝐇𝑎(𝜇𝑎, 𝜃) ≝ E
[

𝜕2𝐹
𝜕𝜇𝑎𝜕𝜇𝑎′ (𝑋, 𝜇

𝑎, 𝜃)
]

, and 𝐇𝑎
𝑜(𝜃) ≝ 𝐇𝑎(𝜇𝑎𝑜 , 𝜃) is negative definite.

.1. Numerical weighted bootstrap

We let {𝑊𝑡}𝑇𝑡=1 be a positive correlated random vector that is independent of the original time series data {𝑋𝑡}𝑇𝑡=1 and satisfies
he following assumption.

ssumption B.3. (i) {𝑊𝑡}𝑇𝑡=1 is strictly stationary and independent of data {𝑋𝑡}𝑇𝑡=1;
(ii) 𝐸[𝑊𝑡] = 1, 𝑉 𝑎𝑟[𝑊𝑡] = 1, 𝐸[(𝑊𝑡)3] < ∞, 𝐶𝑜𝑣(𝑊𝑡,𝑊𝑡+𝑗 ) = 𝜔(𝑗∕𝐽 ), where 𝜔() is a positive symmetric kernel function with lag

runcation parameter 𝐽 .

We note that

𝐸[𝐹 𝑏𝑇 (𝜃)|𝐗] = 0

nd

𝐶𝑜𝑣[𝐹 𝑏𝑇 (𝜃1), 𝐹
𝑏
𝑇 (𝜃2)|𝐗] =

𝑇−1
∑

𝑗=−(𝑇−1)
𝜔(𝑗∕𝐽 )𝐶𝑇 ,𝑗 (𝜃1, 𝜃2),

𝐶𝑇 ,𝑗 (𝜃1, 𝜃2) =
1
𝑇

𝑇−𝑗
∑

𝑡=1
[𝐹 (𝑋𝑡, 𝜉(𝜃1), 𝜇̂(𝜃1), 𝜃1) −𝑇 (𝜃1)][𝐹 (𝑋𝑡+𝑗 , 𝜉(𝜃2), 𝜇̂(𝜃2), 𝜃2) −𝑇 (𝜃2)].

Following the proof in Chen and Fan (1999) for their proposition 5.1, we can show that conditional on the data {𝑋𝑡}𝑇𝑡=1, the process
{𝐹 𝑏𝑇 (𝜃) ∶ 𝜃 ∈ 𝛩} converges weakly to the Gaussian process {𝑜(𝜃) ∶ 𝜃 ∈ 𝛩}. Result 7.8 follows from Theorem 2.2 of Lachout (2005)
and Theorem 3.1 of Hong and Li (2018).

Let the bootstrap random weights {𝑊𝑡} satisfy Assumption B.3. Given Result 6.11, we have the following results.

Remark B.4.

1. Let 𝐹 ∗𝑏
𝑇 (𝜃) denote the weighted bootstrap counterpart to 𝐹 ∗

𝑇 (𝜃):

𝐹 ∗𝑏
𝑇 (𝜃) ≝ 1

√

𝑇

𝑇
∑

𝑡=1

[

(𝑊𝑡 − 1)[𝐹 (𝑋𝑡, 𝜇𝑇 (𝜃), 𝜃) − 𝑇 (𝜃)]
]

.

Conditional on the data, the bootstrap process {𝐹 ∗𝑏
𝑇 (𝜃) ∶ 𝜃 ∈ 𝛩} converges weakly to that of the process {𝐹 ∗

𝑇 (𝜃) ∶ 𝜃 ∈ 𝛩} and
{
√

𝑇
[

𝑇 (𝜃) − (𝜃)
]

∶ 𝜃 ∈ 𝛩}.
2. Let ℎ∗𝑏𝑇 (𝜃) denote the weighted bootstrap counterpart to ℎ∗𝑇 (𝜃):

ℎ∗𝑏𝑇 (𝜃) ≝ 1
√

𝑇
∑

[

(𝑊𝑡 − 1)[ 𝜕𝐹 (𝑋𝑡, 𝜇𝑇 (𝜃), 𝜃)]
]

.
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D

D
D
E

E
E
E

F
G
G

G
H
H

H
H

H
H
H
H

H

H
H

H

Conditional on the data, the bootstrap process {ℎ∗𝑏𝑇 (𝜃) ∶ 𝜃 ∈ 𝛩} converges weakly to that of the process {ℎ∗𝑇 (𝜃) ∶ 𝜃 ∈ 𝛩}.
Let 𝐇𝑇 (𝜃) be a consistent estimate of 𝐇∗(𝜃) using the original data, then the bootstrap process {−

[

𝐇𝑇 (𝜃)
]−1 ℎ∗𝑏𝑇 (𝜃) ∶ 𝜃 ∈ 𝛩}

converges weakly to that of the multiplier process {
√

𝑇
[

𝜇𝑇 (𝜃) − 𝜇∗(𝜃)
]

∶ 𝜃 ∈ 𝛩}.
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