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Abstract

We compare and contrast production economies exposed to long-run uncertainty

with investors that have possibly different preferences and/or access to financial mar-

kets. We study the macroeconomic and asset pricing properties of these models,

identify common features and highlight areas where these models depart from each

other. Our framework allows us to investigate more fully the impact of investor het-

erogeneity, capital heterogeneity, and fluctuations of the growth components to the

capital evolution as they affect the dynamics of macroeconomic quantities and as-

set prices. In our comparisons, we employ an array of diagnostic tools to explore

time-variation and state-dependencies in nonlinear environments.
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1 Introduction

Beware the person of one ���book model. Thomas Aquinas (almost)

An under-appreciated task in the study of dynamic macroeconomics is model compari-

son. This is especially true for models requiring numerical methods to solve and analyze.

While journals seemingly embrace publications that target specific models, there is much

to be gained by looking formally across models.

One strategy for making comparisons across models is to nest models within a common

framework in which each model of interest is a special case. At this juncture, we could

turn things over to a statistician to test which model within this nesting best fits the data.

This strategy makes the most sense when we could plausibly view one of the models within

the family as being “correctly specified,” given data. But in many cases, we see models as

providing valuable insights even when they are not designed to fit some agreed upon list

of favorite facts. As we explore nonlinear models more fully, this nesting-testing approach

becomes all the more challenging. But even for examples when linearized approximations

work well, the fitting all of some predesignated facts can lead to black box outcomes when

driven by the simplistic ambitions of “full” empirical success. Models end up with multi-

ple pieces often clouding the ability to isolate and understand better particular economic

mechanisms.

In this paper, we develop a framework and diagnostic tools for comparing and contrast-

ing dynamic macroeconomic models. The models that interest us require special attention

relative to most dynamic stochastic equilibrium models because of the important role played

by nonlinearity in the implied dynamic evolution. This nonlinearity has notable implica-

tions for both economic and financial market outcomes. Given these ambitions, our analysis

is explicitly numerical and not limited to “paper and pencil” style analyses. It is necessary

that we solve such models using global solution methods as the competitive equilibrium is

typically characterized by a set of highly nonlinear second-order elliptic partial differential

equations. Moreover, even with the option of numerical solutions, we find it revealing to

explore and compare highly stylized models featuring particular economic mechanisms. In

accompanying notebooks and user-friendly software, we propose and explore quantitative

methods that expose salient features of the macroeconomic and valuation dynamics of the

models we investigate. This essay provides illustrations of possible computations.

While we explore three different classes of a models, a common feature in all of them

is a long-run process altering investment opportunities. Our technologies can be viewed as
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production-based specifications inclusive of long-run risk. Analogous to Bansal and Yaron

(2004), we capture this risk with a continuous-time version of a first-order autoregressive

process. The process is meant to be a simple proxy for uncertainty of such phenomenon as

secular stagnation, technological progress or other forms of long-term uncertainty.

The first class of models is in some sense approximately linear. While including stochas-

tic growth following in the footsteps of Lucas and Prescott (1971) and Brock and Mirman

(1972), these models include single investor type and a single capital stock with a long-

run risk contribution to the investment opportunities. While we provide some sensitivity

analyses that are of interest in their own right, understanding this class of models sets the

stage for our subsequent investigations.

The second class of models considers specifications with two capital stocks differentially

exposed to macroeconomic shocks. Capital movements are sluggish in the sense that there

are adjustment costs in both capital technologies. This class of models extend those of

Eberly and Wang (2009) and Eberly and Wang (2011). We investigate the consequences of

heterogeneous technological exposure to long-run risk in conjunction with motives for diver-

sification. Including production in which the two capital stocks are not perfect substitutes

adds an additional economic channel with interesting nonlinear impacts.

The third class of models, motivated in part by financial crises like 2008, considers two

heterogeneous investor types. These agents can differ in skill, preferences, or contractual

and regulatory constraints. Dynamic trading between these heterogeneous investors induces

potentially dramatic economic and financial market outcomes in some states of the world,

especially those in which constraints are binding. Our exercise is motivated by a substantial

literature with a variety of different modeling ingredients. These include, for instance,

the models in Basak and Cuoco (1998), He and Krishnamurthy (2011), Brunnermeier and

Sannikov (2014), and Gârleanu and Panageas (2015). Recently, several papers have exposed

a more complex representation of the role of financial intermediation than that captured

by the stylized models we consider here. It is not our aim in this essay to survey this

literature. The models we consider, however, do have mechanisms that are of interest to

expose that enhance our understanding of nonlinear linkages between financial markets and

the macroeconomy, even if they miss some of the actual complexities that limit financial

intermediaries or other such specialists.
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2 Investor Preferences

In this essay we use a continuous-time specification of a Kreps and Porteus (1978) utility

recursion as in Duffie and Epstein (1992a) in connection with an information structure gen-

erated expressed in terms of a vector standard Brownian motion B
def
“ tBt : t ě 0u of dimen-

sion d. Thus we are imposing “local normality”. While shocks are normally distributed, we

entertain nonlinear transition mechanisms that permit endogenously determined variables

to possess transition probabilities and stationary distributions that are not even approx-

imately normal. In this section, we provide a heuristic link between the continuous-time

and discrete-time representation of preferences since the discrete-time formulation has been

used extensively in the quantitative asset pricing literature. The local normality does al-

low for some simplicity when we study continuous-time limiting economies. We do not

ask the reader to be knowledgeable of the subtleties associated with the continuous-time

mathematics.

2.1 Discrete-time

Continuation values provide a convenient way to specify recursive preferences. With this is

in mind, let V
def
“ tVt : t ě 0u be the continuation utility process where Vt is a date-t utility

index that summarizes current and future prospective contributions to preferences. In

discrete time with a time interval ϵ, we use two CES, homogeneous of degree one recursions

to represent the evolution of continuation values:

Vt “
“

r1 ´ expp´δϵqs pCtq
1´ρ

` expp´δϵqRpVt`ϵ | Ftq
1´ρ

‰

1
1´ρ

RpVt`ϵ | Ftq “
`

E
“

pVt`ϵq
1´γ

| Ft

‰˘

1
1´γ (1)

where Ft is the time-t information set. Notice that the second equation computes a certainty

equivalent with parameter γ. If the continuation utility Vt`ϵ is known at t, then γ has no

impact on the recursion since RpVt`ϵ | Ftq “ Vt`ϵ implying that this contribution is indeed

an adjustment for risk. Taking the two equations together, this is a forward looking-

recursion whereby we start with a terminal specification of the continuation utility and

work backwards. We consider infinite horizon counterparts in our computations. Notice

that this recursive specification is governed by three underlying parameters:

i) δ – the subjective discount rate;
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ii) ρ – the inverse of the intertemporal elasticity of substitution (the “IES”);

iii) γ – the risk aversion.

In some later examples, we will have two investor types with possibly heterogenous speci-

fications of the preference parameters pδ, ρ, γq.

Two benchmark special cases of these preferences are: ρ “ γ and ρ “ 1. When ρ “ γ,

this utility recursion defines preferences that are equivalent to those implied by discounted,

time-separable, power utility. Specifically, when γ “ ρ, by solving the recursion forward, it

follows that:

Vt “

˜

E

«

1

1 ´ expp´δϵq

8
ÿ

j“0

expp´δjϵq pCt`jϵq
1´γ

| Ft

ff¸
1

1´γ

, if ρ “ γ. (2)

Imposing ρ “ 1 implies a unitary IES, and the limiting recursion has a Cobb-Douglas

representation:

Vt “ pCtq
r1´expp´δϵqs

rRpVt`ϵ | Ftqs
expp´δϵq , if ρ “ 1.

Continuation values are only defined up to increasing transformations. Numerical and

conceptual convenience lead us to use pVt “ log Vt. (We will always use the notation “ pX” to

designate the logarithm of a variable X.) The logarithmic counterparts to the underlying

recursions are given by:

pVt “
1

1 ´ ρ
log

”

r1 ´ expp´δϵqs pCtq
1´ρ

` expp´δϵq exp
”

p1 ´ ρqpRppVt`ϵ | Ftq

ıı

pR
´

pVt`ϵ | Ft

¯

“
1

1 ´ γ
log

´

E
”

exprp1 ´ γqpVt`ϵs | Ft

ı¯

. (3)

For this representation, ρ “ γ “ 1 is a relevant benchmark whereby the recursions become:

pVt “ r1 ´ expp´δϵqs logCt ` expp´δϵqpRppVt`ϵ | Ftq

pRppVt`ϵ | Ftq “ ErpVt`ϵ | Fts, (4)

which has discounted logarithmic utility scaled by r1 ´ expp´δϵqs as the solution.
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2.2 Robustness to model misspecification

The recursive utility representation (1) can also be interpreted through the lens of robust

control theory. To begin with, consider a positive random variable Lt`ϵ with unit condi-

tional expectation — a convenient mathematical device pertinent to models of subjective

beliefs that are distinct from those implied by the data generating process:

E pLt`ϵ | Ftq “ 1.

Think of Lt`ϵ as a relative density (likelihood ratio) that alters the transition probability

from t to t`ϵ. To obtain the implied subjective conditional expectations, multiply the next-

period random variables by Lt`ϵ prior to forming the conditional expectations. For instance,

the implied subjective expectation of next period’s continuation value is EpLt`ϵ
pVt`ϵ | Ftq.

While a subjective belief specification allows for departures from a “rational expecta-

tions” assumption that investors know the data generating process, we use the modeling

approach differently. Suppose that the investor has a benchmark model of the transition

probabilities without full confidence in that specification. This skepticism is expressed by

entertaining other models, with a particular interest in ones that are “statistically close”

to the benchmark model. This approach has antecedents in the robust control literature.1

Formally, solve

min
Lt`ϵě0

EpLt`ϵ|Ftq“1

E
´

Lt`ϵ
pVt`ϵ | Ft

¯

` ξE pLt`ϵ logLt`ϵ | Ftq “ ´ξ logE
„

exp

ˆ

´
1

ξ
pVt`ϵ

˙

| Ft

ȷ

, (5)

which is familiar from applied probability theory. This minimization problem investigates

the expected utility consequences of altering the probability distribution subject to a condi-

tional relative entropy penalty used as a Kullback-Leibler measure of statistical divergence.

The parameter ξ penalizes the search over alternative probabilities. Setting ξ “ 8 imple-

ments expected logarithmic utility. Small values of the penalty imply a large aversion to

uncertainty about the transition probabilities.

The minimizing solution to problem (5) is:

L˚
t`ϵ “

exp
´

´1
ξ

pVt`ϵ

¯

E
”

exp
´

´1
ξ

pVt`ϵ

¯

|Ft

ı , (6)

1See, for instance, Jacobson (1973), Whittle (1981), James (1992), and Petersen et al. (2000).
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provided that the denominator is well defined. This formulation gives an example of what

Maccheroni et al. (2006) call variational preferences designed to confront broader notions of

uncertainty other than risk. The implied minimizer is of interest for the reasons articulated

by the robust Bayesian, Good (1952), as a way to assess plausibility. Moreover, the implied

measure of statistical divergence is revealing as a measure of statistical challenges implicit

in the choice of the penalty parameter ξ.

This construction is an alternative interpretation for the large risk aversion often im-

posed in recursive utility models. The mathematical equivalence can be seen by letting

ξ “ 1
γ´1

. The economic interpretation, however, is very different as is the assessment of

what are plausible calibrations.

2.3 Continuous-time limit

To depict the continuous-time counterpart to equation (1), suppose that the continuation

utility evolves as:2

dpVt “ µ̂v,tdt ` σv,t ¨ dBt.

where µ̂v,t is the local mean and |σv,t|
2 is local variance. In positing this evolution we are

using local normality induced by the Brownian increments to deduce the local normality

of the continuation utility increments.

The limiting version of recursion (1) gives the following restriction on pµ̂v,t, |σv,t|
2q:

0 “

ˆ

δ

1 ´ ρ

˙

“

pCt{Vtq
1´ρ

´ 1
‰

` µ̂v,t `

ˆ

1 ´ γ

2

˙

|σv,t|
2. (7)

For the unitary IES case (ρ “ 1), equation (7) becomes:

0 “ δ
´

pCt ´ pVt

¯

` µ̂v,t `

ˆ

1 ´ γ

2

˙

|σv,t|
2 (8)

Equations (7)-(8) provide an expression for the local mean µ̂v,t as a function of pCt ´ pVt and

the local variance |σv,t|
2.3

2Starting with V instead of pV , we would write dVt “ Vtrµv,tdt` σv,t ¨ dBts where µ̂v,t “ µv,t ´ 1
2 |σv,t|

2.
3We find this representation to be both pedagogically revealing with a direct heuristic link to familiar

discrete-time specifications. Continuation values are only well defined up to a strictly increasing transfor-
mation as emphasized by Duffie and Epstein (1992a). For mathematical reasons, often a different ordinally
equivalent representation, pVtq

1´γ{p1 ´ γq, is used in many papers constructed to remove the volatility
contribution to the recursion.
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Consider once again the robust interpretation of our recursive preferences and the min-

imization problem (5). This problem has a simplified version in the case of a Brownian

motion information structure. Let L be a positive martingale or likelihood ratio used to

induce an alternative probability distribution. From the Girsanov Theorem, under the

probability measure induced by L, the process B becomes a Brownian motion with a drift

H
def
“ tHt : t ě 0u. Locally, the Brownian increment dBt inherits a drift Htdt. The

evolution of L thus takes the form

dLt “ LtHt ¨ dBt

and in logarithms:

dpLt “ ´
1

2
|Ht|

2dt ` Ht ¨ dBt

with normalization L0 “ 1 or equivalently pL0 “ 0. Under the implied change of probability

measure, the drift of pL is ´1
2
|Ht|

2 — a local measure of Kullback-Leibler divergence or

relative entropy. The continuous-time formulation of (5) then becomes

min
Ht

µ̂v,t ` σv,tHt `
ξ

2
|Ht|

2.

The minimizing Ht is

H˚
t “ ´

1

ξ
σv,t

1 (9)

with a minimized objective given by:

pµv,t ´
1

2ξ
|σv,t|

2.

Comparing this result to the limiting recursion (7), and consistent with our discrete time

discussion of section 2.2, the parameter γ can be viewed as a form of uncertainty aversion,

instead of a measure of risk aversion, when using γ ´ 1 “ 1{ξ.

2.4 Stochastic discount factor process

We deduce a representation for the shadow stochastic discount factor (SDF) process in

discrete and continuous time. For economies with a single agent type, this shadow SDF

provides a convenient representation of equilibrium asset prices. In heterogeneous agent

economies with financing frictions, the shadow SDFs are typically not equalized across
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agents types but they can be used to represent commonly traded assets. Moreover, their

differences reflect the absence of full risk sharing induced by market frictions.

Think of the SDF process S as providing a way to depict shadow prices over any

investment horizon. In particular, St`ϵ{St in conjunction with the transition probabilities

associated with an underlying probability measure give date-t prices for a payoff at date

t ` ϵ. Deduce the shadow SDF process by computing the intertemporal marginal rate of

substitution across different possible realized states in the future. By differentiating through

the utility recursion, the evolution over a period of length ϵ, expressed in logarithms, is

pSt`ϵ´ pSt “ ´ϵδ´ρ
´

pCt`ϵ ´ pCt

¯

`p1´γq

”

pVt`ϵ ´ pRppVt`ϵ | Ftq

ı

`pρ´1q

”

pVt`ϵ ´ pRppVt`ϵ | Ftq

ı

.

Of particular interest, the term p1 ´ γqrpVt`ϵ ´ pRppVt`ϵ | Ftqs adjusts for risk or robustness.

Its exponential has conditional expectation equal to unity and is equal to the minimizer

L˚
t`ϵ in (6). Thus, this particular contribution to the SDF induces a change in the prob-

ability distribution motivated explicitly by robustness considerations. More generally, the

difference between pVt`ϵ and its certainty equivalent pRt is forward looking and depends on

the decision maker’s perspective of the future. This contribution vanishes when γ “ ρ.

When ρ “ 1, only the change in measure contribution is forward looking.

Consider next the local evolution of the SDF. Write:

dSt “ ´rtStdt ´ Stπt ¨ dBt

With this representation, rt is the instantaneous risk-free rate and πt is the vector of local

prices of exposure to the Brownian increment dBt, also called “risk prices”. Similarly, write

the local consumption evolutions as:

d pCt “ µ̂c,tdt ` σc,t ¨ dBt.

Then, in terms of the dynamics of pC and pV (above), we have the following riskless rate

and risk prices

rt “ δ ` ρµ̂c,t ´
1

2
|πt|

2
`

pγ ´ 1qpγ ´ ρq

2
|σv,t|

2

πt “ ρσc,t ` pγ ´ ρqσv,t.
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3 Local measures of exposures and prices

In all the models we consider, the logarithms of several quantities of interest will grow

or decay stochastically over time with increments that are stationary Markov processes.

Let M be such a process and xM its logarithm. Restrict the process xM to display linear,

stochastic growth or decay. Write

xMt`ϵ ´ xMt “ ϵµ̂mpXtq ` σmpXtq ¨ pBt`ϵ ´ Btq (10)

where X is an asymptotically stationary Markov process. Examples of such xM processes

in our models are the log SDF pS and log consumption pC.

3.1 Shock elasticities

Shock elasticities are constructed using local changes in the exposure to shocks. For in-

stance, consider a shock, Bϵ ´ B0 that is distributed as a multivariate standard normal.

We introduce a parameterized family of random variables Hϵprq where

logHϵprq “ rνpX0q ¨ pBϵ ´ B0q ´
r2

2
ϵ|νpX0q|

2.

where we normalize the row vector ν so that E r|νpX0q|2s “ 1. In our applications, ν is state

independent and selects one of the components of Bϵ ´ B0. Notice that Hϵprq is positive

and has conditional expectation equal to one. Consider:

d

dr
logE

„ˆ

Mt

M0

˙

Hϵprq | X0

ȷ
ˇ

ˇ

ˇ

ˇ

r“0

“

νpX0q ¨ E
”´

Mt

M0

¯

pBϵ ´ B0q | X0

ı

E
”´

Mt

M0

¯

| X0

ı . (11)

We refer the outcome as a shock elasticity because we differentiate a logarithm with respect

to an argument Hϵprq which is equal to one at r “ 0. This elasticity depends on the state

X0 and horizon t.

In formula (11), notice that the essential input is:

E
”´

Mt

M0

¯

pBϵ ´ B0q | X0

ı

E
”´

Mt

M0

¯

| X0

ı , (12)
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which is a “distorted expectation” of the shock Bϵ ´ B0. When scaled by 1
ϵ
, this has well

defined diffusion limit as ϵ Ó 0. This limit has been characterized in the stochastic process

literature as “Malliavin derivative” and can be computed numerically in a straightforward

way for Markovian economies. See Borovička et al. (2014) for further discussion.

The scaling by Hϵ in formula (11) (or its continuous time limit) has two distinct inter-

pretations depending on the application:

i) it changes the distribution of Bϵ by giving it a conditional mean ϵrνpX0q

ii) it changes the exposure of xMt ´ xM0, and hence Mt{M0, to the shock Bϵ ´B0 through

the addition of rνpX0q ¨ pBϵ ´ B0q.

The first of these interpretations provides a distributional version of an impulse re-

sponse function. It matches exactly for the linear, log-normal model, in which case X is

a multivariate, Gaussian vector autoregression, µ is affine in x, and ν and σm are vec-

tors of constants. Once we include nonlinearities, the state x can matter along with the

time horizon t. See Gallant et al. (1993) and Koop et al. (1996) for related constructs of

nonlinear impulse responses. For intertemporal asset pricing applications, the second inter-

pretation will help us understand shock elasticities as implied compensations for changes

in the exposures. We discuss this asset pricing application next.

3.2 Compensations for exposure to uncertainty

Let pY denote the logarithm of a cash flow process, and let pS denote the equilibrium log

SDF process both of which have stochastic evolutions of the form (10). Compute:

i) exposure elasticity

νpX0q ¨ E
”´

Yt

Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

Yt

Y0

¯

| X0

ı ;

ii) value elasticity

νpX0q ¨ E
”´

StYt

S0Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

StYt

S0Y0

¯

| X0

ı ;
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iii) price elasticity (exposure minus value)

νpX0q ¨ E
”´

Yt

Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

Yt

Y0

¯

| X0

ı ´

νpX0q ¨ E
”´

StYt

S0Y0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

StYt

S0Y0

¯

| X0

ı ;

These all have well defined continuous-time limits as ϵ Ó 0. As mentioned above, one can

interpret the price elasticity as the expected excess return required for a marginal increase

in risk exposure to Y .

There is one additional calculation of interest. Suppose that L “ exppxMq is a mar-

tingale. This is of interest when we entertain beliefs that differ from the data generating

process and study their value contribution. From the Law of Iterated Expectations,

νpX0q ¨ E
”´

Lt

L0

¯

pBϵ ´ B0q | X0

ı

ϵE
”´

Lt

L0

¯

| X0

ı “

ˆ

1

ϵ

˙

νpX0q ¨ E
„ˆ

Lϵ

L0

˙

pBϵ ´ B0q | X0

ȷ

,

and does not depend on the horizon t. In this circumstance (and perhaps others as well),

we find it revealing to change the date of the Brownian increment by reporting the small

ϵ limit of
1

ϵ
E

„ˆ

Lt

L0

˙

νpXt´ϵq ¨ pBt ´ Bt´ϵq | X0

ȷ

(13)

as a term structure of “uncertainty prices.” These prices will be horizon dependent.

4 An initial benchmark economy

For pedagogical purposes, we begin our exposition by focusing on a “representative house-

hold” with recursive preferences in a complete-market production economy featuring long-

run-risk shocks. We may view the economy as a production-based counterpart to that in

the seminal paper by Bansal and Yaron (2004). In part we share a similar ambition to that

of Jermann (1998) in describing a production-based model with asset pricing, but we also

use this class of models as a benchmark for model classes that include heterogeneous capital

or heterogeneous investors. We follow Bansal and Yaron (2004) by focusing on recursive

utility in contrast to Jermann (1998), who features habit persistence preferences.

Since our benchmark model features complete markets, we study the planner problem

to characterize equilibrium quantities and prices in the economy. A decentralized version of
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the model allows for a rich set of assets locally spanning the Brownian increments along with

a riskless security. Risk prices are embedded in the stochastic discount factor evolution.

Even for a model with a single capital stock, the introduction of production and in-

vestment turns out to be important relative to endowment economies when we change

preference parameters. Much of the asset pricing literature features endowment economies

in which changes in the intertemporal elasticity of substitution (IES) have only a pricing

impact. As we will illustrate, in a production economy changing the IES has a substantial

impact on the investment/capital ratio and hence growth in the underlying economy.

4.1 Exogenous stochastic inputs

We presume that there are two underlying exogenous processes that evolve as solutions to

stochastic differential equations

dZ1
t “ ´β1Z

1
t dt `

a

Z2
t σ1 ¨ dBt (14)

dZ2
t “ ´β2pZ2

t ´ µ2qdt `
a

Z2
t σ2 ¨ dBt (15)

where β1 ą 0, β2 ą 1
2
|σ2|2, and µ2 ą 0. In addition, σ1, σ2, are d-dimensional vectors of

real numbers. The Z1 process governs the conditional mean of the stochastic component

to technology growth and the process Z2 captures the exogenous component to aggregate

stochastic volatility. Notice that
?
Z2 scales the Brownian increment to both of the pro-

cesses. The local variance of the exogenous technology shifter is Z2
t |σ1|2, and the local

variance for the stochastic volatility process is Z2
t |σ2|2.

The stochastic variance process Z2 is a special case of a Feller square root process. The

exogenous stochastic technology growth process, Z1, is a continuous-time version of an

autoregression with innovations that are conditionally heteroskedastic. The autoregressive

coefficients for discrete-time counterparts are expp´β1q, exp p´β2q. Values of β1 and β2

that are close to zero imply a large amount of persistence. The unconditional mean of Z1

is normalized to be zero, and the unconditional mean of Z2 in a stochastic steady state is

µ2. In what follows, we let

Zt
def
“

«

Z1
t

Z2
t

ff

µzpZtq
def
“

«

´β1Z
1
t

´β2pZ2
t ´ µ2q

ff

σz
def
“

a

Z2
t

«

σ1
1

σ2
1

ff

.
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4.2 Technology

We use a so-called AK technology with adjustment costs to represent production.4 Let Kt

be the stock of capital, It the investment rate, and Ct the consumption rate at date t. The

technology consists of two equations: an output and a capital evolution equation. Output

is constrained by:

Ct ` It “ αKt, (16)

where α is a fixed productivity parameter. Our capital accumulation equation features

aggregate shocks as follows:

dKt “ Kt

„

Φ

ˆ

It
Kt

˙

` βkZ
1
t ´ ηk

ȷ

dt ` Kt

a

Z2
t σk ¨ dBt, (17)

where ηk embeds an adjustment for depreciation and σk is a d ˆ 1 vector quantifying the

importance of the Brownian motion in generating stochastic returns to investment. The

function Φ, called the installation function by Hayashi (1982), is an increasing and concave

function. A leading example of Φ in our essay is

Φpiq “
1

ϕ
log p1 ` ϕiq . (18)

where i is a stand-in for a realization of the investment-capital ratio. The small i quadratic

approximation is:

Φpiq « i ´
ϕ

2
i2

We note this relationship since quadratic specifications are often imposed in the investment

literature.

By design, the technology is homogeneous of degree one in investment, capital and con-

sumption. This model has stochastic shocks that i) alter the physical returns to investment;

ii) shift the conditional mean of that investment; and iii) shift the aggregate volatility of

the technology. For such a stylized model, capital should be interpreted very broadly and

potentially should include human, organizational, and intangible contributions. The shock

to physical returns to investment is sometimes referred to as a “capital quality shock” or a

“technology shock.”5

4See, e.g., Cox et al. (1985), Merton (1973), Jones and Manuelli (1990) and Brock and Magill (1979).
5Our model is isomorphic to an AK model where productivity (instead of capital Kt) is being hit by

Brownian shocks, and in which adjustment costs also scale up and down with such shock.
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4.3 Value function

Given the homogeneity properties of both preferences and technology, the value function

scales linearly with the capital stock. It will be most convenient to work with the logarithm

of the value function, which we posit takes the following form:

pVt “ pKt ` υpZtq. (19)

We combine the evolutions of υpZtq and pKt to deduce a Hamilton-Jacobi-Bellman equation

for the function υ:

0 “ max
c`i“α

"ˆ

δ

1 ´ ρ

˙

`

c1´ρ exp rpρ ´ 1qυs ´ 1
˘

` Φpiq ` βkz1 ´ ηk ´
1

2
z2|σk|

2

`µz ¨
Bυ

Bz
`
z2
2
trace

"

σz
1 B2υ

BzBz1
σz

*

`
p1 ´ γqz2

2

ˇ

ˇ

ˇ

ˇ

σk ` σz
1 Bυ

Bz

ˇ

ˇ

ˇ

ˇ

2
+

, (20)

where c is the consumption-to-capital ratio and i is the investment-to-capital ratio. The

first-order condition for the optimal consumption-capital ratio, c˚, is:

δ rc˚
pzqs

´ρ exp rpρ ´ 1qυpzqs “ Φ1
rα ´ c˚

pzqs . (21)

Capital provides the sole source of wealth in this economy. Total wealth is given by the

continuation value divided by the marginal utility of consumption, evaluated at equilibrium

outcomes:6
1

δ
rc˚

pzqs
ρ exprp1 ´ ρqυpzqsk.

The implied price of capital is given by Qt “ qpZtq where

qpzq “
1

δ
rc˚

pzqs
ρ exprp1 ´ ρqυpzqs “

1

Φ1 rα ´ c˚pzqs
“ 1 ` ϕi˚pzq. (22)

The instantaneous capital return in this economy has an exposure to the vector, dBt, of

Brownian increments given by

σr,t “
a

Z2
t σk `

a

Z2
t

B ln q

Bz1
pZtqσz

6The two recursions in (1) are both homogeneous of degree one. From an infinite-dimensional version
of Euler’s Theorem, the continuation value divided by the marginal utility of consumption is the current
period shadow price of current and future consumption which equals wealth in equilibrium.
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where the first term captures the exposure of capital to the Brownian increments and the

second one reflects the exposure of valuation to these same increments.

4.4 Example economies

In contrast to the other economies that we study, this economy can be well approximated by

log-quadratic approximations. We use this as a benchmark to the study of economies that

are more explicitly nonlinear. We imagine a family of economies indexed by pρ, γ, δ, αq. Of

course other parameter sensitivity could also be explored. Our use of a production economy

provides a revealing contrast to the familiar Lucas (1978) endowment economy.

In consumption-based models with endowment specifications, the preference parameter

ρ has a substantial impact on the risk-free rate. In models with production, like the ones

we explore here, changing ρ while holding other parameters of preferences and technology

fixed, has a substantial impact on production and savings. Table 1 gives parameter values

that we hold fixed in these computations, and Table 2 reports the steady state investment-

and consumption-to-output ratios along with the steady state growth rate. The IES has a

dramatic impact on all these average macroeconomic aggregates.

ηk ϕ βk β1 β2 µ2

.04 8 .04 .056 .194 6.3 ˆ 10´6

Upper triangular Lower triangular

σk
?
12r.92 .40 0s

?
12r1 0 0s

σ1
?
12r0 5.7 0s

?
12r2.3 5.2 0s

σ2
?
12r0 0 .00031s

Table 1: Parameter values that we hold fixed for the one-capital model. The numbers for ηk, ϕ, β1, σk

and σ1 are such that, when multiplied by stochastic volatility, they match the parameters from Hansen
and Sargent (2021). In particular, the constant Z2 which scales our σk to match HS 2020 is 7.6 ˆ 10´6.
This is the 67th percentile of our Z2 distribution. While Hansen and Sargent (2021) use a lower triangular
representation for the two-by-two right block of r

σk
σ1

s , we use an observationally equivalent upper triangular
representation for most of the results. Both versions are listed here. Finally, the numbers for β2 and σ2

come from Schorfheide et al. (2018), but they are adjusted for approximation purposes as described in
Appendix A. In both cases, we use the medians of their econometric evidence as input into our analysis.
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ρ 0.67 1 1.5

consumption-output ratio 0.012 0.175 0.279

investment-output ratio 0.988 0.825 0.721

steady state growth rate 0.028 0.019 0.013

Table 2: Steady states for alternative specifications of ρ for α “ .092 and δ “ .01. These are computed by
setting shock variances to zero.

To diminish this impact, we change the productivity parameter α to pin down a common

growth rate in consumption. Table 3 reports the results. There is still a noticeable impact

of ρ on investment- and consumption-to-output ratios, but not nearly as dramatic. The

subjective discount rate also impacts these steady states by increasing the consumption-

to-output ratios as also seen by Table 3.

δ “ .01

ρ 0.67 1 1.5

consumption-output ratio 0.071 0.175 0.296

investment-output ratio 0.929 0.825 0.704

productivity pαq 0.082 0.092 0.108

growth rate 0.019 0.019 0.019

δ “ .015

ρ 0.67 1 1.5

consumption-output ratio 0.155 0.242 0.346

investment-output ratio 0.845 0.758 0.654

productivity pαq 0.090 0.100 0.116

growth rate 0.019 0.019 0.019

Table 3: Steady states adjusting the productivity parameter α to match a specific growth rate. These are
computed by setting the shock variances to zero.

We next consider shock exposure and shock price elasticities. We focus on the growth-

rate shock. The capital evolution shock is also quantitatively important. In contrast, the

impact of the stochastic volatility shock is quantitatively small.7 Stochastic volatility does

induce state dependence in the other shock elasticities as we will illustrate.

7The quantitative magnitudes could be amplified by pushing the mean reversion parameter β2 even
closer to zero, as is done in calibrations of asset pricing models.
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Consider the shock exposure elasticity, or equivalently the local impulse response func-

tion, for the investment-to-output ratio. Since output is proportional to capital, formula

(22) implies these are also approximately the elasticities for the price of capital (which is

affine in the investment-to-capital ratio). As Figure 1 shows, the responses to a growth rate

shock are positive when ρ ă 1 and negative when ρ ą 1. The elasticities are only modestly

sensitive to changing the risk aversion parameter γ, while they increase notably when the

subjective discount rate δ is increased.

Figure 1: Investment-output ratio exposure elasticities to a growth-rate shock. The elasticities are initial-
ized by setting the stochastic growth rate state to zero.

Finally, we consider both the shock exposure and price elasticities of consumption in

Figure 2. The consumption elasticity to a growth rate shock builds over time, as expected

given investment adjustment costs. The ρ “ 1 elasticities imitate those of an endowment

economy like the Bansal and Yaron (2004) economy (without stochastic volatility). The

risk aversion parameter γ has very little impact on these exposure elasticities, in contrast to

the price elasticities. As revealed by Figure 2, the shock price elasticities are very sensitive,

as expected, to the choice of γ. Recall the robustness interpretation of recursive utility,

where misspecification concerns contribute a martingale component to valuation. This

component comes to dominate as γ becomes larger and this leads to a relatively flat shock
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price elasticity trajectory.

Figure 3 shows how the elasticities depend on the initial level of volatility. The key

takeaway is that stochastic volatility provides exogenous fluctuations in risk pricing, in

contrast to some of the more endogenous mechanisms that we explore going forward. In

addition, as is well understood, a shock to exogenous volatility itself is priced under these

preferences, as shown via its shock price elasticity in the right panel.

Figure 2: Exposure and price elasticities for the growth rate shock. Perturbations are relative to the
equilibrium consumption process. The growth and volatility states are set to their medians.

Figure 3: Shock exposure and price elasticities for γ “ 8, ρ “ 1, and for alternative volatility quantiles.
The shock elasticities apply to the growth-rate shock.
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4.5 Endogenous fluctuations in valuation

Here we illustrate an endogenous channel induced by ambiguity aversion by building on

ideas from Chen and Epstein (2002), Hansen (2007), Andrei et al. (2019), and, in particular,

Hansen and Sargent (2021). As we will show, this adds a form of state dependence in

valuation. For this illustration we focus exclusively on the case in which ρ “ 1. To

feature the endogeneity of fluctuations in valuation, we abstract from exogenously specified

stochastic volatility in this subsection (by setting σ2 “ 0). In addition, we impose that

σk “

”

.0087 0.0038 0
ı

σ1 “

”

0 .055 0
ı

We follow Hansen and Sargent (2022) by considering both model ambiguity and poten-

tial model misspecification. Recall that recursive utility provides a direct link to the latter,

an approach that we continue to use here. For model ambiguity, we proceed differently.

Given a parameterized family of models, the investor is unsure how much weight should be

given to each. For a Bayesian decision maker, this would be addressed with subjective in-

puts in the form of a prior. Our investor is unsure which such prior to impose. Formally, we

use a framework for diffusion processes that is consistent with Chen and Epstein (2002) to

entertain a rich family of what Hansen and Sargent (2022) refer to as “structured” models.

In our application we start with a four-dimensional space of unknown parameters in the

drifts of capital K and the growth rate Z1. We modify the evolution of Z1 to be:

dZ1
t “

`

ψ1 ´ β1Z
1
t

˘

dt ` σ1 ¨ dBt

where the parameter ψ1, which we have taken to be zero so far, allows for a shift in the local

drift dynamics that does not scale with Z1. In the long-term, ψ1 ‰ 0 could induce a nonzero

unconditional mean in Z1 process. The unknown parameters are ηk, βk, ψ1, β1. Recall that

ηk governs depreciation and βk the exposure to long-term growth rate uncertainty. Our

investors take uncertainty in these parameters as a starting point, but they entertain a

so-called time varying parameter perspective without imposing a prior on the form of the

time variation. Instead, the parameters are constrained to be in an ambiguity set using a

recursive measure of relative entropy or Kullback-Leibler divergence as described in Hansen

and Sargent (2021).

We consider two specifications. One limits the ambiguity to be over the two slope
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parameters, pβk, β1q, and the other also includes the constant terms, pηk, ϕ1q. Figure 4

plots both the two-dimensional and four-dimensional ambiguity sets. By construction, the

projection of the slope coefficients for the four-dimensional set is contained within the two-

dimensional ambiguity set as depicted in the right panel of Figure 4.8 By design, this

approach entertains misspecification relative to a benchmark in a much more structured

way than that embedded in the robust interpretation of Kreps and Porteus (1978) utility.

Recall that in the standard continuous-time recursive formulation of dynamic program-

ming, the decision-maker maximizes the expected value-function increment by choice of a

control. In our recursive formulation of ambiguity, algorithmically a fictitious second-agent

minimizes the expected value function increment over the respective sets of parameter val-

ues, instant-by-instant. The minimizer will reside somewhere on the boundary and its

location will depend on the realized growth-rate state, z1. The problem is made tractable

in part because the minimization problem is quadratic. We also include potential model

misspecification in the same manner as described previously. As we have shown, γ “ 1

abstracts from misspecification concerns while larger values of γ enhance these concerns.

We illustrate the nonlinear outcome by reporting the implied uncertainty-adjusted (min-

imizing) drift for the long-run growth process in Figure 5. The downward slope of the line

in the baseline model governs the pull towards zero in the conditional mean dynamics for

Z1. The dashed and dot-dashed curves are the uncertainty-adjusted nonlinear counter-

parts. The dot-dashed curve includes misspecification concerns in addition to parameter

ambiguity. The left panel shows implications when the ambiguity consideration is limited

to the slope coefficients while the right panel illustrates outcomes when the ambiguity is

four-dimensional.

Observe that these curves are flatter for negative growth rates and steeper for positive

growth rates. This is to be expected because investors fear persistence when growth is

sluggish and the lack of persistence when growth is brisk. This outcome emerges in the

computations in part because of how the minimizing choice of β1 over the ambiguity set

displayed in Figure 4 depends on Z1. The investor is exploring the other parameters as

well, and the outcome of minimization also impacts a counterpart for drift specification for

capital.

While the one-capital model without ambiguity concerns can be approximately solved

using log-quadratic specification, the model with ambiguity requires a global alternative to

8We constructed these sets using, in the notation of Hansen and Sargent (2021), q “ 0.2 with ρ1 “ 0

and ρ2 “
q2

|σ1|2
for the two parameter case, and ρ2 “

q2

2|σ1|2
for the four parameter case.
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capture the potential nonlinearities that are entertained by the decision maker.

Figure 4: Ambiguity parameter sets constrained by a flow measure of relative entropy developed in Hansen
and Sargent (2021). The left panel of the plot depicts the ambiguity in the slope coefficients for the state
Z1
t in the capital evolution and the state evolution. The blue region plots two-dimensional ambiguity set

and red region gives two-dimensional projection for the four-dimensional ambiguity set. The red region in
the right panel gives the two-dimensional projection of the constant terms in the capital and state evolution
for the four parameter ambiguity set. Baseline values for the four parameters are recorded as black dots.

Figure 5: Uncertainty-adjusted growth rate drift and baseline stationary density for Z1. The left panel
explores ambiguity over slope parameters only and the right panel includes the constant terms as well.
Black solid: baseline model; red dashed: γ “ 1; blue dot-dashed: γ “ 3 for the left panel and γ “ 4 for
the right panel. The lower value of γ in the left panel relative to the right panel is imposed to so that
the magnitudes of the misspecification adjustments are approximately the same. The gray dashed curve
depicts the stationary density for Z1 stationary density.

The two forms of uncertainty aversion we consider introduce a composite martingale

component to valuation. We explore its properties by looking at the implied uncertainty

price elasticities using the formula (13). The results are reported in Figure 6. We represent
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state dependence by exploring not only the median, but also the 10th and 90th percentiles.

While the 90th percentile prices start higher than the others, this gets reversed as we go

out to longer horizons. This reflects the decrease in persistence in the uncertainty-adjusted

probability measure for relatively high realized values of the growth state Z1
t . As is evident

from the right column in Figure 6, misspecification concerns contribute to the asymmetry

in the responses in an important way. This is particularly true for the two-dimensional

specification of ambiguity aversion.

Figure 6: Shock price elasticities for the martingale contribution induced by uncertainty aversion. Black
solid: median of the Z1 stationary distribution; red dashed: .1 decile; and dot-dashed: .9 decile. The top
row gives results for γ “ 1 (left panel) and γ “ 3 (right panel) when the ambiguity set is two dimensional.
The bottom row gives results for γ “ 1 (left panel) and γ “ 4 (right panel) for the four dimensional
ambiguity set.

In summary, we induce changes in asset values by investors’ altering their perspectives

on what models are most concerning within the constrained ambiguity set. These fluctua-

tions prevail in large part because of uncertainty in the persistence of the process Z1. In

low growth states investors are concerned about being “stuck in a rut” whereas in good

times they worry that “brisk growth” will end soon. This type of mechanism was noted in

Hansen (2007) in a distinct but related modeling framework. That paper uses a different

specification of ambiguity aversion and entertains explicit learning. In the example here,

learning is off the table because of potential time or state variation in parameters. Relat-

edly, learning about persistence was also featured in Andrei et al. (2019) as a mechanism
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for fluctuations over time in valuation.

5 Sluggish heterogeneous capital stocks

We now explore two capital models with growth rate uncertainty. Precursors of these

models are the multiple tree models of Cochrane et al. (2008) and Martin (2013). These

models do not entertain capital movements from one production source to another. Here we

follow Eberly and Wang (2009), Eberly and Wang (2012), Hansen et al. (2020), and Kozak

(2022) by allowing capital mobility subject to adjustment costs. In this sense, capital

movements are sluggish. We extend the capital evolution in Eberly and Wang (2009),

Eberly and Wang (2012), and Kozak (2022) by introducing exposures to an exogenously

specified growth rate uncertainty consistent with our previous examples, similar to Hansen

et al. (2020). We allow for the exposure to this uncertainty to be heterogeneous.

Formally, consider a family of models with two capital stocks and adjustment costs.

dKj
t “ Kj

t

«

Φj

˜

Ijt

Kj
t

¸

` βj
kZ

1
t ´ ηj

ff

dt ` Kj
t

a

Z2
t σ

j
k ¨ dBt,

for j “ 1, 2. Suppose that the output equation is now

Ct ` I1t ` I2t “ αKa
t

where aggregate capital is a CES aggregator of the two capital stocks:

Ka
t “

”

p1 ´ ζq
`

K1
t

˘p1´τq
` ζ

`

K2
t

˘p1´τq
ı

1
1´τ

for 0 ď ζ ă 1 and τ ě 0. For characterization and computation, we form two state

variables: one is pYt “ logpK2
t {K1

t q and the other is pKa
t . For this class of models, the value

function has the separable form:

pVt “ pKa
t ` υppYt, Ztq.

Eberly and Wang (2009), Eberly and Wang (2012), Hansen et al. (2020) and Kozak

(2022) feature the case in which the two capital stocks are perfect substitutes (τ “ 0, ζ “

.5). In the illustrations that follow, we also impose this restriction as a featured special case.
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Our computational software allows for production curvature among the two capital stocks,

and as we will illustrate, this opens the door to an even richer collection of examples.

With perfect substitutability, the deterministic limit of this model has a continuum of

steady states. This makes locally linear-quadratic approximations inoperative. Even with

production curvature, local methods can be unreliable. Thus we find global solutions’

approaches to be important for this class of examples.

Parameters common across the two capitals

ηk ϕ α, ρ β1 σ1, σ2

.04 8
α “ .16 .18 .22

ρ “ .67 1 1.5

.056
σ1 “

?
12

”

0 0 4.661 0

ı

σ2 “
?
12

”

0 0 0 .00031

ı

symmetric asymmetric capital volatilities

β1
k “ .04 β1

k “ 0 σ1
k “

?
12

”

0.915 ´.15 0.374 0

ı

β2
k “ .04 β2

k “ .08 σ2
k “

?
12

”

0 0.928 0.374 0

ı

Table 4: Parameter values for the two capital model. We include a separate capital shock for each technol-
ogy. The coefficients on the two capital stocks are given by the first two entries of the σ’s. We doubled α for
the two capital because Ka

t is the average capital stock for each of the three specifications of ρ. We scaled
down the first two entries of σ1 in order that the overall instantaneous standard deviation |σ1| remains the
same as for the one capital model. We follow Hansen et al. (2020) and scale up σi

k for i “ 1, 2 in order that
consumption volatility remain about the same as for the one-capital model. The specification “symmetric”
presumes symmetric exposure to growth uncertainty, while the specification “asymmetric” presumes that
only the second capital is exposed to growth uncertainty.

The parameter values that we use in this section are recorded in Table 4. We consider

two different specifications of the exposures. One specification is “symmetric.” While each

capital stock has its own shock, the relative importance of long-term uncertainty to each

Kj is the same. The other specification is “asymmetric.” The first capital stock is not

exposed to long-run uncertainty while the second one is. Table 4 gives some additional

explanations and details. For these economies, we abstract from parameter ambiguity.
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Figure 7: Stationary densities for the second capital stock as share of total capital. For the “asymmetric”
row, only the second capital stock is exposed to growth-rate uncertainty. Finally, for the “curvature” row,
the τ “ 1 specification assumes a unitary substitution elasticity across the two types of capital, and the
τ “ 2 specification assumes a substitution elasticity equal to 1{2. The results in the third row impose ρ “ 1
and the same exposure to long-term uncertainty for both capital stocks.

We start by reporting stationary densities in Figure 7 for the fraction of the capital that

is allocated to the second technology. Initially, consider the case of symmetric exposures.

We see some sensitivity to the IES with the plots for ρ “ .67 being more peaked. As Eberly

and Wang (2012) emphasize, increasing risk aversion through changing γ (or increasing

the concern for misspecification) makes diversification all the more attractive giving rise

to densities that are much more sharply peaked. It is noteworthy that when γ “ 1,
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the asymmetric parameterization flattens out the allocation densities. But arguably more

interesting is that for γ “ 8 the second capital stock becomes much less attractive and even

more so as we decrease ρ. The mode of the density is now centered near .2 instead of .5

as investors seek to avoid exposure to long-term uncertainty. For the model specifications

discussed so far, the two capital stocks are perfect substitutes in the production of output.

So far, the only heterogeneity in the capital stock is in the exposure to shocks and

long-term uncertainty. We next illustrate the impact of production function curvature by

making the elasticity of substitution across the two types of capital one pτ “ 1q and one-

half pτ “ 2q. See the third row of Figure 7. This decrease in elatisticity of substitution in

production makes the stationary densities more peaked. This is to be expected given the

more central role played by both capital stocks in the production of output. We include

this computation as an illustration only, as there are alternative substantive motivations for

multiple capital stocks with differential impacts on production. For example, intangible,

organizational or human capital contribute to production in arguably distinct ways. While

incorporation of these components could lead to even richer models, the force on display

in Figure 7 will still be present.9

Figure 8 plots the shock elasticity or local impulse responses for the aggregate investment-

to-capital ratio. We only depict these for γ “ 12 as the γ “ 1 responses are very similar.

The elasticities for the symmetric case are very similar to those we computed for the one-

capital model. In contrast, for the asymmetric case the responses are more muted consistent

with the flatter densities reported in Figure 7. Figure 9 depicts the shock price elasticities

for the growth shock. We report only the case in which γ “ 12 as the γ “ 1 results are

unsurprisingly small. The price elasticities are very flat reflecting a dominant martingale

component to the SDF. Recall we used robustness concerns to model misspecification as an

important contributor to this martingale. The magnitude of the growth-rate shock price

elasticities are very close to those we reported for the single-capital model. In the asym-

metric case, the prices are significantly smaller because capital is reallocated to reduce the

exposure to growth rate uncertainty.

9See Crouzet et al. (2022) for a recent discussion of modeling and measuring intangible capital.
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Figure 8: Investment-output ratio exposure elasticities for growth-rate shock when γ “ 8. The reported
elasticities condition on the medians of the state variables.

Figure 9: Consumption price elasticities for the growth-rate shock when γ “ 8. The reported elasticities
condition on the medians of the state variables.

6 Heterogeneous agents and financial frictions

We now explore a different form of heterogeneity. We alter our one-capital baseline model

in Section 4 to include (ex-ante) agent heterogeneity and financial frictions. Agents will be

heterogeneous in both their preferences, productivities, and financial market access. We

think of the baseline economy as one in which multiple economic agents have homogeneous

preferences and homogeneous access to the production technology. In this case, consump-

tion and wealth are proportional over time, making aggregation immediate. This simple

aggregation will not be true in the class of economies that we explore in this section. With

various forms of market impediments, we can no longer focus on the planner problem as has
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been true in our previous examples. Instead we study a competitive equilibrium in which

wealth heterogeneity matters. As in our previous economies, we entertain the possibility

of growth-rate uncertainty in the production technology. We feature model comparisons

within a conveniently nested class of models.

6.1 Environment, equilibrium, and solution overview

There are two agent types in the economy: “experts” and “households”, indexed by e and

h, respectively. Both agents have recursive preferences, but their preference parameters

pδ, γ, ρq can differ. There is a single capital accumulation technology, but the productivity

of this capital stock may differ in the hands of each of the agents, with αe ě αh. Capital

trades freely amongst agents, with price Qt that follows endogenous diffusive dynamics.

Several financial instruments also trade: risk-free short term debt at an interest rate

rt, and various financial claims exposed to aggregate risk: (a) derivatives contracts traded

amongst households at vector πt per unit of Brownian increment risk exposure; and (b)

equity contracts issued by experts with payoff proportional to the return on capital they

hold. In some of our economies, experts face a financial restriction: they must remain

exposed to at least a fraction χ of the total capital they hold. Experts therefore cannot

issue unlimited equity nor can they trade freely in hedging contracts.

Let N j
t be the date-t net worth of type-j agent for j “ h, e. Then,

dN j
t

N j
t

“
`

µj
n,t ´ Cj

t {N j
t

˘

dt ` σj
n,t ¨ dBt, (23)

where the local mean µj
n,t net of consumption and the shock exposure vector σj

n,t are

µj
n,t “ rt `

QtK
j
t

N j
t

“

µj
R,t ´ rt

‰

` θjt ¨ πt σj
n,t “

QtK
j
t

N j
t

σR,t ` θjt ,

and where Kj
t and θjt denote the capital and hedging positions chosen by the type-j agent.

A hedging position θjt implies an exposure N j
t θ

j
t ¨ dBt to Brownian risk. As capital is also

exposed to Brownian risk, σj
n,t reflects both exposures. Due to productivity differences,

the expected excess return on capital µj
R,t ´ rt is type-specific. The risk exposure vector,

σR,t, for capital is common for households and experts and has a direct contribution from

capital-quality shocks and a contribution from the market price Qt of capital.

Market incompleteness is encoded via a constraint on the hedging vector θet of experts.
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While households are unconstrained, experts have restrictions on their exposure to aggre-

gate risk. Suppose experts choose θet to reduce their exposure to capital risk by a fraction

χt. To achieve this reduction,

θet “ pχt ´ 1q
QtK

e
t

N e
t

σR,t.

Imposing a so-called “skin-in-the-game constraint”: χt ě χ restricts the ability of the

experts to hedge their risk to the capital that they own:

θet P

!

pχt ´ 1q
QtK

e
t

N e
t

σR,t : χt ě χ
)

, (24)

Notice that even in the limit, relaxing this constraint still limits the type of hedging that

can be done by experts, since the portfolio weights remain constrained to be proportional

to σR,t. For the purpose of making model comparisons, the structure just described em-

beds three types of heterogeneity. First, there is preference heterogeneity. In addition to

heterogeneous subjective discounting, we allow for γh ą γe, which can reflect either an

enhanced aversion to risk on the part of households or less confidence in the probability

model. Second, we allow for experts to use capital more productively than households

(αe ě αh). Finally, we entertain heterogeneity in financial market access: the skin-in-the-

game restriction (24) limits experts’ ability to offset their capital risk exposure via equity

issuance. These alternative forms of heterogeneity allow revealing comparisons across al-

ternative model specifications.

Our definition of a competitive equilibrium is standard: it is a set of price processes

(Q, π, r) and allocation processes pCe, Ch, N e, Nh, Ke, Kh, χ, θe, θhq, such that agents solve

their constrained optimization problems, taking price processes as given, and all markets—

the goods market, the market for capital, and the market for aggregate risk—clear. By

Walras’ law, the risk-free debt market will also clear.

We look for a Markovian equilibrium in which the state variables are the wealth distri-

bution, the aggregate stock of capital, as well as the driving processes Z1, Z2. Given the

homogeneity properties of our model, (i) the wealth distribution can be summarized by the

experts’ wealth share Wt
def
“ N e

t {
`

N e
t ` Nh

t

˘

, and (ii) all growing processes scale with Kt,

which means that Xt
1 def

“ pWt, Z
1
t , Z

2
t q can serve as a state vector for our economy. While

pZ1, Z2q are specified exogenously, the wealth share W evolves endogenously.

The log continuation value of each type-j agent takes the additively separable form,
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analogous to the value function for benchmark economy given by (19):

pV j
t “ pN j

t ` υjpXtq,

where pN j “ logN j. We construct a Hamilton-Jacobi-Bellman equation analogous to that

given in (20) for the social planner in the benchmark economy. The homogeneity properties

of our model allow us to derive agents’ optimal consumption and portfolio choices as a

function of υj. For instance, the optimal consumption-wealth ratio for each agent type is

cjpxq “ δ1{ρ exp
“

p1 ´ 1{ρqυjpxq
‰

,

and their portfolio choice solves a familiar problem that includes both a mean-variance and

a hedging component:

max
!

µj
n ´

1

2
γj|σ

j
n|

2

looooooomooooooon

mean-variance

` p1 ´ γjqpσxσ
j
nq ¨

Bυj

Bx
looooooooooomooooooooooon

hedging

)

. (25)

The outcome of this portfolio problem is a set of Euler equations (when constraints are

non-binding) and inequalities (when constraints are binding). For instance, households will

hold strictly positive amounts of capital if and only if their expected excess return µh
R,t ´ rt

is sufficiently high to match the market compensation they could otherwise obtain through

derivatives markets. Similarly, experts have an incentive to issue as much equity as possible

(and their financial constraint will then bind) when their expected return on capital µe
R,t´rt

is greater than the market compensation πt ¨σR,t they need to pay to holders of their equity.

Their issuance constraint does not bind otherwise. Since experts are more productive than

households, it is efficient for them to hold all the capital in the economy and exhaust their

equity-issuance capacity. In fact, one can show that whenever households hold positive

amounts of capital, experts’ equity issuance constraint must be binding.

The consumption and portfolio choice of the various agent types leads to endogenous

dynamics for the experts’ wealth share Wt; its drift rate depends on the consumption-

to-wealth ratio of households relative to that of experts, on experts’ leverage and their

expected excess return on capital relative to its required market compensation and finally

the differential aggregate risk exposure between households and experts. The diffusion

coefficient of Wt only depends on this latter force. The wealth share dynamics depend on

asset prices, which themselves depend on wealth share dynamics—generating a two-way
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feedback loop that amplifies capital return volatility (Brunnermeier and Sannikov, 2014).

While this section only provides an overview of the model solution, its full details are

contained in Online Appendix B.

The remainder of this section explores this heterogeneous agent model in a series of

“model comparisons,” offering some general takeaways. In Section 6.2, we specify four

different economic environments that differ in terms of market opportunities and produc-

tivities of the two agent types. Section 6.3 then explores parameter sensitivity within each

of these environments to help elucidate the economic forces at work. Section 6.4 then makes

comparisons across environments by discussing outcomes that both unite and distinguish

these models. Finally, we provide some discussion of the extant literature.

6.2 Alternative economic environments

We explore four different types of economic environments. These are motivated by some

prior contributions, but they differ in the actual modeling inputs, including a stochastic

technology that includes long-run risk. The first environment is motivated by the Basak

and Cuoco (1998) model (specification RF for “risk-free”) in which households can only

engage in risk-free exchange in security markets in an environment extended to include

long-term uncertainty. Production is done by experts. The second setup allows for unre-

stricted trade in the equity market, but this remains a “partial risk sharing” environment

(specification PR) since our model accommodates a three-dimensional specification of the

Brownian motion. In the case of only a single shock, our risk-sharing limitation becomes

inconsequential, making this setup very similar to that of Dumas et al. (2000) and Gârleanu

and Panageas (2015).10 Our third setup adds a skin-in-the-game constraint on the produc-

tive experts along the lines of He and Krishnamurthy (2013), enforced by setting 0 ă χ ă 1

on the productive experts (specification SG for “skin-in-the-game”). Finally, motivated by

Brunnermeier and Sannikov (2014), we also allow households to be productive, but less

so than experts (specification IP for “inefficient production”). Here, experts do not trade

equity claims (so the skin-in-the-game constraint is maximally tight). The specifications

10Gârleanu and Panageas (2015) impose exponentially distributed death probabilities in conjunction
with an exogenous allocation of agent types at birth. The finite life feature enhances the subjective
discounting and pulls the expert wealth fraction towards a pre-specified level interpreted as the wealth
fraction of experts at birth. See Appendix D of Gârleanu and Panageas (2015) for an elaboration. Under
our reinterpretation of risk aversion, the death probabilities are known with full confidence in contrast
to the uncertainty induced by the vector Brownian motion. By design, this finite life feature ensures a
stationary wealth distribution. In the reported examples we do not impose this finite-life aspect, although
our computer code and the full model details in Online Appendix B accommodate it.
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for these four environments are summarized in Table 5.

In the reported examples ρh “ ρe “ 1, and δh “ .01. Furthermore, experts will always

be less patient than households, in order to accommodate a stationary wealth distribution.

Sensitivity to these choices are also interesting and straightforward to explore. When we

explore sensitivity to γe, we shall refer to this as “expert risk aversion,” but as we have

argued previously, this could equivalently be interpreted as a lack of confidence in the

stochastic specification.

economy pneumonic household productivity market access risk aversion

RF “risk-free” αh “ ´8 χ “ 1 γe ď γh

PR “partial risk-sharing” αh “ ´8 χ “ 0 γe ď γh

SG “skin-in-the-game” αh “ ´8 0 ă χ ă 1 γe ď γh

IP “inefficient production” ´8 ă αh ă αe χ “ 1 γe “ γh

Table 5: Parameters settings for the four different economic environments. We use the capital accumulation
parameters and the parameters governing the exogenous stochastic dynamics given in Table 1.

6.3 Comparisons within each economic environment

We explore the implications of altering the expert risk aversion or the household productiv-

ity through four economic environments. Heterogeneity in risk preferences and productivity

are two of the key channels to modulate risk price dynamics in this class of models.

6.3.1 Environment RF

We first consider an economic environment in which experts and households only trade a

risk-free asset. We explore the pricing implications of the shadow price for return-on-capital

shocks σR ¨ dB. This is the risk price that would clear a stock market populated only by

experts. The results are reported in Figure 10. A key force in all the models we explore

is the importance of expert wealth: when w falls, risk prices rise, potentially dramatically.

In this particular environment, experts must directly absorb all risks, and so their demand

for risk compensation rises when w falls. The effect of γe depicts a tension between the

level and variability of risk prices. When we increase γe, we see an upward shift in risk

price levels; at the same time, the state dependence in these prices is pushed further into

the left tail of the stationary distribution. Intuitively, experts accumulate more wealth

for precautionary reasons as γe increases. (These plots hold fixed household risk aversion

γh “ 8, but there is little sensitivity to this choice because households can only trade in a
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risk-free security market.) In this environment and the following ones, stochastic volatility

contributes importantly to the risk compensations, as is evident by comparing the .1 and

.9 percentiles of Z2 in Figure 10.

Figure 10: Equity return risk prices for the experts in environment RF. The prices are expressed as
functions of the relative wealth of experts for alternative specifications of expert risk aversion. Household
risk aversion is set at γh “ 8. The subjective discount rates are δe “ .0115 and δh “ .01. Stationary
densities for the expert wealth share are in the background. For the plots, Z1

t “ 0 and Z2
t is set to either

the tenth percentile (blue) or the ninetieth percentile (red).

6.3.2 Environment PR

We next consider an environment in which there is frictionless trading in the equity claim.

In this case we explore implications for both the equity risk price and the equity retention by

the experts. The results are displayed in Figure 11. Given that households now have access

to equity, its risk price has very limited sensitivity to γe. In contrast, the stationary density

for experts’ relative wealth is sensitive to γe. For instance, wealth is very concentrated at

zero when γe “ 6. Indeed, as γe approaches γh, the only prominent heterogeneity remaining

is experts higher consumption rate due to their larger subjective discounting, δe ą δh, which

tends to erode experts’ relative wealth.

With the homothetic preferences we feature, risk-taking is typically monotonic in wealth,

because absolute risk aversion is decreasing with wealth. In contrast to this conventional

result, Figure 11 shows that, particularly when γe is small relative to γh, the equity reten-

tion χ by experts is not monotonic in their relative wealth. Moreover, χ exceeds one for

some values of w, more prominently when γe is particularly small. Why does this occur?

In this PR environment, risk sharing is limited, and the two agents only trade equity
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Figure 11: Equity return risk prices (top row) and expert equity retention (bottom row) for environment
PR. The objects of interest are expressed as functions of the relative wealth of experts for alternative
specifications of expert risk aversion. Household risk aversion is set at γh “ 8. The subjective discount
rates are δe “ .0115 and δh “ .01. Stationary densities for the expert wealth share are in the background.
The axis of the stationary density for γe “ 5 is scaled down twenty times relative to γe “ 3, 4. For the
plots, Z1

t “ 0 and Z2
t is set to either the tenth percentile (blue) or the ninetieth percentile (red). The

equity retention is not sensitive to changes in stochastic volatility.
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returns. A key force at play in the equity retention figures is households’ desire to hedge

long-term uncertainty induced by stochastic growth Z1. Since we have imposed a unitary

EIS, the Brownian exposure of the return-on-equity is σR,t “
a

Z2
t σk in this environment.

The composite shock σk ¨dBt not only has a direct contribution to the stochastic evolution of

capital dKt, but it also alters the long-term growth prospects through dZ1
t (i.e., growth and

capital-quality shocks are correlated). Households, being more risk averse than experts, are

more concerned about this growth uncertainty. Absent direct integrated hedging markets,

households use capital to obtain partial insurance against growth-rate fluctuations from

experts leading them to short expert equity for some realizations of the relative wealth

share.11 This same mechanism plays a central role in the determination of a non-degenerate

stationary distribution for W . Typically, complete-markets models with heterogeneous

preferences would, except in knife-edge cases, feature degenerate stationary distributions

at w “ 0 or w “ 1; here, a broad range of preference parameters can produce non-degenerate

wealth distributions.12

6.3.3 Environment SG

We next explore the impact of adding a skin-in-the-game constraint requiring χ ě χ “ .2.

This constraint binds for low values of the expert wealth share, and is “occasionally binding”

in dynamic simulations. We report results in Figure 12. Increasing γe expands the region in

which the constraint binds. Figure 12 also illustrates the connection between the binding

equity constraint and the nonlinear dependence of experts’ equity risk price on w; this

extreme nonlinearity is why researchers sometimes refer to binding equity constraints as

“financial crises.”13

The occasionally-binding phenomenon on display in Figure 12 arises because less averse

experts retain more risk than their wealth (i.e. χ ą w), so the unconstrained region remains

11As further confirmation of this mechanism, unreported results for γe “ 2 and γh “ 8 show that
households’ shadow risk prices for exposure to the growth rate shock range between .25 and .31 when
evaluated at the medians of the exogenous state variables, whereas experts’ shadow growth risk price
ranges between .09 and .15. Risk-aversion heterogeneity is critical to this discrepancy in growth risk prices.

12We include the dependence between the direct shock to the capital evolution and the shock to exogenous
changes in growth-rate opportunities in our examples because of the empirical calibration reported in
Hansen and Sargent (2022). Absent this correlation, χ is monotone increasing in the expert wealth share,
and the stationary distribution becomes a point mass at either w “ 0 or w “ 1 (depending on the
parameters δe, δh, γe, γh).

13Note that in this environment, the potentially-binding constraint implies we must distinguish experts’
and households’ shadow risk prices for equity exposure. When χ ą χ the two agree; but when χ “ χ, the
two diverge. We are plotting experts’ shadow risk price.
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“stochastic” (in the sense that σw ‰ 0 even when χ ą χ). This is essentially what drives the

occasionally-binding equilibrium of He and Krishnamurthy (2013): they restrict households

to always invest a fixed positive fraction of their wealth in risk-free assets, which makes

them act more risk-averse than experts (see their Parameter Assumption 1). In fact, we

prove for a very general set of cases that the skin-in-the-game constraint is either always-

binding or never-binding when risk aversions are equalized. In this sense, heterogeneous

risk-preferences are critical to occasionally binding skin-in-the-game constraints.14

On one hand, our results here provide a partial justification for the procedure, performed

by many DSGE models with financial frictions, that consists in log-linearizing equilibrium

equations assuming constraints are always binding. On the other hand, this exercise illus-

trates that some models with occasionally-binding risk-sharing constraints may be standing

on, perhaps hidden, assumptions about risk aversion heterogeneity.

14See Online Appendix B (Proposition B.3) for analysis of the case when γe “ γh. For a large set of
parameters, either χt “ χ for all t or χt ą χ for all t, almost surely.
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Figure 12: Expert equity return risk prices (top row) and expert equity retention (bottom row) for environ-
ment SG. The objects of interest are expressed as functions of the relative wealth of experts for alternative
specifications of expert risk aversion. Household risk aversion is set at γh “ 8. The subjective discount
rates are δe “ .0115 and δh “ .01. Stationary densities for the expert wealth share are in the background.
The axis of the stationary density for γe “ 5 is scaled down eight times relative to γe “ 3, 4. For the plots,
Z1
t “ 0 and Z2

t is set to either the tenth percentile (blue) or the ninetieth percentile (red).

6.3.4 Environment IP

Finally, we explore an environment in which households sometimes engage in production

even though experts are more skilled at it. To isolate the role of productive heterogeneity,

we eliminate risk aversion heterogeneity here. In financial markets, households and experts

trade in a risk-free security, but there is no trade in equities as enforced by setting χ “ 1.

When both agents manage capital, however, they face the same exposure to stochastic

capital evolution along with growth-rate risk. For computational reasons, we eliminate

stochastic volatility for this environment.

In Figure 13, we plot experts’ shadow capital risk price and their capital share. For low

values of the wealth share, households are active producers even though they have lower

productivity. In this region, experts demand high shadow compensations for exposure to

capital evolution uncertainty. Increasing household productivity increases the likelihood of
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inefficient household production but decreases the shadow risk price conditional on ineffi-

ciency.

Figure 13: Expert’s risk prices (top row) and expert capital share for environment IP. The objects of are
interest are expressed as functions of the relative wealth of experts. Household and expert risk aversion
are the same, γh “ γe “ 2. The subjective discount rates are δe “ .03 and δh “ .01. Stationary densities
for the expert wealth share are in the background. For the plots, Z1

t “ 0.

6.4 Comparisons across environments

In this subsection we note some interesting comparisons that emerge when we look across

environments. Of course, such comparisons may well be sensitive particular parameter

configurations. Our computational methods allow for more comprehensive comparisons

done in thoughtful ways.

6.4.1 Deleveraging

Among the four economic environments, we distinguish those that allow “deleveraging”

from those that do not—this demarcation represents a significant divide in the nature of

model dynamics. We distinguish between “smooth deleveraging” and “rapid deleveraging.”

To explore deleveraging, we first consider how the “risk share” of experts behaves rel-

ative to their wealth share. The expert risk share is given by the product χκ where χ
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is equity retention fraction and κ is the fraction of capital held by experts. We think of

deleveraging occurring when χκ falls.

By this definition, environments RF and SG do not allow deleveraging. In both cases,

all capital is held by experts (κ “ 1) and a financial constraint prevents χ from ever falling

to zero. Thus, χκ is bounded away from zero for RF and SG. This feature implies that as

the wealth share of experts declines to zero, experts risk exposure per unit of their wealth

grows without bound, which in turn implies experts require unbounded risk compensation

as w Ñ 0. See Figures 10 and 12. High risk prices allow experts to earn high profits and

recapitalize their balance sheets.

Environments PR and IP do allow deleveraging. In PR, while all capital is held by

experts (κ “ 1), there is no constraint on equity issuance (so χ can fall). In IP, experts can

deleverage by directly selling capital to households (so κ can fall). Whether through χ or

κ, these two environments feature χκ tending to zero at the same rate as w Ñ 0. Due to

deleveraging, experts’ risk prices remain bounded even as w Ñ 0; see Figures 11 and 13.

Online Appendix B.9 conducts a formal asymptotic analysis as w Ñ 0. We show

analytically how the deleveraging behavior of χκ, through its effect on equilibrium risk

compensations, governs the tail shape of the stationary wealth distribution. Looking back

at Figures 10-13, one can see how the models with deleveraging can permit substantially

more mass near w “ 0.

6.4.2 Relative wealth dynamics

In Figure 14 we report the elasticities for relative wealth to a capital exposure shock. We

document the differential nature of the responses depending on the initial relative wealth

position which demonstrates a form of nonlinearity. Recall that for environments RF and

IP, households only trade in risk-free securities. However, in environment IP, households

obtain risk exposure from directly holding capital. As is evident from the top row of the

figures, the shock response is much larger with notable reversion to zero for IP environment

than for the others. In terms of comparative rankings, the responses are higher for the RF

environment than for the other two, PR and SG, depicted in the second row of Figure 14.

For all three of these, the local shock responses are very flat and only show convergence over

much longer horizons suggesting considerable persistence in the relative wealth process.

Endogenous nonlinearity is reflected by the state dependence on display in Figure 14.

The ordering of the shock responses as a function of the initial wealth proportion differs

across environments. For the PR and SG environments, when we condition on the median
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wealth share, the responses are higher than when we initialize the relative wealth at lower

percentiles. The reverse emerges in the RF environment.

Figure 14: Relative wealth response elasticities to an initial period capital shock for the four environments.
We use γe “ 4 and δe “ 0.0115 for environments RF, PR, and SG. For environment IP, we set γe “ 2,
δe “ 0.03 and αh “ .08. For all environments, γh “ 8 and δh “ 0.01. We restrict the initial exogenous
state variables to be at their medians. The blue curve gives elasticities when W is initialized at the .05
percentile of the relative wealth distribution, the red curve at the .1 percentile, and the green curve at the
median.

6.4.3 Uncertainty prices

Recall that households and experts share risk in environments PR and SG. But they do not

engage in full risk-sharing, however. Thus we expect differences in the implied shadow prices

for experts and households. Recall that these uncertainty prices use the interpretation of

recursive preferences as “aversion to model mispecification.” Figure 15 explores differences

in the implied uncertainty shadow prices for growth-rate shocks for the two agent types.

First of all, we see sizable shadow compensation for exposure to growth rate uncertainty. In

addition, the significant difference between experts’ and households’ shadow prices reflects
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the preference inequality γh ą γe along with the incomplete risk sharing. Third, by looking

at the differences within each of the four panels, we see the impact of the initial stochastic

volatility. Finally, while the shadow price differences are very different between households

and experts, the differences across environments is quite modest.15

Figure 15: Uncertainty price elasticities for a growth-rate shock for environments PR and SG. We use risk
aversions γe “ 4 and γh “ 8 for both models. We initialize W and Z1 at their medians. The blue curve
gives elasticities when Z2 is initialized at the .1 percentile of its distribution, the red curve at the median,
and the green curve at the .9 percentile.

6.5 Discussion of related literature

The models we have explored in this section highlight the role of ex-ante agent hetero-

geneity and risk-sharing. The literature studying this class of models is voluminous, and

we do not attempt to survey all of it here. However, we will comment briefly on which

existing mechanisms we have covered and which we have not, along with what we see as

the challenges for future research in this area.

15We found little sensitivity of the uncertainty price shock to the initial wealth share for these calculations.
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As mentioned above, the models closest to ours include Basak and Cuoco (1998), He and

Krishnamurthy (2011, 2013, 2019), Brunnermeier and Sannikov (2014, 2016), and Gârleanu

and Panageas (2015). All of these are models where pricing dynamics become interesting

either because risk-sharing is constrained or because of the trading dynamics induced by

attempts to share risks. Our framework essentially nests these models, pairing them with

a setup that features long-run uncertainty in the macroeconomic growth.

These core frameworks have been extended to think about a variety of substantive is-

sues. While our framework does not nest these extensions, we collect some of them here

to illustrate the wide range of possibilities: capital requirements and leverage restrictions

(Phelan, 2016, Klimenko et al., 2016); margin constraints (Gromb and Vayanos, 2002,

Garleanu and Pedersen, 2011); shadow banking (Moreira and Savov, 2017); liquidity pre-

mia and monetary policy (Drechsler et al., 2018); unconventional monetary policy (Silva,

2016); international capital flows (Brunnermeier and Sannikov, 2015); the link between

idiosyncratic and aggregate risk-sharing (Di Tella, 2017, 2019); financial innovation driven

boom-bust cycles (Khorrami, 2020); and entry into the intermediation sector (Haddad,

2014, Khorrami, 2021). While we work in continuous time, related issues have been ex-

plored in discrete-time frameworks (Gertler and Karadi, 2011, Gertler and Kiyotaki, 2010,

Mendoza, 2010, Bianchi, 2011, Gertler and Kiyotaki, 2015, Christiano et al., 2014).

While this class of models is rich enough to feature some interesting insights, there are

reasons to expand their scope. First, financial crises are often more sudden and extreme

than the models we explore here would predict. Second, large booms in credit and asset

prices have some predictive power for a subsequent bust and financial crisis. Modeling

additional amplification mechanisms like bank runs is one way to generate more realistically

extreme crises (Mendo, 2018, Krishnamurthy and Li, 2021). Modeling investor “sentiment,”

both via non-rational beliefs (Maxted, 2023, Krishnamurthy and Li, 2021) and rational fear

(Khorrami and Mendo, 2023), are extensions that can generate crisis predictability.

As an intriguing analogy to our long-run uncertainty framework, Maxted (2023) con-

siders extrapolative sentiment as the belief in a persistent stochastic growth rate that, in

fact, does not exist. We could capture such impacts in our framework by supposing that

the state variable Z1 is “only in the heads of the investors and households” and not in the

actual dynamic evolution. We can analyze such a model in same manner as we currently do

by including the Z1 dynamics in the model solution, but omitting it from the simulations,

stationary distributions, and elasticity computations. In this way, there is a wedge between

beliefs and the actual data generation. We find this alternative perspective on long-term
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risk to be intriguing; but as we have seen in Section 4.5, an alternative to subjective belief

models are ones that acknowledge the measurement challenge of identifying a long-run risk

component in data. This challenge seems pertinent not only to econometricians but also

economic agents.16

The class of models we explored, by design, nests alternative forms of heterogeneity,

albeit a rather stark form with two types of investors. For all of the alternatives we

investigate, a natural question is “who are the so-called experts?” Should we identify

them with insiders at productive firms, or managers of banks, or specialist investors more

broadly? The answers to these questions influences the type of market frictions that are

reasonable to consider, as well as the calibrations one should adopt.

One related empirical literature explores intermediary asset pricing implications by

seeking to identify new pricing factors. Models of the type featured here, when applied

to financial intermediaries, highlight forms of state dependence in valuation that could be

important. Exposures and market compensations fluctuate as functions of state variables,

suggesting a more dynamic approach to empirical investigation.

7 Conclusions

Our essay explores alternative macro-finance models, including many with explicit nonlin-

earities. The models are highly stylized and perhaps best thought of a devices to engage

in “quantitative story telling.” The models are not designed to provide fully comprehen-

sive accounting of empirical facts, but rather they offer characterizations of alternative

mechanisms for linkages between financial markets and the macroeconomy. We feature

model comparisons rather than deep probes into one specific mechanism. While the latter

is clearly valuable, we also believe in value of making model comparisons, something that

is less common in journal publication. In effect, we are engaged in “quantitative story

telling with multiple stories.” In this sense, we share a common ambition with Dou et al.

(2020), although the class of models we feature is different as are the tools we use. Re-

lated ambitions are also reflected in the comprehensive Macro Model Data Base (MMB,

https://www.macromodelbase.com), although many the models we entertain require spe-

cial computational challenges because of their nonlinear structure. Moreover, our essay

focuses on the substantive comparisons.

16See Hansen (2014) and Chen et al. (2022) and for related discussions.
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Computational methods are required to support this type of analyses. As will be ex-

plained in a computational appendix, this is a nontrivial component to our investigation.

In each model, we must solve for agents’ continuation values, in some cases jointly with

asset prices or endogenous risk-sharing constraints. These functions solve systems of highly

nonlinear PDEs. Depending on the model, we use either finite-difference based methods

or, for larger state spaces, a deep Galerkin method-policy improvement algorithm, incorpo-

rating neural net approximations. See Achdou et al. (2022) and d’Avernas et al. (2022) for

some additional macro applications of implicit finite-difference schemes for PDEs, based

on the seminal work of Barles and Souganidis (1991). See Al-Aradi et al. (2022), Duarte

et al. (2023), Gopalakrishna (2022), and Barnett et al. (2023) for recent developments and

discussions of deep neural network methods as an alternative designed to accommodate

higher dimensional state spaces.
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A Stochastic volatility calibration

Recall the volatility process:

dZ2
t “ ´β2pZ

2
t ´ µ2

zq `
a

Z2
t σ2dBt

Remember that Z2 has a stationary gamma distribution. Construct the corresponding

stationary density for pZ2 def
“ logZ2 using the change of variables formula. Denote the

outcome as:

q̂pẑ;µ2
z, |σ2|

2
q.

Schorfheide et al. (2018) estimated a process for the counterpart to this process with a

different stochastic specification. Their process expressed in logarithms is:

log pZ2
t “ 2 log ς ` H2

t

where

dH2
t “ ´β2H

2
t dt ` 2σ̂2dBt.

In Table 3 of their paper, they provide estimates based on both post war and a longer

historical time series. The coefficient β2 is very similar but their estimate of |σ̂2| is much

larger for the longer time series. We take the following numbers from their Table 3 and

input into our calibration of stochastic volatility:

β2 “ log .984

|σ̂2| “ 2 ˆ
?
.0054,

ς “ .0022

where the time units are months. The stationary distribution for the Schorfheide et al.

(2018) model for pZ is normal with mean 2 log ς and variance

|σ̂2|2

2β2

We denote the distribution as q.

To use the Schorfheide et al. estimates for our analysis, we approximate the stationary
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densities by solving numerically

min
µ2
z ,|σ2|2

ż

ẑ

“

log q̂pẑ;µ2
z, |σ2|

2
q ´ log qpẑq

‰

q̂pẑ;µ2
z, |σ2|

2
qdẑ.

The resulting minimizers are

µ2
z “ 6.3 ˆ 10´6

|σ2| “ 0.00031

Figure 16
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B Calculations for heterogeneous-agent model

We develop the theoretical model calculations used in the model with agent heterogeneity.

Households’ and experts’ optimal consumption-to-wealth ratio (ch and ce respectively) and

optimal investment-to-capital ratio i˚ are the following:

cepxq “ δ1{ρe
e exp

ˆˆ

1 ´
1

ρe

˙

υepxq

˙

chpxq “ δ
1{ρh
h exp

ˆˆ

1 ´
1

ρh

˙

υhpxq

˙

i˚pxq “ pΦ1
q

´1

ˆ

1

qpxq

˙

“
qpxq ´ 1

ϕ
,

where the explicit form of i˚ uses our specification of the installation function Φpxq “

ϕ´1 logp1 ` ϕiq. The fact that households and experts install capital at the same rate is

due to their symmetric installation cost functions and the tradeability of the homogeneous

capital stock at price q.

Households maximize the portfolio problem (25) over all possible choices of their risk

exposure vector σh
n,t “

QtKh
t

Nh
t
σR,t ` θht by choice of Kh

t ě 0 and θht P R3, while experts

maximize over all possible choices of σe
n,t “

QtKe
t

Ne
t
σR,t ` θet “ χt

QtKe
t

Ne
t
σR,t such that Ke

t ě 0

and χt ě χ. To solve these portfolio choice problems, note that the expert and household

expected return-on-capital are given by

µe
R “

αe ´ i˚

Qt

` µq ` Φpi˚q ` βkz1 ´ ηk `
?
z2σk ¨ σq

µh
R “

αh ´ i˚

Qt

` µq ` Φpi˚q ` βkz1 ´ ηk `
?
z2σk ¨ σq

In this appendix, we will sometimes work with the risk premium “wedges” ∆e and ∆h,

which are defined as the agent-specific gap between capital returns and market returns:

∆e def
“ χ´1

`

µe
R ´ r ´ π ¨ σR

˘

(26)

∆h def
“ µh

R ´ r ´ π ¨ σR (27)

We will also write households’ and experts’ shadow risk prices by πh and πe, respectively.

Because households face complete markets, πh “ π (i.e., their shadow risk price equals the

traded risk price). Because experts face incomplete markets, πe ‰ π generally speaking.
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B.1 Household portfolio choice

The necessary conditions for optimality for households can be summarized as follows:

µh
R ´ r ` p1 ´ γhqpσxσRq ¨ Bxυ

h
ď γhσR ¨ σh

n

πh
` p1 ´ γhqσ1

xBxυ
h

“ γhσ
h
n.

Combining these equations, we have households’ Euler equation,

$

&

%

µh
R ´ r ď πh ¨ σR, if Kh “ 0

µh
R ´ r “ πh ¨ σR, if Kh ą 0.

(28)

In other words, when households’ expected capital return is below what they can earn with

exposure to aggregate risk via futures contracts, they do not hold any capital. When they

do hold capital, the expected return on such capital is equal to compensation for aggregate

risk (via πh ¨ σR). Households’ optimal risk allocations are given by

σh
n “

QKh

Nh
σR ` θh “

πh

γh
`

1 ´ γh
γh

σ1
xBxυ

h (29)

B.2 Expert portfolio choice

Experts’ portfolio choice is similar. Their first-order conditions

µe
R ´ r ´ p1 ´ χqπh

¨ σR ` χp1 ´ γeqpσxσRq ¨ Bxυ
e

“ γeχσR ¨ σe
n

πh
¨ σR ` p1 ´ γeqpσxσRq ¨ Bxυ

e
ď γeσR ¨ σe

n,

can be combined to yield an Euler equation:

$

&

%

πh ¨ σR ď µe
R ´ r, if χ “ χ

πh ¨ σR “ µe
R ´ r, if χ ą χ.

(30)

In other words, if the risk-premium πh
t ¨ σR,t required to be paid to the market for issuing

equity is lower than the expected excess return that experts earn on their capital, they will

issue as much equity as they can, and bounce against their skin-in-the-game constraint χ.
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Experts’ optimal leverage is given by

χQKe

N e
“

1

γe|σR|2

”

∆e
` πh

¨ σR ` p1 ´ γeqpσxσRq ¨ Bxυ
e
ı

, (31)

and because they take all aggregate risks in equal proportions, σe
n “

χQKe

Ne σR. The “wedge”

∆e
t is the incremental risk premium attained by experts, per unit of equity investment. To

see that ∆e represents an incremental private risk premium for experts, use the definition

of ∆e and experts’ Euler equation to obtain the following equation: µe
R ´ r “ χpπh ¨ σR `

∆eq ` p1´χqπh ¨ σR. In particular, χpπh ¨ σR `∆eq represents the experts’ excess return to

“inside equity” whereas p1´χqπh ¨σR represents the excess return to “outside equity” held

by households. These sum to the excess return on assets, and ∆e can thus be interpreted

as the bonus return per unit of inside equity, of which there are χ units.

B.3 Equilibrium capital and risk distribution

Define expert’s capital share

κ
def
“
Ke

K
, (32)

which fully summarizes the capital distribution. The Euler equations (28) and (30) can be

used to determine κ and equity-retention share χ. Since households are less productive, it

is often efficient for experts to manage all capital (κ “ 1) and exhaust their equity-issuance

capacity (χ “ χ). Thus, the solutions for κ and χ describe the nature of occasionally-

binding constraints in this model.

Lemma B.1. The equilibrium expert capital share κt and equity retention χt satisfy the

following complementary slackness conditions:

0 “ minp1 ´ κt,´∆h
t q (33)

0 “ minpχt ´ χ,∆e
t q. (34)

When households hold capital (κt ă 1), experts are equity-issuance constrained (χt “ χ).

Lemma B.1 also shows how ∆e and ∆h play the roles of a Lagrange multipliers on equity-

issuance and shorting constraints: ∆e measures the shadow value of loosening the equity-

issuance constraint (decreasing χ), whereas ´∆h measures the shadow value of allowing

households to short some of the capital stock.
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Proof of Lemma B.1. Begin with Euler equations (28) and (30), use the definitions of ∆h

and ∆e in (27)-(26), and use the definition of κ to immediately obtain (33)-(34). To verify

the claim that κ ă 1 implies χ “ χ, use the definitions of µe
R and µh

R which differ only

in their dividend yields pαe ´ i˚q{Q and pαh ´ i˚q{Q. Therefore, χ∆e “ ∆h ` µe
R ´ µh

R “

∆h ` pαe ´ αhq{Q. If κ ă 1, then ∆h “ 0 by (33). If ∆h “ 0, then ∆e ą 0 by the previous

result, which implies χ “ χ by (34).

B.4 Price of capital

The goods market clearing condition can be written

αeK
e
t ` αhK

h
t “ Ce

t ` Ch
t ` Iet ` Iht .

In other words, aggregate consumption plus aggregate investments by households and ex-

perts must equal aggregate output. Dividing the equation above by aggregate wealth QtKt

in the economy, and remembering the definition of κ “ Ke{K, we obtain

p1 ´ wqch ` wce `
i˚ pqq

q
“

p1 ´ κqαh ` καe

q
(35)

Equation (35) relates q and κ to the state variables, conditional on knowing the wealth-

normalized value functions υh and υe. One can show that this equation in q has a unique

positive root. We also notice that in the unitary IES case, when all the capital in the

economy is held by experts (i.e. κ “ 1), the price of capital is invariant to the driving

processes (z1, z2), and simply equal to the ratio of the dividend yield αe ´ i˚pqq divided by

the wealth-weighted average rate of time preference wδe ` p1 ´ wqδh. With our functional

form assumed for the installation function Φ, we obtain the following price of capital:

q “
p1 ´ κqαh ` καe ` 1{ϕ

p1 ´ wqδ
1{ρh
h exp

``

1 ´ 1
ρh

˘

υh
˘

` wδ
1{ρe
e exp

``

1 ´ 1
ρe

˘

υe
˘

` 1{ϕ
(36)

B.5 Law of motion of K, W , and Q

Because experts and households utilize a common investment rate i˚pqq, aggregate capital

dynamics are particularly simple:

dKt

Kt

“ µK,tdt ` σK,t ¨ dBt (37)
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µK,t
.
“ βkZ

1
t ` Φri˚pQtqs ´ ηk (38)

σK,t
.
“

a

Z2
t σk (39)

The law of motion of the wealth distribution W is derived below. Note in deriving

these equations, we are allowing for an overlapping generations (OLG) structure with a

birth/death rate of λd and a fraction ν of newborns exogenously designated experts. Dying

agent wealth is automatically redistributed to newborns on a per-capita basis.

Lemma B.2. The drift µw,t and diffusion σw,t of the wealth share Wt are given by

µw,t “ Wtp1 ´ Wtq

”

cht ´ cet `
χtκt
Wt

∆e
t

ı

` σw,t ¨ pπh
t ´ σR,tq ` λdpν ´ Wtq (40)

σw,t “ pχtκt ´ WtqσR,t. (41)

Proof of Lemma B.2. Combine agents’ dynamic budget constraints with their portfolio

choices to obtain the evolution of aggregate households’ and aggregate experts’ wealth

Nh
t and N e

t :

dNh
t

Nh
t

“

”

rt ´ ch ´ λd ` σh
n,t ¨ πh

t `
1 ´ κt
1 ´ Wt

∆h
t `

p1 ´ νqλd
1 ´ Wt

ı

dt ` σh
n,t ¨ dBt (42)

dN e
t

N e
t

“

”

rt ´ ce ´ λd ` σe
n,t ¨ πh

t `
χtκt
Wt

∆e
t `

νλd
Wt

ı

dt ` σe
n,t ¨ dBt, (43)

and where

σh
n “

1 ´ χκ

1 ´ w
σR (44)

σe
n “

χκ

w
σR. (45)

The terms containing λd represent contributions from OLG. The key observation in obtain-

ing the risk exposures (e.g., terms involving χκ and 1´χκ) is that experts hold χκ fraction

of total capital risk in the economy (after equity-issuance), so households must hold the

balance 1 ´ χκ by market clearing. The terms involving ∆h and ∆e come from recalling

their definitions along with that of κ and w; e.g., households earn excess return ∆h on their

capital holdings, which equal 1´κ
1´w

per unit of their net worth.

By Itô’s formula, the wealth share Wt “
Ne

t

Ne
t `Nh

t
evolves as
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dWt “ Wtp1´Wtq

˜

dN e
t

N e
t

´
dNh

t

Nh
t

¸

´Wtp1´Wtq

˜

Wt
drN e

t s

pN e
t q

2 ´p1´Wtq
drNh

t s
`

Nh
t

˘2`p1´2Wtq
drN e

t , N
h
t s

N e
tN

h
t

¸

Using (42)-(43) and (44)-(45), and making several simplifications, the result is

µw “ wp1 ´ wq

”

ch ´ ce `
χκ

w
∆e

´
1 ´ κ

1 ´ w
∆h

ı

` pχκ ´ wqσR ¨ pπh
´ σRq ` λdpν ´ wq (46)

σw “ pχκ ´ wqσR. (47)

The result of Lemma B.2 is obtained by using Lemma B.1 to get p1 ´ κq∆h “ 0.

Finally, by Itô’s formula, the drift and diffusion coefficients of Qt are

µq “ µx ¨ Bx log q `
1

2

“

tr pσ1
xBxx1 logpqqσxq ` |σ1

xBx log q|
2
‰

(48)

σq “ σ1
xBx log q. (49)

On the other hand, σx depends on σq, constituting a two-way feedback loop. We can solve

this loop by substituting the expression for σx into the formula for σq, using σR “
?
z2σk`σq

to obtain:

σq “
pχκ ´ wq pBw log qq

?
z2σk ` σ1

zBz log q

1 ´ pχκ ´ wqBw log q
, (50)

where recall z
def
“ pz1, z2q

1 and σz “
?
z2pσ1, σ2q1. Conditional on knowing χ and κ, if we

know the price function q across the state space, we know the capital price volatility vector

σq, as well as the wealth share volatility vector σw. Note that this generates capital return

volatility equal to

σR “

?
z2σk ` σ1

zBz log q

1 ´ pχκ ´ wqBw log q
. (51)

B.6 Risk-free rate and risk prices

We solve for the risk-free rate r as well as the households’ and experts’ risk-prices πh, πe.

To do this, we use the fact that QtKt “ Nh
t ` N e

t , which we time-differentiate. Using

the dynamic evolution equations for Nh and N e in (42) and (43), and for K in (37), by
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equating the drift terms we obtain:

r ` p1 ´ wq

´

σh
n ¨ πh

`
1 ´ κ

1 ´ w
∆h

´ ch
¯

` w
´

σe
n ¨ πh

`
χκ

w
∆e

´ ce
¯

“ µq ` µK ` σK ¨ σq

(52)

By equating the diffusion terms:

p1 ´ wqσh
n ` wσe

n “ σR. (53)

To solve for r, substitute (53) into (52), use the result from Lemma B.1 that p1´κq∆h “ 0,

and rearrange:

r “ µq ` µK ` σK ¨ σq ´ σR ¨ πh
` wce ` p1 ´ wqch ´ χκ∆e (54)

To solve for πh, substitute optimal exposure σh
n from (29) with its equilibrium value from

(44) to obtain:

πh
“ γh

1 ´ χκ

1 ´ w
σR ` pγh ´ 1qσ1

xBxυ
h. (55)

Since experts face incomplete markets, there is in theory an infinite number of stochastic

discount factors that can price claims for which the expert is marginal. We thus focus on

the marginal utility of consumption process, which for any agent with recursive preferences

takes the following form (see for example Duffie and Epstein (1992b)):

St “ exp

„
ż t

0

ˆˆ

ρ ´ γ

1 ´ ρ

˙

δ1{ρ exp

ˆˆ

1 ´
1

ρ

˙

υs

˙

´ δ

ˆ

1 ´ γ

1 ´ ρ

˙˙

ds

ȷ

N´γ
t exp pp1 ´ γqυtq

In the case of time- and state-separability (i.e. when ρ “ γ), we obtain the familiar formula

St{S0 “ e´δt pCt{C0q
´γ. Remember that we have for households and experts:

dN j
t

N j
t

“
`

µj
n,t ´ cjt

˘

dt ` σj
n,t ¨ dBt

This leads to the key equation defining the vector of shadow risk prices faced by an investor:

dSj
t

Sj
t

´ Et

«

dSj
t

Sj
t

ff

“ ´
“

γjσ
j
n,t ` pγj ´ 1qσj

υ,t

‰

¨ dBt
def
“ ´πj

t ¨ dBt (56)
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In the above, the kth coordinate of πj
t is the expected excess return investor j gets paid per

unit of risk exposure to the kth shock of Bt. Substituting formula (45) for σe
n into (56), we

have

πe
“ γe

χκ

w
σR ` pγe ´ 1qσ1

xBxυ
e (57)

This means that experts’ equilibrium expected excess return compensation is equal to:

πe
¨ σR “ γe

χκ

w
|σR|

2
` pγe ´ 1q pσxσRq ¨ Bxυ

e

“ ∆e
` πh

¨ σR,

where πh is the vector of aggregate risk prices faced by households.17

B.7 Deriving the functional equation for χ

We first note that the experts’ aggregate risk choice (31) can be re-arranged to express the

expected return premium ∆e as follows:

∆e
“ γe

χκ

w
|σR|

2
´ γh

1 ´ χκ

1 ´ w
|σR|

2
´ pσxσRq ¨

“

pγh ´ 1qBxυ
h

´ pγe ´ 1qBxυ
e
‰

(59)

Substituting (59) into the complementary slackness condition for experts’ skin-in-the-game

constraint (34),

0 “ min
!

χ ´ χ, p1 ´ wqγeχκ|σR|
2

´ wγhp1 ´ χκq|σR|
2

´ wp1 ´ wq pσxσRq ¨
“

pγh ´ 1qBxυ
h

´ pγe ´ 1qBxυ
e
‰

)

.

Since all the capital is held by experts whenever their skin-in-the-game constraint is not

binding, we may substitute κ “ 1 everywhere in this equation, as shown in Lemma B.1. The

above equation is actually an algebraic equation for χ, which can be solved by substituting

17Note that we could follow these same steps for households but would obtain an equivalent result to
our equilibrium risk price vector. Substitute formula (44) for σh

n into the shadow risk-price definition (56)
to get

πh “ γh
1 ´ χκ

1 ´ w
σR ` pγh ´ 1qσ1

xBxυ
h (58)

Notice that πh in (58) is identical to (55).
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σx and σR into the second term in the minimum, obtaining

0 “ min
!

χ ´ χ,
”

pp1 ´ wqγe ` wγhq|Dz|
2

` pBw log qqDυ,z ´ Dυ,w

ı

pχ ´ wq

` wp1 ´ wqpγe ´ γhq|Dz|
2

´ Dυ,z

)

. (60)

In the above, we have defined18

Dz
.
“

?
z2σk ` σ1

zBz log q (61)

Dυ,w
.
“ wp1 ´ wq|Dz|

2
Bw

“

pγh ´ 1qυh ´ pγe ´ 1qυe
‰

(62)

Dυ,z
.
“ wp1 ´ wq pσzDzq ¨ Bz

“

pγh ´ 1qυh ´ pγe ´ 1qυe
‰

. (63)

When χ ą χ, the second term of the minimum operator in equation (60) is linear in χ´w,

holding fixed the functions pq, υe, υhq.

The analysis is simpler in one special case. If risk aversions are identical (γe “ γh “ γ),

the second term of the minimum operator in equation (60) simplifies substantially. Then,

we may prove the following proposition, which says for many parameters that the skin-in-

the-game constraint is either always-binding or never-binding.

Proposition B.3. Suppose agents have identical risk aversions (γe “ γh “ γ). Experts’

optimal risk retention χ is

χ “ maxpχ,wq. (64)

For w ě χ, the skin-in-the-game constraint is slack and the wealth share evolves (locally)

deterministically, i.e., σw “ 0. At w “ χ, when the skin-in-the-game constraint just binds,

the formula for the drift of the expert wealth share is

µwpχ, zq “ χp1 ´ χq
“

chpχ, zq ´ cepχ, zq
‰

` λdpν ´ χq.

The following hold:

(i) If Wt ď χ for some time t and supz µwpχ, zq ă 0, then χt “ χ with probability one.

18The notation above is helpful, since it allows us to write |Dz|2 “ p1 ´ pχκ ´ wq Bw log qq
2

|σR|2, and
simplify the expression for σxσR as follows:

σxσR “
1

1 ´ pχκ ´ wq Bw log q

ˆ χκ´w
1´pχκ´wqBw log q |Dz|2

σzDz

˙
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(ii) If Wt ě χ for some time t and infz µwpχ, zq ą 0, then χt ą χ with probability one.

Proof of Proposition B.3. If γe “ γh “ γ, then the second term in the minimum operator

in equation (60) becomes

Mpχq
.
“

”

γ|Dz|
2

` pBw log qqDυ,z ´ Dυ,w

ı

pχ ´ wq ´ Dυ,z. (65)

Whenever χ ą χ, we solve for χ from Mpχq “ 0. Therefore, χ “ maxpχ, χ˚q, where

χ˚ P ty : Mpyq “ 0u. As a preliminary, we show that χ˚ “ w solves Mpχ˚q “ 0, such that

(64) holds. To prove this, conjecture (and later verify) that πe “ πh on χ ą χ. Using (57)

and (58), this conjecture implies

γ
χκ

w
σR ` pγ ´ 1qσ1

xBxυ
e

“ γ
1 ´ χκ

1 ´ w
σR ` pγ ´ 1qσ1

xBxυ
h, if χ ą χ. (66)

Since κ “ 1 when χ ą χ (Lemma B.1), and since σw “ pχκ´wqσR “ pχ´wqσR, equation

(66) reduces to

pγ ´ 1qσ1
zBz

`

υh ´ υe
˘

“ pχ ´ wq
γ ´ pγ ´ 1qwp1 ´ wqBwpυh ´ υeq

wp1 ´ wq
σR, if χ ą χ. (67)

Substituting (67) into (63) and (65), we obtain

Mpχq “ pχ´wq

”

γ|Dz|
2

` pBw log qqDυ,z ´Dυ,w ´

´

γ´ pγ´ 1qwp1´wqBwpυh ´υeq
¯

D1
zσR

ı

.

Consequently, χ˚ “ w is one solution to Mpχ˚q “ 0.

Under this solution, we may verify πe “ πh as follows. First, use σw “ pχ ´ wqσR “ 0

when χ “ χ˚ “ w to find from (44)-(45) that this equilibrium features

σe
n “ σh

n “ σR, if χ ą χ. (68)

Second, introduce to all agents, for a short period of time, zero-net-supply Arrow-Debreu

claims on each of the Brownian shocks. Let σe˚
n and σh˚

n denote agents’ risk exposures

in this modified economy. In the modified equilibrium, there is a single traded risk price

π˚ on these shocks, and both expert and household risk prices coincide with π˚. Also,

since these Arrow-Debreu assets are only introduced for an arbitrarily short period of time,

agents value processes υe and υh are unaffected. Putting these results together, and using
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formulas (57) and (58), we have

γσe
n “ πe

` p1 ´ γqσ1
xBxυ

e

γσh
n “ πh

` p1 ´ γqσ1
xBxυ

h

γσe˚
n “ π˚

` p1 ´ γqσ1
xBxυ

e

γσh˚
n “ π˚

` p1 ´ γqσ1
xBxυ

h.

By repeating the arguments leading to (68), we know that the modified equilibrium also

features σe˚
n “ σh˚

n “ σR. Therefore, π
e “ πh “ π˚.

Finally, because Mpχ˚q “ 0 in (65) is a linear equation in χ˚, it admits a unique

solution, so χ˚ “ w must be the only solution. This proves (64).

Next, to demonstrate cases (i) and (ii), compute the drift µw. We have already shown

that σw “ 0 when χ ą χ, so it suffices to show that µw ă 0 when χ ě χ in case (i) and

µw ą 0 when χ ď χ in case (ii). For case (i), the condition Wt ď χ implies that we need

only show µw ă 0 when χ “ χ. Similarly for case (ii), the condition Wt ě χ implies that

we need only show µw ą 0 when χ “ χ. These are implied by supz µwpχ, zq ă 0 and

infz µwpχ, zq, respectively.

B.8 Deriving the functional equation for κ

First, note that (59) is an equation relating χ, κ, and ∆e. Second, by taking the difference

µe
R ´ µh

R “ µe
R ´ r ´ π ¨ σR ` π ¨ σR ´ pµh

R ´ rq, using the definitions of µe
R and µh

R, along

with the definitions of ∆e and ∆h in (26)-(27), we obtain:

∆h
“ χ∆e

´
ae ´ ah

q
. (69)

Now, combine the complementary-slackness condition for households’ capital holdings (33)

from Lemma B.1, with (59) and (69) to obtain

0 “ min
!

1 ´ κ, wγhp1 ´ χκq|σR|
2

´ p1 ´ wqγeχκ|σR|
2

` wp1 ´ wq
αe ´ αh

χq
` wp1 ´ wq pσxσRq ¨

“

pγh ´ 1qBxυ
h

´ pγe ´ 1qBxυ
e
‰

)

. (70)

We may substitute χ “ χ everywhere in this equation, due to Lemma B.1. Given pυe, υhq,

equation (70) is actually a standalone variational inequality (differential equation wrapped
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inside of a min operator) for κ, since q can be expressed solely as a function of pκ, υe, υhq

through (35), and since both σx and σR can be expressed solely in terms of χ, κ, q, and Bxq

through (47) and (51). By inspection, the boundary condition κp0, zq “ 0 will be satisfied

automatically as long as αh ą ´8.

B.9 Asymptotic analysis as w Ñ 0

In this section, we work in a one-dimensional model (no shocks to Z), so assume σz “ 0.

We will make following assumption on the nature of equilibrium and analyze the two cases

separately.

Assumption B.4. One of the following two assumptions hold as w Ñ 0. Either (i)

χκ{w Ñ C P p1,8q or (ii) χκ Ñ C P p0, 1s.

Our goal is to prove the following proposition:

Proposition B.5. Suppose ρe “ ρh “ 1, ν “ 0, δe ě δh, and γh ě γe. Shut down growth

and volatility shocks, σz “ 0. Models satisfying case (ii) of Assumption B.4 feature a

stationary wealth density that decays quadratically, i.e.,

fpwq „ G0w
2 as w Ñ 0, some constant G0.

Models satisfying case (i) of Assumption B.4 feature a stationary wealth density that decays

at rate ζ, i.e.,

fpwq „ G0w
ζ as w Ñ 0, some constant G0,

where

ζ
def
“

2rδh ´ δe ´ λd ` pγeC
2 ´ γh ´ pC ´ 1qqσ2

ks

pC ´ 1q2σ2
k

´ 2,

and where C ě 1 is given below in equations (73) or (74), depending on parameters.

Consequently, the lower tail of models in case (i) is thicker than that of case (ii) models if

and only if δh ´ δe ´ λd ă rpC ´ 1qp2C ´ 1q ´ γeC
2 ` γhsσ2

k.

Remark 1. Proposition B.5 imposes ν “ 0 (experts are never exogenously “reborn”) in

order to make a stark comparison between two classes of models. If ν ą 0 as in some of
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our calibrations, then the formula for the tail index ζ will change, because these economies

feature µwp0q “ νλd ą 0 and σwp0q “ 0. A particular implication is that, if ν ą 0, the

density fpwq can never have an asymptote as w Ñ 0, whereas an asymptote is possible

if ν “ 0. That said, the point of Proposition B.5 is to provide guidance on features that

generically “thicken” the tail of the wealth share density, and these features remain the same

in economies with ν ą 0.

Proof of Proposition B.5. Below, we will use the notation g1pwq „ g2pwq to mean g1pwq{g2pwq Ñ

1 as w Ñ 0. For expedience, we assume, but do not verify (although it can be verified), that

µq „ µ̄q and σq „ σ̄q for bounded constants µ̄q and σ̄q.
19 This assumption, in particular,

implies σR „ σ for some constant σ. From Lemma B.2 and the form of πe, πh in (57) and

(58), we have the following asymptotic state dynamics:

µw „ pδh ´ δe ´ λdqw ` χκσ2
rγe

χκ

w
` pγe ´ 1qpχκ ´ wq

d

dw
υe ´ γhp1 ´ χκq ´ pγh ´ 1qpχκ ´ wq

d

dw
υhs

` pχκ ´ wqσ2
rγhp1 ´ χκq ` pγh ´ 1qpχκ ´ wq

d

dw
υh ´ 1s (71)

σw „ pχκ ´ wqσ (72)

In the one-dimensional model, agents’ HJB equations take the following form:

0 “ max

"

δplog δ ´ 1 ´ υq ` µn ´
γ

2
σ2
n ` rµw ` p1 ´ γqσnσwsυ1

`
1

2
σ2
wυ

2
`

1 ´ γ

2
σ2
wpυ1

q
2

*

,

where

µe
n „ r `

χκ

w

”

γepχκ{wq ` pγe ´ 1qpχκ ´ wq
d

dw
υe

ı

σ2

µh
n „ r ` p1 ´ χκq

”

γhp1 ´ χκq ` pγh ´ 1qpχκ ´ wq
d

dw
υh

ı

σ2

σe
n „

χκ

w
σ and σh

n „ p1 ´ χκqσ

Now, we consider the two cases of Assumption B.4.

19In either case, we would conjecture q „ Aq ` Bqw and derive the aforementioned facts by solving Aq

and Bq both from goods market clearing, e.g., (36). After determining Aq and Bq, the values of µ̄q and σ̄q

could be obtained by applying Itô’s formula to q.
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Case 1: χκ{w Ñ C. Conjecture state dynamics of the asymptotic form

µw „ Bµw and σw „ Bσw.

Conjecture also value functions take the asymptotic form

υe „ Ae ` Bew
ζe and υh „ Ah ` Bhw

ζh where ζe, ζh ą 0.

Substituting these assumptions into (71)-(72) shows that

Bµ “ δh ´ δe ´ λd ` rγeC
2

´ γh ´ pC ´ 1qsσ2

Bσ “ pC ´ 1qσ

At this point, we have the dynamics of w, independently of the value functions, but we still

must verify the conjecture.

Asymptotically, the HJBs require the following dominant-term equations to hold,

0 “ δerlog δe ´ 1 ´ Aes ` r ` γeC
2σ2

´
γe
2
C2σ2

0 “ δhrlog δh ´ 1 ´ Ahs ` r ` γhσ
2

´
γh
2
σ2.

We substitute r which must take the form

r „ δh ` Φpi˚pqqq ´ ηk ` µ̄q ` σ̄qσk ´ γhσ
2,

which is bounded (and equals the representative-agent risk-free rate when households domi-

nate the economy). Substituting this into the HJB equations, we obtain explicit expressions

for Ae, Ah. For the terms of order wζe , wζh , the HJB equations say

δe “ Bµζe `
1

2
B2

σζepζe ´ 1q

δh “ Bµζh `
1

2
B2

σζhpζh ´ 1q,

whereby Be, Bh have dropped out (these constants are determined by the right boundary

w “ 1). These quadratic equations each have one positive and one negative root. Taking

the positive root, we verify that ζe, ζh ą 0.

It remains to determine C. The solution depends on the separate asymptotics of κ and
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χ, not only their product. If κ Ñ 0 while χ Ñ χ ‰ 0, then the following analysis holds.

Using the definition of µj
R, the relationship µ

e
R “ σR ¨ rχπe `p1´χqπhs, and previous results

on asymptotics as w Ñ 0, we have that

αe ´ αh

q
„ χpγeC ´ γhqσ2.

Using the goods market clearing condition (35), we see that qp0q is independent of C.

Hence,

C “
γh
γe

`
αe ´ αh

χσ2qp0q
ě 1. (73)

On the other hand, if κ Ñ 1 while χ Ñ 0 (e.g., this occurs if αh “ ´8 and χ “ 0), then

we may use equation (60) to obtain20

C “
γh
γe

ě 1. (74)

The cases of interest, where C ą 1 strictly, are when either (a) γh ą γe and αe “ αh as

in Gârleanu and Panageas (2015); or (b) γh “ γe and αe ą αh as in Brunnermeier and

Sannikov (2014).

Returning to the dynamics of w, we have the Kolmogorov Forward Equation, which

reads

0 “ ´
d

dw
rµwf s `

1

2

d2

dw2
rσ2

wf s.

Integrating from an interior point w to 1, and using the fact that µwp1q ă 0 and σwp1q “ 0

in all models we consider, implying f and σw both vanish at the upper boundary, we obtain

0 “ ´µwf `
1

2

d

dw
rσ2

wf s.

Asymptotically, as w Ñ 0, we have

0 “ ´Bµwf `
1

2
Bσ

d

dw
rw2f s ` opwq.

20Note that these equations for C agree if αe “ αh and χ “ 0, which shows that a frictionless economy
in the spirit of Gârleanu and Panageas (2015) can be implemented in our model by equivalently allowing
one of either χ or κ to adjust.
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Solving this equation shows that, asymptotically,

fpwq „ G0w
2pBµ{B2

σ´1q, some constant G0 ą 0. (75)

This equation determines the existence (non-degeneracy) and asymptotic shape of the

stationary density.21

Case 2: χκ Ñ C. In this case, it suffices to consider parameters χ ą 0 and αh “ ´8,

in which case χ „ χ and κ „ 1. Then, C “ χ P p0, 1s as desired. Mimicking the previous

analysis, conjecture that

µw „ Bµ{w and σµ „ Aσ

and for the value functions

υe „ Ae ` Be logpwq and υh „ Ah ` Bhw.

These conjectures imply

Aσ “ Cσ

Bµ “ pCσq
2
rγe ` pγe ´ 1qBes

πe
„ pCσ{wqrγe ` pγe ´ 1qBes

πh
„ σrp1 ´ Cqγh ` Cpγh ´ 1qBhs

r „ Ar ` p1{wqBr

for constants Ar
.
“ δh ` Φpi˚pqp0qqq ´ ηk `

q1p0q

qp0q
Aσσk ´ p1 ´ Cqσrp1 ´ Cqγh ` Cpγh ´ 1qBhs

and

Br
.
“
q1

q
Bµ ´ pCσq

2
pγe ` pγe ´ 1qBeqs.

21As long as 2Bµ ą B2
σ, a non-degenerate density exists. This condition is

2rδh ´ δe ´ λds ą r3pC ´ 1q2 ´ 2γeC
2 ` 2γhsσ2.

The shape is given by the exponent 2pBµ{B2
σ ´ 1q. If, as in Brunnermeier and Sannikov (2014), 1

2B
2
σ ă

Bµ ă B2
σ, then the density has an asymptotic spike.
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Note that equation (35) with κ “ 1 shows that q1{q is bounded. Indeed, we have

q1p0q

qp0q
“ ´

δe ´ δh
δh ` 1{ϕ1

, some constant ϕ1 ą 0.

which is the same equation one would obtain for the specific functional form leading to (36).

In the above, ϕ1 is to be interpreted as the local elasticity of the accumulation function Φ

near w „ 0, whereas this elasticity is assumed globally constant in (36).

Substituting these results into agents’ HJB equations, and keeping only the highest-

order terms, we obtain

0 “
1

w2

”

γepCσq
2

´
1

2
γepCσq

2
` BµBe ´

1

2
A2

σBe `
1 ´ γe

2
A2

σB
2
e

ı

0 “
1

w

”

Br ` BµBh

ı

.

Due to 1{w Ñ 8 as w Ñ 0, the terms in brackets must be 0 for the equations to hold.

Substituting previous results and simplifying, we obtain22

Be “ ´1

Bh “ 1 `
δe ´ δh
δh ` 1{ϕ1

.

Any Ae, Ah are consistent with the HJBs at this boundary.

The state dynamics are thus given by

µw „ pCσq
2
p1{wq and σw „ Cσ.

Hence, repeating the same analysis of the Kolmogorov Forward Equation as in case 1, we

obtain asymptotically,

fpwq „ G0w
2, some constant G0 ą 0. (76)

Thus, the density has a tail that decays quadratically, irrespective of Bµ, Bσ and by exten-

sion the model parameters.

Comparing the cases. Comparing the formulas (75) and (76), we see that case 1 has a

22Note that Be solves a quadratic equation 0 “ γe ` p2γe ´ 1qBe ` pγe ´ 1qB2
e , which has the second

solution Be “ ´γe{pγe ´ 1q. However, substituting this root yields πe „ 0.
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thicker tail than case 2, if and only if

δh ´ δe ´ λd ă rpC ´ 1qp2C ´ 1q ´ γeC
2

` γhsσ2,

where C is given either by (73) or (74) depending on the context. This analysis proves

Proposition B.5.

C Computational Appendix

This section is under construction with the exception of the material in the following

subsection.

C.1 Computing Shock Elasticities

The shock elasticities are computed by applying Malliavin calculus, which is equivalent to

solving

εMpt, xq “ νpxq ¨

!

σMpxq ` σXpxq ¨
B

Bx
logE

”´Mt

M0

¯

| X0 “ x
ı)

. (77)

where µM , σM are the drift and diffusion term of d logMt.

To compute each of the conditional expectations in (77) numerically, we solve a PDE

derived as follows. Define fMpt, xq :“ ErMt

M0
fMp0, Xtq | X0 “ xs. Then, using the law of iter-

ated expectations, followed by the definition of fM , we have fMpt, xq “ ErMu

M0
Er Mt

Mu
fMp0, Xtq |

Xus | X0 “ xs “ ErMu

M0
fMpt ´ u,Xuq | X0 “ xs. Hence, tMtfMpT ´ t,XtqutPr0,T s is a mar-

tingale and must have zero drift. Applying Itô’s formula gives a PDE for fM in pt, xq,

i.e.,

0 “ ´
BfM
Bt

`

´

µM `
1

2
}σM}

2
¯

fM `
`

µX ` σM ¨ σX
˘BfM

Bx
`

1

2
}σX}

2B2fM
Bx2

. (78)

The initial condition is fMp0, xq ” 1, which allows us to recover the desired conditional

expectation. The PDE in (78) is solved using Finite Difference Methods. We obtain εMpt, xq

by numerically differentiating fMpt, xq and substituting it into (77).

The term structure of uncertainty prices is formed as a second type of shock elasticity,

which differs conceptually from the first type described above. While εMpt, xq measures the

expected response ofMt to a shock at time 0, we could also compute the expected response
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of Mt to a shock at the same time t. We can compute this alternative shock elasticity via

ε̃Mpt, xq “ νpxq ¨
ErMt

M0
σMpXtq | X0 “ xs

ErMt

M0
| X0 “ xs

, (79)

The calculation of term structure of uncertainty prices requires solving the PDE (78) with

initial conditions fMp0, xq ” σMpxq to obtain the numerator. Note that the denominator

is 1 due to the martingale property.
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