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Abstract

Deforestation for cattle ranching in the Brazilian Amazon emits carbon,
and reforestation absorbs carbon. The social productivities for these alterna-
tive activities vary across locations. We analyze a spatial/dynamic model of
efficient land allocation to establish a benchmark for policies. We treat cattle
prices as stochastic and location-specific productivities as uncertain when as-
sessing the consequences of imposing alternative prices of carbon emissions.
Modest price increases would incentivize Brazil to choose policies that capture
a significant amount of greenhouse gases in the next 30 years. Our analysis
pinpoints tropical forest management as an important contributor to climate
change mitigation.
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1 Introduction

This paper investigates the potential social gains of designing prudent policies that
combat deforestation in the Brazilian Amazon through the lens of a spatial and dy-
namic model. We build the model to capture the trade-off between agricultural pro-
duction1 and forest preservation or regeneration.

The Amazon forest contains 123 ˘ 31 billion tons of captured carbon that can
be released into the atmosphere, equivalent to the historical cumulative emissions
of the United States (Malhi (2006), Friedlingstein (2022)). The Brazilian Amazon
occupies 60%of the 2.7 million square miles that comprise the Amazon. From 1985
to 2021, the agricultural area in the Brazilian Amazon increased from 68.6 to 240.5
thousand square miles. The associated deforestation, comprising an area the size of
Texas, has resulted in high emissions, setting the Brazilian Amazon as a substantial
outlier in a plot of countries’ emissions per-capita vs. GDP per-capita. (see Figure
1.)

Figure 1: Each dot represents a country in 2018, except for the European Union and
the Brazilian Amazon. Highlighted letters stand for (C)hina, (I)ndia, (E)uropean
Union, and (U)nited States. Sources: World Bank Data, downloaded on March
2021; Fatos da Amazônia 2021 (www.amazonia2030.org).

1Since close to 90% of the deforested land in the Amazon biome is currently used for pasture,
we identify agriculture with cattle farming in this paper, and use the two terms interchangeably.
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We use our model of the Brazilian Amazon to provide insights into structur-
ing policy improvements that realign economic incentives for allocating land use.
Wemake the model quantitative through the use of detailed spatial information from
multiple data sets. Our data document large cross-sectional variability in cattle farm-
ing productivity and in the potential absorption of carbon in the Brazilian Amazon.
This heterogeneity highlights the importance of incorporating a spatial dimension
in the model. To account for these locational differences, we divide the Amazon re-
gion into various sub-regions or sites, each of which has its own capacity to support
agriculture and forestry. While the model has considerable cross-sectional richness,
it is nevertheless highly stylized for reasons of tractability and transparency.

We pose the model in continuous time. The cross-sectional heterogeneity in pro-
ductivities and the natural state constraints on the land allocation preclude standard
recursive methods for solving the associated Hamilton-Jacobi-Bellman (HJB) equa-
tions. Instead, we use and extend methods fromModified Predictive Control (MPC)
that were originally developed in control theory and engineering to study multi-
plant production in real time. MPC methods approximate inequality constraints on
the states using what is called an interior point method. They allow for uncertainty
specified as a Markov process by incorporating a shorter uncertainty horizon than
the overall control horizon as a means of approximation. We extend these methods
to explore subjective ambiguity from the standpoint of the social planner by mak-
ing a model-determined robustness adjustment to the subjective probabilities for the
unknown parameters. We are once again pushed to use a numerical method, in this
case a Markov chain Monte Carlo method based on Hamiltonian dynamics. Such a
method is particularly valuable for high-dimensional problems and has substantial
advantages over the familiar Metropolis-Hastings approach. We use the Hamilto-
nian Markov chain approach in a novel way to confront what is sometimes referred
to as “deep uncertainty” about productivity parameters. Alternatively, we may in-
terpret this treatment of subjective ambiguity as a robust Bayesian formulation of
the control problem of interest.

To set the stage for our analysis, we use the model to elicit an estimate of the
shadow price for emissions revealed by the deforestation during 1995-2008. The
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year 1995 is the first date at which we have reliable price data on cattle prices.2

The year 2008 marks the beginning of the Amazon Fund, financed primarily by
the Norwegian and German governments.3 We use the inferred shadow price for
simulations designed to capture “business-as-usual.” We also use this shadow price
to measure the value for Brazilians of the “forest services” provided by preserved
areas. These services include climate services as well as the economic value of
production that occurs without destroying the Amazon forest.4

We study the impact of adding outside payments for net capture of CO2 in the
Amazon. We produce results in three steps. In step one, we construct the finest
grid by considering 1043 sites in the Amazon biome with each measuring 67.5kmˆ

67.5km. For this level of detail, we produce results without accounting for uncer-
tainty in the price of agricultural output. Instead, we impose that the price corre-
sponds to the (stationary) average of the two-state Markov process we fit to the
observed agricultural prices. We also use these deterministic solutions to ascertain
whether and by how much Brazil would gain if the country signed an agreement
for a set of hypothetical dollar transfers per net ton of CO2 captured. Our model
output shows the overall social gains to reallocating production in the cross-section,
including the option to preserve or enhance the Brazilian rain forest.

In the second step, we consider 78 sites, each of which is 270kmˆ270km. For
this level of aggregation, we produce results that take into account stochastic changes
in the price of agricultural output as well as, for comparison, deterministic results
for this 78-site resolution. The results are quite close, showing that our stochastic
representation of externally determined agricultural prices plays a minor role in the
analysis.

Central to our analysis, we allow the productivities for carbon absorption and
agriculture to be site-specific. Estimates of these crucial productivity parameters are
subject to non-trivial uncertainty. Moreover, while we have cross-sectional data that

2Until mid-94, Brazil went through a period of very high and volatile inflation.
3Their funding was a pay-for-performance scheme based on an emissions price of $5 per ton of

CO2e. It generated USD 1.2 billion in payments in 2008-2017 (Angelsen (2017), Correa, van der
Hoff and Rajão (2019)) and provides an example of how deforestation may be influenced by outside
payments.

4These include forest products like natural rubber, nuts, and açaí, alongside sustainable timber.
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are informative, these data do not give us direct measurements for the site-specific
productivities. Instead, we use regression methods to provide the inputs needed for
our analysis. Uncertainty in the regression coefficients induces uncertainty in the
implied site-specific productivity parameters. The typical approach to uncertainty
quantification explores such parameter uncertainty from the perspective of an ex-
ternal analyst. Instead, we incorporate this uncertainty explicitly into the decision
problem of our hypothetical social planner. While it is appealing to address the pa-
rameter uncertainty probabilistically, there is ambiguity as to what probabilities to
impose.

In the third step, we explicitly consider parameter ambiguity from the perspec-
tive of the social planner. We again use the less refined 78-site partition of the
Brazilian Amazon. We start with a baseline posterior distribution over site-specific
productivity parameters for carbon sequestration and agricultural productivity im-
plied by the regression estimation. While convenient, this baseline construction is
ad hoc and uncertain. This leads us to engage in a sensitivity analysis that explores
distributional sensitivity subject to penalization. This estimation is done prior to
the decision-making of the social planner and so acts as “prior” when exploring al-
ternative courses of action. Rather than fully embracing this distribution, the plan-
ner uses it as a baseline in a sensitivity analysis subject to penalization to ascertain
which departures should be of most concern. The magnitude of a penalty parameter
limits how much sensitivity is entertained and serves as the inverse of an ambigu-
ity aversion parameter. For the computation of the optimal solutions, in this case
of parameter ambiguity, we use the Markov chain Monte Carlo method based on
Hamiltonian dynamics that we alluded to earlier.

While we assume that the planner can directly control deforestation, we view
the solution to the planner’s problem as providing a benchmark for comparing the
outcomes of alternative ad hoc policies, and suggesting improvements over current
policies.5

5Brazil has experience implementing effective policies to curb deforestation. The launch of
satellite-based monitoring systems, the creation of protected areas, the enactment of conditioned-
credit measures, and the creation of a priority list of municipalities, resulted in a reduction of more
than 80% in the deforestation rates between 2004 and 2012 (Gandour (2018), Assunção and Rocha
(2019), Assunção (2020), Assunção, Gandour and Rocha (2023) and Assunção (2023)).
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The rest of the paper is organized as follows: In the next section, Section 2,
we review some of the relevant literature. This is followed in Section 3 with an
exposition of our theoretical model. Section 4 shows how we confront parameter
uncertainty. Section 5 summarizes howwe use a large collection of relevant data sets
to calibrate the model. Section 6 discusses the numerical methods used to compute
solutions to the social planner’s maximization problem. Our results are presented in
Section 7, which is followed by our conclusions and suggestions for further work.

2 Related Substantive Literature

Griscom (2017) identify and quantify “natural climate solutions” (NCS), which in-
clude tropical forests. Heinrich (2021) focus on the potential of the Brazilian Ama-
zon. As noted by Balboni (2023), most studies on agricultural expansion and defor-
estation are static.

A recent branch of the literature uses discrete-choice models in order to study the
link between agriculture and deforestation (Souza-Rodrigues (2019), Dominguez-
Iino (2021), Araujo, Costa and Sant’Anna (2022)). Souza-Rodrigues (2019) and
Dominguez-Iino (2021) develop static approaches, emphasizing the role of the trans-
portation network and trade in the design of policies, without explicitly modeling
the carbon cycles associated with the forest. Araujo, Costa and Sant’Anna (2022),
on the other hand, present a dynamic model along the lines of Scott (2014), allow-
ing farmers to internalize the social value of carbon. However, the dynamics in
Araujo, Costa and Sant’Anna (2022) are restricted to the forward-looking behavior
of farmers.

In contrast to the existing literature, our dynamic approach not only accounts
for how expected future prices of agricultural goods influence optimal current land
use, it also incorporates carbon emissions from deforestation and carbon capture
from forest regeneration. The carbon cycle associated with abandoning agriculture
and allowing forests to regrow naturally is considered explicitly in the model. In
contrast, the simulation of carbon prices in Souza-Rodrigues (2019) works as a tax
to the expansion of agriculture into forests and it is not associated with the carbon
cycle directly. Consequently, we provide a framework that integrates the impact of
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carbon prices on deforestation, forest restoration, and agriculture. In addition, we
also take into account the uncertainty of the forest carbon measures.

Finally, our results contribute to the literature on climate policy design. Our
simulation shows that deforestation in the Amazon will cross the tipping point of
20´25% suggested by Lovejoy and Nobre (2018) in the scenario with carbon price
equal to the shadow emission price elicited from the 1995-2008 period with no ad-
ditional international payments.6 On the other hand, additional payments of at least
$15/ton would not only safeguard the tipping point, but would also trigger forest
restoration on a large scale. In this sense, the carbon sink potential of secondary
forests emphasized by Griscom (2017) and Heinrich (2021) can be realized with
sufficient additional carbon payments.

3 Model

We pose the problem of a fictitious social planner who considers the trade-off be-
tween using land for agriculture and nurturing or preserving forests that function as
carbon sinks. This planner internalizes the externalities resulting from deforesta-
tion. The planner’s problem is dynamic with explicit heterogeneity across regions
in the Amazon. Guided by empirical measurements, the regions have two impor-
tant sources of heterogeneity: i) agricultural productivity and ii) ability to absorb
atmospheric carbon.

Let i denote a site index for i = 1, 2, ..., I where I is the total number of sites
and t P [0, T ] is the point in time. We use superscripts to denote sites and subscripts
to denote dates. We adopt the notational convention that uppercase letters depict the
actual state and lowercase letters the potential state realizations. At date t,

Zt
def
= (Z1

t , Z
2
t , ..., Z

I
t ) vector of area used for agriculture expressed in hectares

Xt
def
= (X1

t , X
2
t , ..., X

I
t ) vector of carbon captured expressed in Mg CO2e (CO2 equivalent)

At
def
= (A1

t , A
2
t , ..., A

I
t ) vector of agricultural output

6Notice that, while our shadow emission prices vary with the model and resolution chosen, they
are all reasonably close to the $7.26/ton estimated by Araujo, Costa and Sant’Anna (2022).
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We use the notation Z def
= tZt : 0 ď t ď T u to denote the corresponding process that

evolves over time, and similarly for other states and controls. In our base model, the
single aggregate state variable is P a

t , an index of cattle prices in Brazil expressed in
2017 US dollars.7

The state vectorZt is subject to an instant-by-instant and coordinate-by-coordinate
constraint:

0 ď Zi
t ď z̄i

where z̄i is the amount of land in the Amazon biome available for agriculture at site
i.8 Let Żt be the time derivative of Z at date t.

The evolution of X i introduces an important asymmetry into our problem. We
write a “linear” version of this problem by introducing two site-specific, scalar,
non-negative control variables for our fictitious planner, U i

t and V i
t , that distinguish

positive from negative movements in the derivative of Zi
t :

Żi
t = U i

t ´ V i
t . (1)

The site-specific state variable process X i evolves as:

Ẋ i
t = ´γiU i

t ´ α
[
X i

t ´ γi
(
z̄i ´ Zi

t

)]
(2)

where the parameters satisfy: γi ą 0, α ą 0, for i = 1, 2, ..., I. The first term
on the right side of (2) connects deforestation to a loss in captured carbon. The
site-specific parameter γi ą 0 denotes the density of CO2e that is present in a
primary forest in site i.9 The next term expresses the growth in captured CO2e,
when the size of the forest in site i is held constant. The mean-reversion coefficient
α guarantees that if one lets the forest grow undisturbed in a deforested area, it would
reach 100[1 ´ exp(´α100)]% of the maximal captured CO2e in 100 years as in
Heinrich (2021). In our case, we choose α such that 100[1 ´ exp(´α100)] = 99%.

7We choose cattle prices because, in recent years, more than 85% of deforested land is dedicated
to cattle grazing - soybean, the largest crop in the region, accounts for about 8% of the farming land
(Mapbiomas - www.mapbiomas.org).

8For calibration of this and the other parameters see Section 5
9For simplicity, equation (2) assumes that all deforestation occurs in primary forest, what is not

far from what has been observed in the Brazilian Amazon.
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Notice that, holding constant the deforested area, the amount of carbon in a site
converges to γi per hectare of remaining forest. In Remark 3.3, we argue that at the
optimum, one of the controls is always zero, which introduces additional binding
constraints into the analysis. We write this constraint as: U i

tV
i
t = 0.

We model cattle output as proportional to the land allocated to cattle farming,

Ai
t = θiZi

t (3)

where θi is a site-specific productivity parameter.
All of the locations contribute to emissions via the capture of carbon and emis-

sions that result because of agricultural activity with a net impact given by

κ
I
ÿ

i=1

Zi
t ´

I
ÿ

i=1

Ẋ i
t , (4)

where parameter κ captures the emissions that result because of cattle farming.10

We include a cost of adjustment to changes in the use of land with contributions
from each site. It is measured by

ζ

2

[
I
ÿ

i=1

(
U i
t + V i

t

)]2
.

Importantly, the adjustment cost depends on the aggregate change in land use.
The price process P a for the agricultural output evolves exogenously as an n-

state Markov chain in continuous time with time-invariant transitions. This process
has an infinitesimal generator represented as an intensitymatrixMwith non-negative
entries off-diagonal entries mℓℓ1 ě 0 for ℓ1 ‰ ℓ and diagonal entries

mℓℓ = ´

n
ÿ

ℓ1=1,ℓ1‰ℓ

mℓℓ1 .

10About 75 percent of emissions from agricultural activity in the Amazon is the result of the
natural digestive process of cattle. Another approximately 21 percent is from soil management. Thus
for simplicity we assume that cattle herd per hectare does not vary and that productivity variations
come mostly from transportation costs and carcass weights.
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The implied transition probability matrix over an interval of time τ is exp (τM) com-
puted using a matrix counterpart to a power series.

Since many carbon trading schemes are based on emissions, we assume that the
planner takes as given a price for carbon emissions P e, the initial price for agricul-
ture and the Markov process that describes the future evolution of the price P a

t for
cattle and maximizes

E

$

&

%

ż 8

0

exp(´δt)

´P e

(
κ

I
ÿ

i=1

Zi
t ´

I
ÿ

i=1

Ẋ i
t

)
+ P a

t

I
ÿ

i=1

θiZi
t ´

ζ

2

(
I
ÿ

i=1

(U i
t + V i

t )

)2
 dt

,

.

-

(5)
subject to equations (1)-(2), and the control restrictions:

U i
t ě 0, V i

t ě 0 t ě 0.

where δ is the subjective discount rate. The exogenously specified emissions price,
P e, is an input into the analysis that allows us to explore how costly it will be tomake
important changes in deforestation outcomes in Brazil. Its magnitude reflects the
sum of the marginal value attributed by the planner to emission and any monetary
transfers obtained from others, such as sales in carbon emission markets. In the
computations that follow, we take this price to be fixed over time, but in future
work we intend P e to fluctuate over time.

Remark 3.1. The objective function (5) values agricultural output by the value of
sales, thus assuming that inputs to production have no alternative use. This choice
is dictated by a lack of data on the cost of attracting or redeploying agricultural
inputs, but it biases the results in favor of agricultural use.

Remark 3.2. The only explicit interaction across sites in objective function (5) oc-
curs through the adjustment costs. This interaction is intended to be the result of a
less than perfectly elastic supply of resources needed for changing land use at the
level of the whole Amazon. Additionally, sites are spatially related by their simi-
larity in productivities for alternative ways to use the land. A more complex model
would introduce interactions across sites via non-linearities in the valuation of agri-
cultural output and/or emissions, an extension worthy of exploration in future work.
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Remark 3.3. To show that the controls U i
t and V i

t satisfy the complementary slack-
ness condition U i

tV
i
t = 0 for each pair (i, t), it is easier to consider a discrete-time

model. The proof for the analogous result for the continuous-time case goes through
by taking limits. Suppose you take a point where the optimal trajectory involves
mintU i

t , V
i
t u ą ∆ ą 0. If the planner lowers both controls by∆, then at time t, one

obtains an increase of∆ inX i
t and lower emissions γi∆. Equation (2) implies that

X i
t would have a lower drift and converge over time to the stationary solution. This

in turn implies that the sum of future emissions would increase by γi∆. However
since the rate of discount is positive, the value of the problem would increase. Thus,
an optimal solution cannot involve simultaneously positive values for U i

t and V i
t .

Remark 3.4. Optimization problem 5 does not involve the stocks of (extended) car-
bon in the atmosphere generated by activities in the Amazon biome. However, given
emission trajectories from the optimal solution, one could use geo-science inputs to
inform the mapping of emissions from the Brazilian Amazon and elsewhere into car-
bon in the atmosphere to compute the impact on the evolution of carbon stocks. This
would require a much more comprehensive model that is beyond the scope of this
particular exercise.

4 Parameter uncertainty

We treat parameter uncertainty probabilistically by starting with a baseline subjec-
tive prior over the parameters. We form this baseline “prior” conditioned on avail-
able data. Rather than assuming a full commitment to this baseline distribution, we
allow for some skepticism in by exploring sensitivity to distributional changes. We
limit the scope of the sensitivity analysis by penalizing deviations from the base-
line prior using a relative entropy or Kullback-Leibler measure of divergence. This
divergence is well known to have convenient mathematical and conceptual impli-
cations. We implement this sensitivity analysis by converting our one-person maxi-
mization problem into a two-player gamewhere the sensitivity analysis is conducted
via minimization. This delivers a form of ambiguity aversion consistent with two
alternative representations of ambiguity aversion: smooth ambiguity and variational
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preferences.11

Our model is dynamic and Markovian. As such, it could be formulated from the
vantage point of an initial period or recursively. Even in the absence of parameter
uncertainty, we find it convenient computationally to solve it from the perspective
of an initial date. This makes it a “static problem.” We adopt this same static per-
spective to explore the consequences of uncertainty. In contrast to the single-agent
decision theory, this has conceptual implications beyond just computational consid-
erations as the minimization is performed as well at the initial date. In effect, we
treat the two-player formulation as a static max-min game where, as we noted, the
minimizing player is used as a formal device to explore the sensitivity to changes in
the distribution over parameters used in optimization.

We implement a static formulation of robustness to parameter uncertainty as
follows. For each site, we consider the parameter pair (γi, θi) for i = 1, 2, ..., I.

Let φ denote full parameter vector including all sites and hence of dimension 2ˆ I.

We use a regression approach to construct baseline estimates of the site-specific
productivities given site attributes. Each site may intersect multiple municipalities,
and we writeM i for the set of municipalities that overlap site i. We construct site-
specific productivities using[

γi

θi

]
=

[
ř

mPM i wi
m exp

(
βγ ¨ Rm

γ

)
1

PA
2017

ř

mPM i wi
m exp (βθ ¨ Rm

θ )

]
. (6)

In this regression,Rm
γ is a vector of geographical variables used to construct baseline

estimates for the carbon-absorption productivity for municipality,m. Similarly,Rm
θ

is a vector of such variables used to construct baseline estimates for the value of
agricultural output per hectare for the samemunicipality. wi

m is an area-basedweight
of the importance of municipalitym in site i, and PA

2017 is the price of cattle in 2017.
Uncertainty in the composite regression parameter vector, β1 def

= (βγ
1, βθ

1), in-
11See Klibanoff, Marinacci and Mukerji (2005) for an initial axiomatic foundation for smooth

ambiguity and Maccheroni, Marinacci and Rustichini (2006) for an axiomatic foundation for varia-
tional preferences. Maccheroni, Marinacci and Rustichini (2006) used Hansen and Sargent (2001)’s
application of relative entropy divergence as motivation for their work. See Hansen and Sargent
(2023) for a recent analysis relating both preference formulations to statistical decision theory and
robust control theory by embracing a different axiomatic perspective.
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duces uncertainty in the site-specific productivities, (γi, θi) for i = 1, 2, ..., I. The
underlying dimension of the uncertainty is given by the number of the unknown re-
gression parameters, which is substantially less than 2ˆ I. This reduction turns out
to be important for implementation. We use a regression method because we do not
have direct evidence for each of the site-specific productivities. Our productivity
data are available at different resolutions than the sites within our model. For these
reasons, we use attributes as right-hand side variables in the regression and feed in
site-specific attributes. Moreover, we use the regression approach to fill in miss-
ing observations. Since the dependent variables in the regressions are expressed in
terms of logarithms, we exponentiate the predictions implied by regressions.

We use historical evidence on land-use productivity to estimate the two regres-
sion equations as functions of attributes. We impose a familiar and convenient con-
jugate prior to produce a Bayesian posterior π, for the β1s. See, for instance, Raiffa,
Schlaifer et al. (1961). The unknown regression coefficients are presumed to be nor-
mally distributed conditioned on the regression-error variances and the regression-
error variance are posited to have an inverse gamma distribution. We use quasi-
analytical formulas to deduce posterior distributions for the regression predictions
that we use as baseline probability distributions for the site-specific productivities.12

While the baseline distributions π constructed in this matter are “posterior” from the
perspective of our regression analysis, they play the role of a “prior” for the social
planner acting conditioned on data used in the regression analysis.13

Our measure of divergence used to explore sensitivity restricts the alternative
probabilities to be absolutely continuous with respect to the baseline distribution.
With this restriction, it suffices to focus on alternative distributions to the baseline
specification for the regression coefficients. This simplifies substantially the nu-
merical computations.

Remark 4.1. An interesting extension could include a probabilistic specification
of heterogeneity in the productivity parameters not captured by the regression for-
mulation. This would add to the computational burden as the sensitivity analysis

12See Appendix C for details
13Our static formulation of the two-player decision problem does not allow for the possibility of

dynamic learning going forward. We abstract from this for computational tractability.
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would be over a substantially larger space and would require a plausible probabil-
ity specification of the unobserved heterogeneity.

Given the vector of regression parameters, β, in a set, B,wewrite f(d, β) for the
discounted utility obtained from a sequence of decisions dwith implied productivity
parameters given by formula (6). We abstract from uncertainty in this calculation,
but this could also be incorporated into the analysis. We use a familiar relative
entropy (or Kullback-Leibler) divergence measure to capture ambiguity about the
parameter distribution given by

ż

B
log g(β)g(β)dπ(β) ě 0,

where g satisfies
ş

g(β)dπ(β) = 1. Notice that the non-negative (relative) density,
g, implies an alternative probability distribution given by g(β)dπ(β). Preferences
over alternative decision sequences are given by:

min
gě0,

ş

gdπ=1

ż

B
[f(d, β) + ξ log g(β)] g(β)dπ(β),

for a penalty parameter ξ ą 0. For ξ arbitrarily large, these preferences are well
approximated by expected utility preferences using the baseline distribution π.

These preferences are recognizable as a special case of what are called varia-
tional preferences for a static decision problem. The minimization problem has a
well-known quasi-analytical solution:

g˚(β) =
exp

[
´1

ξ
f(d, β)

]
ş

B exp
[
´1

ξ
f(d, β)

]
dπ(β)

(7)

with a minimized objective:

´ ξ log
ż

B
exp

[
´
1

ξ
f(d, β)

]
dπ(β). (8)

The minimizing g given in (7) induces an “exponential tilt” of the probabilities to-
wards lower discounted utilities. The magnitude of ξ determines the strength of this
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tilt. We shall refer to limiting ξ = 8 case as ambiguity neutrality. For this limit,
the decision problem uses the familiar expected utility objective:

max
d

ż

B
f(d, β)g(β)dπ(β).

Remark 4.2. The minimized objective given by (8) is a special case of a smooth
ambiguity objective, first suggested by Klibanoff, Marinacci and Mukerji (2005).
They deduced a rationale for an ambiguity adjustment represented using a concave
function distinct from the one used for expressing risk aversion. While they take such
a concave adjustment to be a starting point, we deduce a logarithmic-exponential
representation from a starting point motivated by robustness. Thus their axiomatic
motivation is different from the distributional robustness that interests us.

Remark 4.3. As posed, the minimization is over the marginal posterior for the re-
gression coefficients. With relative entropy divergence, we may equivalently solve
the minimization problem using the relative entropy divergence over the conditional
posterior distribution for the regression coefficients and the marginal posterior for
the regression-error variances. We use this observation in our actual calculations
to simplify our algorithmic implementation.

Given the parameter ambiguity adjustment, the implied decision problem is a
two-player zero-sum game. If we constraint the decision process d to a convex set
D.

Problem 4.4.

max
dPD

min
gě0,

ş

gdπ=1

ż

B
f(d, β)g(β)dπ(β) + ξ

ż

B
log g(β)g(β)dπ(β).

For conceptual reasons, we switch order of maximization and minimization.

Problem 4.5.

min
gě0,

ş

gdπ=1
max
dPD

ż

B
f(d, β)g(β)dπ(β) + ξ

ż

log g(β)g(β)dπ(β).
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Under quite general conditions we may invoke the Max-min Theorem and claim
that the objective for Problems 4.4 and 4.5 will be same and the minimizing g eval-
uated at the maximized d for the Problem 4.4 will agree with the minimizing g from
Problem 4.5. Similarly, the optimized decision processes will agree.

Consider the inner maximization for Problem 4.5:

max
d

ż

B
f(d, β)g(β)dπ(β)

where we are free to drop the relative entropy penalty as it does not depend on the de-
cision process d. Provided that this inner problem has a solution for the outer g min-
imization, the planner is maximizing against this particular (penalized) “worst-case
probability.” This computation is of interest as a way to interpret the consequences
of any given choice of the penalty parameter ξ. Following a common practice for
robust Bayesian methods, we find it revealing to explore alternative choices of ξ
and deduce their implications for the implied worst-case probabilities.

5 Productivity measurement

As discussed in section 4, we construct site specific productivity estimates from the
output of regression equations. See formula (6). Appendix A describes in detail all
data used for these regressions. What follows is a summary of the evidence that we
draw on.

For input into the agricultural productivity regression, we use the year of 2017
as a reference for many variables, since this is latest Agricultural Census in Brazil.
For the regressand, this census provides information on the value of cattle sold for
slaughter per hectare of pasture land at the level of a municipality.14 As regressors,
we use geographical variables as stipulated in Appendix A. The census provides
observations on the value of cattle sold for slaughter per hectare of pasture land for
466 municipalities out of the 540 municipalities that intersect the biome. Since we

14Considering the total revenue of the cattle ranching activity, we may be overestimating its im-
portance. It accounts not only for the value created in the local economy, in the form of profits and
wages but also for some inputs specifically consumed in production. Unfortunately, our data does
not allow us to construct a reliable measure for the value added by grazing in the Brazilian Amazon.
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have data on the regressors, and we use regression predictions to attribute values to
the remaining municipalities and to obtain agricultural productivities, the θi’s.

For measuring the productivity of carbon sequestration, the γi’s, we first use
data from MapBiomas 15 to select pixels of 100m ˆ 100m that can be considered
primary forests. Given this partitioning, we used 2017 data from ESA Biomass16

to obtain carbon per hectare. We then calculate average productivities for each mu-
nicipality. Analogous to the procedure we used for the θi’s, we run a regression
using the MapBiomas data as regressands and geographical variables as regressors
to obtain estimates at the spatial resolutions used in our model.

We use two different spatial resolutions for the results that we report. In both
cases, we project municipal estimates into two grids of the Amazon biome. At the
most detailed level we consider a regular grid of the Amazon region with pixels
of 30m ˆ 30m resolution from MapBiomas (Souza Jr, 2020). We then aggregate
pixels to form 1887 sites that are 67.5 km ˆ 67.5km. Many of these sites do not
overlap the Amazon biome. We discard these and twenty others with less than 3%
of their area in the Amazon biome. This reduced our number to 1043 sites.

For reasons of tractability, when we consider either a stochastic evolution of
agricultural prices or uncertainty in the productivity parameters, we use a less re-
fined grid of 130 sites that are approximately 270km ˆ 270km. We obtain 78 sites
after dropping sites that do not overlap the Amazon biome at all and four additional
sites with less than 3% in the Amazon biome.

Figure 2 shows the initial land allocated to agriculture and the initial stock of
absorbed carbon across the 1043-grid sites. Figure 3 shows how the carbon seques-
tration parameter γi varies across the different sites, and Figure 4 does the same
for the agricultural productivity parameter, θi. The correlation between θi and γi is
´.35 for the finer resolution and ´.44 for the coarser resolution. Thus, while agri-
cultural productivity and carbon absorption capacity are negatively correlated, this
relationship is imperfect.

15Web address: www.mapbiomas.org (Collection 5).
16See Santoro and Cartus (2021).
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zi0 xi
0

Figure 2: Initial values for agricultural area (zi0) and carbon stock (xi
0)

Figure 3: Carbon sequestration parameters (1043 sites left, 78 sites right)

Figure 4: Agricultural productivity heterogeneity (1043 sites left, 78 sites right)

6 Solving the maximization problem

To achieve the needed degree of economic and spatial richness, we use numerical
methods to obtain model solutions. Given the number of locations that we use (1043
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or 78), we necessarily have a large number of state variables with state-constraints
that bind at the optimal solution. To confront the inequality restrictions that are
central to our problem, we use a so-called interior point method. This method im-
poses penalties on logarithms of variables constrained to be non-negative. While the
interior point approximation pushes solutions away from their zero boundaries, in
practice the solutions will be close enough to zero to identify the binding constraints.

6.1 Solution with parameter ambiguity neutrality

In the absence of stochastic prices and with ambiguity neutrality, we solve a static
optimization problem over all possible trajectories for the next 200 years for 1043
sites. This problem is deterministic evaluated at the ex-ante average parameters us-
ing baseline distributions. Given obvious uniform bounds on possible utility flows
and discount rates of at least 2%, the resulting trajectories give reasonable approxi-
mations to the infinite horizon optima.

6.2 Solution with parameter ambiguity aversion

For solving the robustly optimal problem numerically, we take an iterative approach,
supported by the Min-max Theorem. Specifically, we proceed as follows:

i) Given a g, we solve the maximization problem for a candidate d.We ignore the
relative entropy penalty term in this solution.

ii) For a given d, we solve the minimization problem with the relative entropy
penalization to obtain a new candidate for g˚.

iii) We repeat the steps until we achieve convergence.

Our computations in step ii) will exploit the quasi-analytical formula for g˚ given
in (7). We take as given a decision process, d, and evaluate the discounted objec-
tive to obtain the numerator for (7). The denominator, however, must be computed
numerically. Here we use a Monte Carlo method that was originally developed for
computing Bayesian posteriors. This method is based on Hamiltonian dynamics
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and is often more computationally efficient for high-dimensional problems than the
familiar Metropolis-Hastings method. See, for instance, Neal et al. (2011) and Car-
penter (2017), with software support given by Stan Development Team (2023).17

See Appendix D for more details.

6.3 Solution with price stochasticity under ambiguity neutrality

To account for stochastic prices in a tractable way, we construct an approximate
Markov chain with two states P a

ℓ ă P a
h and transitions that match the empirical

transitions from monthly data.18 When considering a stochastic evolution of prices,
we find “Modified Predictive Control” (MPC) methods (e.g. Scokaert and Rawl-
ings (1998), Alberto Bemporad (2002), S. Thangavel (2018)) to be particularly suit-
able for solving our planner’s problem. Our MPC approximation is implemented as
follows.19 Given the current period, say date zero, we break the future into two
segments: a) an uncertainty horizon of say τ time periods and b) the remaining
T ´ τ time periods beyond this uncertainty horizon for which we abstract from un-
certainty. While the cattle price distribution follows aMarkov chain, to simplify our
computations, we set the prices in periods τ + 1, . . . T equal to the value that pre-
vails at τ. Prior to date τ +1, we confront randomness in this problem by imposing
appropriate “measurability” restrictions on the controls as functions of potentially
realized states. We then apply the interior point method to find the optimal trajec-
tory at zero given P a

0 .We keep the optimal date t = 1 states computed at time t = 0

and repeat. That is, we consider the problem stating at t = 1 with the new state
vector and divide the future into two segments: an uncertainty segment of length τ
and a remaining period of T ´ τ ´ 1. This step will determine an optimal state at
period 2. We continue this procedure to produce the optimal state at periods 3, 4,
..., T supported by the corresponding optimal controls.

17From a mathematical standpoint, this calculation is equivalent to computing a Bayesian poste-
rior where ´ 1

ξ f(d, β) plays the role of a log-likelihood function and π plays the role of a prior. As
noted in Remark 4.3, for programming simplicity, we worked with an augmented parameter space
when computing the distribution of interest.

18See Appendix A for details.
19Related computational approaches have been proposed by Cai, Judd and Steinbuks (2017) and

Cai and Judd (2023).
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In practice, the dimensionality of the stochastic problem increases geometrically
as a function of the uncertainty horizon, τ.Consequently, thisMPCmethod becomes
tractable when the uncertainty horizon can be relatively short and still obtain good
approximations. We determine an “adequate” uncertainty horizon τ˚ by checking
the difference in the value of the problem V (τ) ´ V (τ ´ 1) for τ = 0, 1, . . . , τ˚. In
our coarse grid with 78 sites and price randomness, we chose τ˚ = 5.

Many of the results we will show entail projections into the future. We report
results based on two hundred simulated sequences of cattle prices, P a

t , t = 1, . . . T,

using the observed P a
0 and the calibrated Markov chain.

7 Results

In this section, we report our quantitative findings. We start by constructing a bench-
mark “business-as-usual” set of results. We accomplish this by deducing an implied
social price of carbon that supports current aggregate implications. Then, in suc-
cession, we study i) deterministic solutions for higher social prices; ii) stochastic
solutions with price randomness; and iii) solutions with parameter uncertainty.

7.1 Shadow prices under business-as-usual

We infer a shadow value for the planner based on historical experience. To obtain
this value, we first choose an interval [t, t̄] and then select a time invariant price for
emissions, denoted by P ee, to match the aggregate deforestation predicted by the
model at a final observation period t̄. We let (Xo

t , Z
o
t ) denote the initial observed

state vector. We also input the realized history of agricultural prices tP a
t : t ď t ď

t̄u. We then compute the optimal trajectory for the state variables implied by our
model for alternative choices of P ee and find the choice of P ee that matches the
observed value of the aggregate deforestation at t̄ :20

řI
i=1 Z

i
t̄ .

We use t = 1995, the initial date for our price data and t̄ = 2008 the announce-
ment of the Amazon fund that would pay for preservation projects in the Amazon,
using money contributed mostly by Norway.

20We obtain a similar value if instead we minimize the norm of the vector (Xt̄´Xo
t̄

Xo
t̄

,
Zt̄´Zo

t̄

Zo
t̄

),
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The business-as-usual price, P ee, depends on the model specifications, as we
document in Table 1. For instance, since an increase in the agricultural price makes
cattle farming more productive, the business-as-usual carbon price has to increase
to achieve the same deforestation outcome. Also, with more sites at a finer resolu-
tion, some of the smaller sites will have agricultural productivities that are relatively
higher, increasing the incentive to deforest. As Table 1 shows, the business-as-usual
price is larger when we have a finer partition of sites. Finally, uncertainty in the pro-
ductivity parameters leads to a smaller business-as-usual price for reasons that will
become clear in our subsequent discussion. In what follows, we will consider solu-
tions to the optimization problem starting in 2017 and a discount rate of 2 percent.

We will explore implications when the planner uses P e = P ee + b for b =

0, 10, 15, 20, and 25 where b represents transfers per ton of net captured emissions
to the planner. Specifically, when net emissions total E tons of CO2, the planner
receives a transfer of bE. Note that even b = 25 corresponds to a social price that
is low when compared to the prevailing price of emissions in some regions of the
globe. The forces that lead to changes in shadow prices have a direct and partially
offsetting effect on deforestation. Consequently, the implied optimal (or robustly
optimal) trajectories for each choice of bwill be less sensitive to the particular model
specification. Essentially, the same argument applies to changes in the subjective
discount rate.21

Table 1: Business-as-usual prices
number of sites agricultural price ξ carbon price (P ee)

1043 pa = 41.1 8 7.6
78 pa = 41.1 8 7.1
78 pa = 41.1 1 5.3
78 stochastic 8 6.9

Notes: The agricultural price P a = 41.1 is the mean under the stationary
distribution.

21Since emissions are a low duration asset relative to cattle, a larger discount rate implies less de-
foresting, thus lowering P ee, approximating future trajectories for a given b. In fact, our simulations
show that future trajectories do not change much for each b, when we move from 2 to 3 percent.
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7.2 Results for case without stochasticity or ambiguity aversion

In this section, we discuss results for a model with a constant price for cattle that
equals the average price in the stationary distribution for the estimated 2-stateMarkov
chain ($41.10). We first discuss results for 1043 sites, and then include results for
78 sites for comparison.

As Figure 5 shows, with “business-as-usual” ( P e = P ee = $7.6), the optimal
choice involves an increase in the agricultural area from 15% to around 25% of the
biome. This increase may actually cause sufficient deforestation for the hydrolog-
ical cycle of the Amazon to degrade to the point of being unable to support rain
forest ecosystems (Lovejoy and Nobre (2018)). The predicted trajectories are much
different with an additional per ton payment to the planner of $10, $15, $20 or $25.
Figure 6 reports the trajectories over time of the transfer payments for b = $15 and
b = $25. The peak payments occur after about 12 years for both values of b. As
expected the transfer payments for b = $25 are much larger that the corresponding
payments for b = $10.

Figure 5: Agricultural area and carbon stock evolution.
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Figure 6: Evolution of transfer payments for two choices of b.

As we now show, these transfer payments result in a substantial decrease in
agricultural area and a corresponding increase in forested area. The first five rows
of Table 2 give the discounted value to the planner of a commitment to receive b of
net transfers for each ton captured of CO2, when P a is the stationary price. It also
gives a decomposition of this present value to interpretable components. Among
these components, “forest services” are measured at the implied Brazilian shadow
price for business-as-usual. The net transfers to Brazil are reported separately. Even
transfers of $10 per ton are enough to compensate the losses of agricultural output,
but the largest contributor to the gains is the increase in forest services. The larger
transfer of $25 per ton of net captured CO2 almost doubles the value for the planner
- a net gain of $226 billion. This net gain is composed of a loss of $354 billion
in the value of cattle output,22 which is more than compensated by $352 billion in
transfers and $246 billion in forest services. Adjustment costs are a small part of
the story.

22Recall, however, that we use a measure of full output as value added. Thus, we have exagger-
ated the loss of agricultural output.
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Table 2: Present-value decomposition - 1043 sites

P e

($)

b

($)

agricultural
output value
($ 1011)

net
transfers
($ 1011)

forest
services
($ 1011)

adjustment
Costs
($ 1011)

planner
value
($ 1011)

7.6 0 3.73 0.00 -1.39 0.08 2.26
17.6 10 0.58 1.17 0.89 0.12 2.52
22.6 15 0.33 1.98 1.00 0.18 3.14
27.6 20 0.24 2.76 1.05 0.23 3.82
32.6 25 0.19 3.53 1.07 0.27 4.52

Notes: We set P a = 41.1, which is the mean of the agricultural price in the stationary
distribution. Forest services are calculated using baseline shadow price (b = 0). The
present values are computed for two hundred years.

Table 3 displays the total effect of transfers per ton of net CO2 captured in years
15 and 30. For the business-as-usual carbon price, the planner chooses deforestation
that induces carbon emissions of about 12 and 18 billion tons per year in 15 and 30
years, respectively. This table uses this baseline in featuring the “effective cost.”
We calculated this as the ratio of discounted net transfers to the difference between
the net carbon captured and the corresponding baseline value when b = 0. With
transfers of, say, $15/ton, optimal management induces capture of about 6.6 billion
tons by year 15 and an additional 7.2 billion tons by year 30. The effective costs
are about $4.5 and $4.9, considerably less than the per ton subsidies captured by the
b’s. With transfers of $25/ton, there are modest increases in the captured carbon with
effective prices that are almost double, but still about one third the transfer payments
per ton. Thus, the results in Table 3 illustrate the gains from trade in instituting a
contract that pays Brazil per net ton of CO2 captured.
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Table 3: Transfer costs - 1043 sites
15 years 30 years

P e

($)

b

($)

net captured
emissions
(billion tons
of CO2e)

discounted
net transfers

($ 1011)

discounted
effective cost
($ per ton
of CO2e)

net captured
emissions
(billion tons
of CO2e)

discounted
net transfers

($ 1011)

discounted
effective cost
($ per ton
of CO2e)

7.6 0 -12.04 0.00 NaN -17.66 0.00 NaN
17.6 10 5.20 0.44 2.53 11.67 0.86 2.93
22.6 15 6.66 0.84 4.50 13.85 1.55 4.92
27.6 20 7.58 1.28 6.53 14.62 2.21 6.85
32.6 25 8.16 1.73 8.56 15.00 2.86 8.75

Notes: Agricultural price P a = 41.11, which is the mean of the agricultural price in the stationary distribution.

Figure 7 exhibits the initial distribution of land allocation over 30 years for b
= $0, $10, and $25. It shows that for the case of transfers that exceed $10 per ton
of net emissions, the area of the biome that is occupied by cattle farming after 30
years would be substantially reduced in comparison to the 2017 allocation. This is
in sharp contrast to what transpires in the b = 0 business-as-usual specification in
which agricultural production becomes quite intense in the lower right sites.

Figure 7: Agricultural area changes after 30 years.

Figure 8 provides a more complete spatial dynamic characterization for transfers
of $15/ton. In the optimal solution, much of the change in land occupation occurs
within the first 15 years. Appendix A shows how much this process slows down for
higher choices of the adjustment cost.
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Table 4: Present-value decomposition - case 78 sites

P a

($)

P e

($)

b

($)

agricultural
output value
($ 1011)

net
transfers
($ 1011)

forest
services
($ 1011)

adjustment
costs

($ 1011)

planner
value
($ 1011)

41.1 7.1 0 3.31 0.00 -1.10 0.06 2.14
41.1 17.1 10 0.43 1.23 0.87 0.12 2.42
41.1 22.1 15 0.26 2.02 0.95 0.17 3.06
41.1 27.1 20 0.21 2.79 0.99 0.23 3.75
41.1 32.1 25 0.17 3.54 1.00 0.26 4.45

Notes: For P a, 41.1 is the mean of the agricultural price in the stationary distribution. Forest
services are calculated using baseline shadow price (b = 0).

Figure 8: Agricultural area evolution over time

Our computations with parameter uncertainty and agricultural price stochastic-
ity use a coarser grid with 78 sites. Before exploring those results, Table 4 shows
what happens to the present-value decomposition if we only reduce the resolution.
Overall, the findings are quite similar for the two resolutions. Since some of the
highly productive refined sites for either agriculture or carbon absorption have been
aggregated with other less productive sites, the planner’s options are more limited.
As a consequence, there are small reductions in agricultural output values and in
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the magnitudes of the forest services. This can be seen by comparing the respective
columns of Table 4 with those in Table 2.

7.3 Results with robustness to parameter uncertainty

In this section, we present results when the planner is uncertain about cattle produc-
tivity and CO2 capture potential. While it is revealing to perform robustness calcu-
lations for several values of ξ, here we report results only for ξ = 8 and ξ = 1.

We refer to the former as ‘ambiguity neutral’ and the latter as ‘ambiguity averse.’
We report results for other values of ξ in the appendix A.11. The implied ambiguity
adjustments to the probabilities help us gauge the plausibility of different values of
ξ. The calculated shadow price, as reported in Table 1, is $7.1/ton under ambigu-
ity neutrality and a considerably lower value of $5.3/ton under ambiguity aversion.
The shadow price reduction under ambiguity aversion compensates for the slower
destruction of the forests when there is ambiguity in the agricultural productivities
for the various sites.

Figure 9 shows the baseline and ambiguity-adjusted distributions for parameters
γ and θ when b = 0 and b = 15.We display results for the two sites with largest di-
vergence between the baseline probability distributions and the ambiguity-adjusted
counterparts for sake of illustration.23 When looking across all sites, the adjustments
are very heterogeneous; and for some sites there is very little difference between the
two distributions.

Under the business-as-usual benchmark, the adjustments are more pronounced
for the θ distributions than for the γ distributions. In other words, it is the uncertainty
about agricultural productivity that the social planner finds to be most concerning
since the planner is not incentivized to preserve the rain forest without transfer pay-
ments.24 The uncertainty adjustment to the probabilities are substantially different
when b = 15.Now the adjustments are more pronounced for the γ probability distri-
butions because reforestation becomes a more prominent ambition for the planner.

23The sites were selected at the imposed business-as-usual price under ambiguity averse. See
Figure 16 in Appendix A.10 for a map of the site locations.

24Notice that the uncertainty adjusted γ distributions actually shift to the right when b = $0.
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Figure 9: Baseline and ambiguity adjusted densities for b = 0 and b = 15.

Some sites are deforested, and some sites are reforested by the planner in the
absence of external transfer payments. Figures 10, 12, and 13 show the years in
which one of the two controls is maximal for the individual sites. Recall thatU i

t ą 0

is when site i is being deforested, and V i
t ą 0 when the site i is being reforested.

Only one of these can be strictly positive at any date t.
Figure 10 compares what happens when b = 0 under ambiguity aversion, using

the same business-as-usual carbon emission price as we used under ambiguity neu-
trality. As examples, the two sites featured in Figure 9 are shaded in. For instance,
for site 71, the change in land allocation moves from year fifteen to one in which
there is no change in land allocation over the time span of 50 years. For site 74 the
change is from year three under ambiguity neutrality to year six under ambiguity
aversion. The delay is because the planner is particularly skeptical of the baseline
distribution for the site-specific agricultural productivity as displayed in Figure 9.
More generally, Figure 12 shows how the delays in deforestation and accelerations
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of reforestation for all of the 78 sites under ambiguity aversion, in the absence of
transfer payments. Overall, the ambiguity aversion decreases substantially the land
allocated to agriculture as is evident from Figure 11.

(a) ambiguity neutral (b) ambiguity averse
Figure 10: Spatial allocation comparison for b = 0 for common P ee = $7.1. Green
number in a site is the year of maximal rate of reforestation. Red number in a site
is the year of maximal deforestation. Sites 71 and 74 are shaded.

Figure 11: Evolution of agricultural area under ambiguity neutrality and ambiguity
aversion for b = 0 at a common business-as-usual carbon price, P ee = 7.1.

The previous results hold the business-as-usual price fixed as we introduce am-
biguity aversion. Aswe know fromTable 1, this price decreases endogenously when
we impose ambiguity aversion from 7.1 to 5.3. Not surprisingly, this has a big im-
pact on both the spatial-dynamic land allocation as we show in Figure 12. While
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ambiguity aversion still shifts the dates of the maximal responses, it now does so in
a much more muted way than in Figure 10.

(a) ambiguity neutral (b) ambiguity averse
Figure 12: Spatial allocations for b = 0, P ee = 7.1 for ambiguity neutral and P ee =
5.3 for ambiguity averse, the corresponding shadow prices. The green number in
a site is the year in which the rate of reforestation is maximal. The red number in
each site is the year in which deforestation is maximal. Sites 71 and 74 are shaded.

As shown in Figure 13, when b = 15, there is only reforestation. The dates of
maximal reforestation turn out show only limited sensitivity to the ambiguity aver-
sion in this case. For instance, consider site 71, which we featured in the top panel
of Figure 9 and is shaded in Figure 13. Under ambiguity neutrality, the planner’s
peak reforesting takes place in year five; and under ambiguity aversion, this action
is delayed until year seven. For site 74, the maximal response is delayed from year
eighteen to year twenty-one. The source of these and other modest delays are due
to uncertainty about carbon sequestration productivities.
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(a) ambiguity neutral (b) ambiguity averse
Figure 13: Spatial allocation for b = 15, using the corresponding shadow prices.
The number in each site is the year in which reforestation in that site is maximal.

The left panel of Figure 14 shows a notable contrast with Figure 11. Resetting
the business-as-usual price under ambiguity aversion has big impact on the aggre-
gate land allocation dynamics when b = $0. Consistent with the spatial dynamics
reported in Figures 12 and 13, Figure 14 shows that once we adjust the business-
as-usual price change, there is only a very modest impact in the aggregate land
allocation with and without ambiguity aversion. This holds true for b = $15 as
well.

(a) b=0 (b) b=15
Figure 14: Evolution of agricultural area under ambiguity neutrality and ambiguity
aversion, using the corresponding shadow prices.

Finally, we consider the present values under ambiguity aversion (ξ = 1) in
comparison to ambiguity neutrality (ξ = 8) in Table 5. As should be expected,
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the ambiguity aversion induces smaller present values since they are computed with
uncertainty adjusted probabilities. The specification of b determines either a net tax
or subsidy depending on its magnitude. Over the range of transfers implied by b’s
in excess of $10 per ton, the planner’s discounted objective increases and is greater
than that for b = $0 under both ambiguity neutrality and ambiguity aversion. In this
range, $b functions as a net subsidy, implying that the planner would strictly prefer
outcomes under these scenarios to the business-as-usual outcome.

Table 5 also reports the discounted present value of agricultural output. For
b = 0, the drop in the present value contribution of agriculture is over twenty per-
cent. This drop is consistent with the reduction in land allocated to agriculture under
ambiguity aversion as reported in Figure 14. In addition, the ambiguity-adjusted
probability densities provide a more conservative assessment of agricultural pro-
ductivity than the baseline densities. For the other choices of b in Table 5, the con-
tributions are very small but increase under ambiguity aversion. The reason for the
increase is that, under ambiguity aversion, the planner makes a more cautious as-
sessment of the ability of the Brazilian rain forest to absorb carbon, leading to a very
small increase in the land allocated to agriculture.

Table 5: Present-value decomposition - parameter ambiguity
agricultural output value ($ 1011) planner value ($ 1011)

b

($)

ambiguity
neutral

ambiguity
aversion

percent
change

ambiguity
neutral

ambiguity
aversion

percent
change

0 3.31 2.57 -22.4 2.14 1.64 -23.4
10 0.41 0.55 33.6 2.41 2.08 -13.9
15 0.26 0.30 14.2 3.06 2.62 -14.4
20 0.20 0.23 12.9 3.75 3.19 -15.0
25 0.17 0.19 11.9 4.45 3.74 -15.8

Notes: P a = $41.11, the average price under the stationary distribution. Forest services
are calculated using baseline shadow price (b = $0).

Remark 7.1. In contrast to land allocation process, Z, with parameter ambiguity,
the state vector process, X , of captured carbon is disguised to the planner, be-
cause initial conditions and the dynamics of carbon captured depend on the value
of γ. This has ramification for policy since we presume transfer payments are based
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on carbon reduction. Under ambiguity aversion, our planner uses the ambiguity-
adjusted probabilities to compute these payments. In ad hoc policy-making settings
distinct from our fictitious planner formulation, one could imagine differences in
perspective among providers and recipients of transfers opening the door to ex-
plicit consideration of differences in their aversion to uncertainty. Also, parameter
uncertainty opens the door to explicit learning that we abstract from here. Rather
than being purely passive, this learning could offer the potential for experimentation
as a way to gain a better understanding of site-specific productivities.

7.4 Results with stochastic variation in agricultural prices

For our final set of results, we explore implications allowing for an explicit ran-
domness in the agricultural price process. We generate these results using the MPC
method described previously. To keep things tractable, we have the social planner
assume a two state Markov process for the price process. We obtained the inputs
into this specification by estimating a hidden-state Markov process with Gaussian
noise as we describe in Appendix A.8. Of course, this is a rather substantial reduc-
tion in the price stochastic structure of agricultural prices, but it allows to engage
in an initial explore of price randomness in a tractable way. Under the two-state
Markov chain, there are two price realizations: pa = $35.7, $44.3. The implied an-
nual transition probabilities for staying put in each state are: .71 for the low state
and .83 for the high state.25 From Table 1 we see only a small, and not necessarily
very meaningful, drop in the business-as-usual price ($6.9 instead of $7.1) once we
introduce fluctuations in agricultural prices.26

Table 6 presents our results for present values decompositions. In addition to
reporting three quantiles, for comparison we include results imposing constant agri-
cultural prices equal to the mean under the implied stationary distribution. The

25Appendix A.8 gives results for a second estimation of the hidden-stateMarkov process in which
Gaussian shock variances are constrained to be the same. In this case, both realized states are lower
and most of the time is spent in the higher of the two states.

26To construct the business-as-usual price for emissions when the agricultural prices are stochas-
tic, we used the smoothed probabilities reported in left panel of Figure 15 in Appendix A.8 to assign
the discrete states in our computations. While we used a probability .5 threshold for this assignment,
many of the probabilities are actually close to zero or one.
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notable outcomes are as follows. First, the variation while evident for the business-
as-usual case (b = $0) is much less consequential when b = $15 and b = $25 for
the overall planner value. It is proportionately similar for the agricultural contribu-
tion to the value for all three choices of b. Second, imposing the mean as a constant
price gives quite an accurate approximation to the median response. In this sense,
the stochastic specification for agricultural prices only has modest impact on our re-
sults. Finally, Table 12 in Appendix A.8 exhibits the transfer costs and again these
show only a modest impact of the presence uncertainty.

Table 6: Present-value decomposition with stochastic agricultural prices
agricultural
output value
($ 1011)

net
transfers
($ 1011)

forest
services
($ 1011)

adjustment
costs

($ 1011)

planner
value
($ 1011)

pa = stochastic
b = $0
10% 3.19 0.00 -1.07 0.06 2.10
50% 3.30 0.00 -1.05 0.06 2.19
90% 3.39 0.00 -1.03 0.06 2.27
b = $15
10% 0.24 1.99 0.92 0.19 2.97
50% 0.26 2.00 0.92 0.19 2.99
90% 0.27 2.00 0.92 0.19 3.00
b = $25
10% 0.16 3.48 0.96 0.27 4.33
50% 0.18 3.48 0.96 0.28 4.34
90% 0.19 3.48 0.96 0.28 4.35

pa = $41.1
b = 0 3.31 0.00 -1.10 0.06 2.14
b = 15 0.26 2.02 0.95 0.17 3.06
b = 25 0.17 3.54 1.00 0.26 4.45

Notes: Forest services were calculated using baseline shadow price (b = $0). The
quantiles were computed based on two hundred simulations. The agricultural price
P a = 41.1 is the mean under the stationary distribution. Shadow prices are P ee =

7.1 for P a = 41.1 and P ee = 6.9 for P a = stochastic.

Remark 7.2. One possible way to amplify the models impact of making agricul-
tural prices stochastic is to introduce specification uncertainty into the analysis.
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Anderson, Hansen and Sargent (2003) propose a recursive way to make this adjust-
ment by using a relative entropy divergence to form penalties that limit the potential
misspecifications that are explored by the planner. Thus the MPC approach could
potentially be extended to incorporate this extension, opening the door to greater
adjustments for uncertainty.

8 Conclusions

We used a rich data set to study the impact of carbon prices on optimal forest preser-
vation over time and space in the Brazilian Amazon. We produced results for three
exercises. First, we project out the implications of “business-as-usual” for land al-
location in the Brazilian amazon by deducing the shadow price for emissions that
would justify historical deforestation. When we impose this shadow price looking
forward, the implied land allocation we find that the resulting deforestation would
eventually threaten the survival of the Amazon as a tropical forest. Second, we ex-
plore implications of augmenting this shadow price with transfer payments. We find
that transfer prices as low as $15 per ton of C02e lead to a substantial net reforesta-
tion and carbon capture in an efficient dynamic spatial land allocation. Furthermore,
a time invariant carbon price of $25 would generate enough monetary transfers to
fully compensate Brazil for the loss of output in the reforested areas. As a third ex-
ercise we consider the impact of robustly optimal controls on the spatial outcomes
when the capacity of each site to capture carbon as well as agricultural productivity
is uncertain to the planner.

Our results suggest international carbon payments of $25 USD/ton can reduce
emissions by about 20GtCO2e in 15 years and by about 30 GtCO2e, in 30 years.
This amount represents not only the total GtCO2e of carbon captured by natural re-
generation, for which Brazil will receive payments, but the avoided emissions from
deforestation that would happen in the “business-as-usual” scenario. According
to Griscom (2017), nature-based solutions such as forest restoration, avoided land
conversion, forest management and other practices have the potential of capturing
about 11.3 Gt of CO2 per year globally with costs no greater than $100 USD/ton.
Our baseline simulation in 3 suggests that optimal management of the Brazilian
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Amazon can deliver about 10% of this total at a much lower effective cost.
Our calculations in this paper ignore some important costs of deforestation. We

do not include, for instance, the effect of deforestation on agricultural productivity
in the Amazon (Leite-Filho (2021)) or in other regions in Brazil, a country that is
currently the fourth largest agricultural producer and third largest exporter in the
world. We also do not take into account the loss of biodiversity or resiliency includ-
ing possibility that Amazon deforestation triggers a tipping point with broad based
consequences (Steffen (2018) and Flores (2024)). Finally, we do not account for
the direct effect of deforestation in one site on forests in other sites.27 These are
important considerations for future research.
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A Data construction

A.1 Total available area

To compute z̄i, the amount of available area for the planner’s choice (forest or cattle
farming) in each site i, we first calculate the fraction of 30m-pixels in site i classified
as agriculture (crops + pastures) or forests in MapBiomas 2017 (Souza Jr, 2020).
We then multiply this fraction by the area (within the biome) of the site, to obtain a
measure in hectares. Notice z̄i comprises the total site area, excluding areas such as
rivers, roads, cities and etc.

A.2 Carbon absorption

We first extract a random sample of 1.2M 30m-pixels and select 893,753 pixels with
no deforestation during 1985-2017, which we treat as primary forests as of 2017.
We add above ground biomass density data for the year 2017 from ESA Biomass28.
The biomass data also comes in a grid format with„100m resolution, so we spatially
match it to our sample. The original data is measured in biomass density (Mg per ha)
but we convert it to carbon per hectare, by dividing by 2 (carbon is approximately
50% of the biomass), and then obtain CO2 equivalent by multiplying by 44 and
dividing by 12 (based on atomic mass). In Appendix C we exposit how we use the
data to obtain a baseline distribution of the vector of site-specific carbon absorption
productivities, (γ1, . . . , γI).

A.3 Carbon depreciation

The parameter α is a carbon depreciation parameter, assumed to be constant across
sites. It is set so that the 99% convergence time of the carbon accumulation process
is 100 years (see Heinrich (2021)), that is α = 1 ´ (1 ´ 0.99)1/100 = .045.

28(Santoro and Cartus, 2021)
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A.4 Emissions contributed by agriculture

The parameter κ is calibrated using the agricultural net annual emission data at the
state level available from the system SEEG.29 We use κ = 2.0942, which is the av-
erage of agricultural net emission divided by the agricultural area fromMapBiomas
for all states within the Amazon biome, weighting by the area of each state overlap
with the biome, from 1990 to 2019.

A.5 Cattle farming productivities

Since almost 90% of the historically deforested land in the Amazon biome that was
used for agricultural activities in 2017 was used for pasture, we focus on the produc-
tivity of cattle farming for each site. Since we do not havemeasurements concerning
the cost of attracting or redeploying variable inputs to the cattle farming sector, we
focus on revenue per hectare. This choice leads to an overvaluation of the contri-
bution of cattle farming in the Amazon to the Brazilian economy.30 We consider
the value of cattle sold for slaughter per hectare of pastureland at the municipal
level, from the 2017 Agricultural Census (IBGE, 2017). In Appendix C we exposit
how we derive a baseline distribution for the vector of site-specific cattle farming
productivities, (θ1, . . . , θI).

A.6 Discount rate (δ) and adjustment costs cost (ζ)

We use the discount rate δ = 0.02 and calibrate ζ = 1.66e´4 using the difference in
price between forested land and cleaned land and the amount of annual deforestation
that occurred from 2008 to 2017 based on Araujo, Costa and Sant’Anna (2022).
Notice that the difference in price should reflect both the cost of deforestation and
any value of wood obtained in the process. Unfortunately, we did not have data that
would allow us to compute a separate adjustment cost for decreasing (as opposed to
increasing) deforestation, so we opted for symmetry.

29Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa. Available in
http://seeg.eco.br/.

30In contrast to other areas in Brazil, average value of slaughter per hectare of pasture in the
Amazon, decreased between 2006 and 2017, making it doubtful that future productivity will increase.
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A.7 Initial values: Z i
0, X i

0

The approach for computing the initial value for the agricultural area, Zi
0, is similar

to that used for the total available area Z̄i. The only difference is that we focus only
on the fraction of pixels classified as agriculture (crops + pastures) in 2017 before
multiplying by the site’s area in order to obtain a measure in hectares.

The initial value for the carbon stored in the forests X i
0 is assumed to be given

by X i
0 = γi(Z̄i ´ Zi

0), i.e., the carbon stock per hectare of forest times the forest
area. Notice that X i

0 is measured in CO2e (Mg). Notice that we assume that all
forest at the initial point is primary, which is compatible with equation (2).

A.8 Agricultural prices

We use a data series on monthly deflated cattle prices (reference date 01/2017),31

from 1995, the year in which the Real Plan stabilized the Brazilian currency, until
2017.

For themodel inputs, we fit a two-stateMarkov process as a hidden stateMarkov
chain with with Gaussian noise. We estimated two versions of this model using
the hmmlearn package in python. This package provides a collection of software
tools for analyzing Hidden State Markov Models. In estimation, the hidden states
were initialized in the implied stationary distribution of the transition probabilities
through an iterative process. The implied calibration we used for results reported
in the main body of the paper allowed for the normally distributed variances to be
different depending on the state. We also considered a specification in which the
variances are the same. The state realizations and transition probabilities for the
two specifications are given in Table 7.

31Commodity prices from SEAB-PR. Secretaria da Agricultura e do Abastecimento do Estado do
Paraná (SEAB-PR). 2021. ”Preço Médio - Recebido pelo Agricultor: boi gordo, arroz (em casca),
cana-de-açúcar, milho, mandioca, 1990-2021.” Secretaria da Agricultura e do Abastecimento do
Estado do Paraná, Departamento de Economia Rural [publisher], Instituto de Pesquisa Econômica
Aplicada, Ministério da Economia [distributor]. http://www.ipeadata.gov.br (accessed February 22,
2021)

A3



Table 7: Estimates for the hidden-state Markov models
distinct variances a common variance

low price high price low price high price
35.71 44.26 32.44 42.78

s.d. 0.105 0.075 0.088 0.088

transition probabilities
low high low high

low 0.706 0.294 0.766 0.234
high 0.171 0.829 0.046 0.954

The smoothed probabilities for both models are given in Figure 15. The more
constrained estimation picks lower values for both states but assumes the process
spends most of its time the higher of the two state.

(a) distinct variances (b) common variance
Figure 15: Smoothed probabilities for the two hidden state Markov chain models

Table 8 reports the likelihoods and AIC and BIC model selection diagnostics for
both models. The AIC criterion picks the less constrained of the two models and
the BIC criterion just the opposite.
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Table 8: Likelihood ratios and information criteria for the hidden stateMarkov chain
estimation

distinct variances common variance
log likelihood 270.16 268.04

aic -528.32 -526.08
bic -502.97 -504.36

In Table 9, we report the counterpart to Table 6 constructed using the implied
calibration the same variances for each state. The differences between results are
modest.

Table 9: Present-value decomposition with stochastic agricultural prices
agricultural
output value
($ 1011)

net
transfers
($ 1011)

forest
services
($ 1011)

adjustment
costs

($ 1011)

planner
value
($ 1011)

pa = stochastic
b = $0
10% 3.22 0.00 -1.01 0.05 2.19
50% 3.34 0.00 -1.00 0.05 2.29
90% 3.43 0.00 -0.97 0.05 2.37
b = $15
10% 0.24 2.00 0.84 0.19 2.89
50% 0.26 2.00 0.84 0.19 2.91
90% 0.26 2.00 0.84 0.19 2.91
b = $25
10% 0.16 3.48 0.96 0.27 4.33
50% 0.18 3.48 0.96 0.28 4.34
90% 0.19 3.48 0.96 0.28 4.35

pa = $41.1
b = 0 3.31 0.00 -1.10 0.06 2.14
b = 15 0.26 2.02 0.95 0.17 3.06
b = 25 0.17 3.54 1.00 0.26 4.45

Notes: Hidden state Markov chain model with a common variance. Forest services
were calculated using baseline shadow price (b = $0). The quantiles were computed
based on two hundred simulations. For this stochastic specification of the agricul-
tural prices, P ee = $6.3 and for P a = $41.1, P ee = $7.1.
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A.9 Transfer costs

In this subsection we report in Table 10 and Table 11 transfer costs under ambiguity
aversion and Table 12 transfer costs under stochastic variation in agricultural prices.

Table 10: Transfer costs under ambiguity - 15 years
ambiguity neutral ambiguity aversion

b

($)

net captured
emissions
(billion tons
of CO2e)

discounted
net transfers

($ 1011)

discounted
effective cost
($ per ton
of CO2e)

net captured
emissions
(billion tons
of CO2e)

discounted
net transfers

($ 1011)

discounted
effective cost
($ per ton
of CO2e)

0 -9.89 0.00 NaN -9.59 0.00 NaN
10 5.17 0.43 2.87 4.24 0.35 2.55
15 6.69 0.84 5.08 5.63 0.70 4.65
20 7.65 1.29 7.36 6.47 1.08 6.77
25 8.21 1.74 9.60 6.97 1.47 8.88

Notes: Agricultural price P a = $41.1, which is the mean of the agricultural price in the stationary distribution.
Shadow prices are P ee = 7.1 under ambiguity neutral and P ee = 5.3 under ambiguity aversion.

Table 11: Transfer costs under ambiguity - 30 years
ambiguity neutral ambiguity aversion

b

($)

net captured
emissions
(billion tons
of CO2e)

discounted
net transfers

($ 1011)

discounted
effective cost
($ per ton
of CO2e)

net captured
emissions
(billion tons
of CO2e)

discounted
net transfers

($ 1011)

discounted
effective cost
($ per ton
of CO2e)

0 -15.25 0.00 NaN -15.08 0.00 NaN
10 11.91 0.87 3.21 10.18 0.74 2.93
15 14.10 1.57 5.37 12.57 1.39 5.03
20 14.75 2.23 7.43 13.15 1.97 6.97
25 15.08 2.87 9.47 13.29 2.51 8.86

Notes: Agricultural price P a = $41.1, which is the mean of the agricultural price in the stationary distribution.
Shadow prices are P ee = 7.1 under ambiguity neutral and P ee = 5.3 under ambiguity aversion.
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Table 12: Transfer costs with stochastic agricultural prices
15 years 30 years

net captured
emissions
(billion tons
of CO2e)

discounted
net transfers

($ 1011)

discounted
effective cost
($ per ton
of CO2e)

net captured
emissions
(billion tons
of CO2e)

discounted
net transfers

($ 1011)

discounted
effective cost
($ per ton
of CO2e)

pa = stochastic
b = $0
10% -9.28 0.00 NaN -14.41 0.00 NaN
50% -8.52 0.00 NaN -13.79 0.00 NaN
90% -7.82 0.00 NaN -13.33 0.00 NaN
b=$15
10% 6.22 0.77 4.91 13.89 1.53 5.41
50% 6.25 0.77 5.21 13.91 1.53 5.53
90% 6.29 0.78 5.43 13.94 1.54 5.62
b=$25
10% 7.61 1.59 9.27 14.78 2.78 9.49
50% 7.63 1.60 9.78 14.79 2.78 9.70
90% 7.65 1.60 10.14 14.81 2.78 9.86

pa = $41.1
b=0 -9.89 0.00 NaN -15.25 0.00 NaN
b=15 6.69 0.84 5.08 14.10 1.57 5.37
b=25 8.21 1.74 9.60 15.08 2.87 9.47

Notes: The quantiles were computed based on two hundred simulations. The agricultural price P a = $41.1, which is
the mean under the stationary distribution. Shadow prices are P ee = 7.1 for P a = 41.1 and P ee = 6.9 when P a is
stochastic.

A.10 Catalog of the sites

Figure 16 lists the site numbers in the Amazon map as a reference.
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Figure 16: Locations of the different site numbers

A.11 Alternative values of ξ

In this section, we report results for parameter uncertainty with ξ = 2. The cal-
culated business as usual price is $6.1. Table 13 shows the present values under
ξ = 2 in comparison to ξ = 8. Figure 17 and Figure 18 shows the baseline and
ambiguity-adjusted distributions.

Table 13: Present-value decomposition - parameter ambiguity ξ = 2

agricultural output
value ($ 1011)

planner value
($ 1011)

b ($) ξ = 8 ξ = 2 ξ = 1 ξ = 8 ξ = 2 ξ = 1

0 3.31 2.87 2.57 2.14 1.86 1.64
10 0.41 0.50 0.55 2.41 2.22 2.08
15 0.26 0.28 0.30 3.06 2.81 2.62
20 0.20 0.22 0.23 3.75 3.43 3.19
25 0.17 0.18 0.19 4.45 4.06 3.74

Notes: P a = $41.11, the average price under the stationary dis-
tribution. Forest services are calculated using baseline shadow price
(b = $0).The business as usual price P ee = 6.1 for ξ = 2.
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Figure 17: Baseline and ambiguity adjusted densities for b = 0.
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Figure 18: Baseline and ambiguity adjusted densities for b = 15.

B Model discretization

In order to obtain numerical solutions for the social planner problem, we solve the
following discrete-time approximation, for a finite horizon of T = 200 years32:

max
tUt,VtuTt=1

T
ÿ

t=0

e´δt

´P e
I
ÿ

i=1

κZ i
t+1 ´ (X i

t+1 ´ X i
t) + P a

I
ÿ

i=1

θiZi
t+1 ´

ζ

2

(
I
ÿ

i=1

U i
t + V i

t

)2
 ,

(9)
32Since period-payoff can be bounded by a constant, given the discount rates we use, the loss in

precision for trajectories in the first 30 years, which is our period of interest, is small.
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subject to the initial conditions in A.7 and the constraints:

X i
t+1 = X i

t ´ γiU i
t ´ α

[
X i

t ´ γi(z̄i ´ Zi
t)
]

@i = 1, . . . I and t = 0, . . . , T (10)

Zi
t+1 = Zi

t + U i
t ´ V i

t @i = 1, . . . I and t = 0, . . . , T (11)

U i
t ě 0, V i

t ě 0 @i = 1, . . . I and t = 0, . . . , T (12)

C Benchmark distributions

Equation 6 gave the formula for constructing measurement of site-specific produc-
tivities from regression coefficients and measurements of municipality attributes.
In what follows, we first outline the municipality regression models used for γ and
θ, and then we describe the procedure that we used constructing baseline Bayesian
posteriors for the regression coefficients.

C.1 θ1s

To construct a measurement of the θ’s, we run the regression specification below
with probabilistic output.33

log(Slaughter value) = Rθβθ + ϵθ (13)

where

Rθβθ
def
= β0

θ + β1
θ (historical_precip) + β2

θ (historical_temp) + β3
θ (historical_temp

2)

+ β4
θ (lat) + β5

θ (lat
2) + β6

θ log(cattleSlaughter_farmGatePrice) + β7
θ (distance)

where slaughter value is the value of cattle sold per hectare of pasture area in 2017
(USD/ha), precipitation and temperature are the average annual precipitation (mm)
and temperature (degrees Celsius), respectively, for the period of 1970-2000 (Fick
and Hijmans, 2017), latitude is the geographical coordinates of the municipality

33We standardize the regressors prior to the posterior estimation.
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centroids, farm gate price is the price of cattle slaughter (SEAB-PR, 2021), and
distance is measured the distance from the municipality to the state capital. Since
the area dedicated to agriculture varies substantially across municipalities, we opted
for weighting observations by the 2017 pasture area in each municipality.

The inclusion of farm gate prices on the right side of this regression is reason-
able because variations in farm gate prices across municipalities mostly reflect un-
observed costs to bring cattle to stockyards and meat to markets such as proximity
to roads or rivers, which are not fully controlled by our geographical variables.

C.2 γ1s

We calculate average of CO2 density (MG/ha) for each municipality and run the
following regression:34

log(co2e_ha) = Rγβγ + εγ

where

Rγβγ
def
= βγ

0 + βγ
1 (log(historical_precip)) + βγ

2 (log(historical_temp))

βγ
3 (log(lat)) + βγ

4 (log(lon)).

C.3 Posterior estimation

To estimate the benchmark posterior distributionπ, we consider π(βθ, σ
2
θ) and π(βγ, σ

2
γ)

separately. Below, we present the derivation of π(βθ, σ
2
θ), with the derivation of

π(βγ, σ
2
γ) following analogously.

Using a weighted regression for the model given by 13 with a Gaussian error
term is equivalent to assuming:

Yθ = Rθβθ + εθ, εθ „ N (0, σ2
θW

´1
θ ), (14)

where: Wθ is the diagonal matrix of weights. For the γ case,Wγ = I.

34We again standardize the regressors.
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We assume that the priors/posteriors for parameters (βθ, σ
2
θ) are the familiar con-

jugate form:

βθ | σ2
θ „ N (m, σ2

θQ
´1) (15)

σ2
θ „ Inv-Gamma(a, b) (16)

where

Q = R1
θWθRθ +Q0,

m = Q´1(R1
θWθyθ +Q0m0),

a = a0 +
n

2
,

b = b0 +
1

2
(y1

θWθyθ +m1
0Q0m0 ´ m1Qm),

and Q0,m0, a0, b0 are prior inputs. We impose the familiar improper priors:

Q0 = 0 m0 = 0 a0 = 0 b0 = 0,

which implies that the posteriors inputs are familiar regression statistics. In the fol-
lowing tables, we present quantiles for the posterior distributions described above:

Table 14: Quantiles for θ posterior estimation
βθ
0 βθ

1 βθ
2 βθ

3 βθ
4 βθ

5 βθ
6 βθ

7

10% 3.899 -0.189 1.274 -5.250 5.466 -7.871 0.454 -0.132
50% 3.943 -0.135 3.201 -3.343 6.607 -6.732 0.495 -0.091
90% 3.986 -0.082 5.080 -1.404 7.729 -5.576 0.537 -0.051

Table 15: Quantiles for γ posterior estimation
βγ
0 βγ

1 βγ
2 βγ

3 βγ
4

10% 5.918 0.055 -0.172 0.148 -0.313
50% 5.936 0.079 -0.146 0.177 -0.291
90% 5.955 0.102 -0.119 0.206 -0.269
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D Hamiltonian Monte Carlo

As is standard in applications of MCMC, we use numerical simulation to compute
the probability distribution induced by the density of (7). While we have partially
analytic expression for the numerator, the integration in the denominator is more
problematic. This challenge is a typical starting point for MCMC computations.

Although we are interested in only the distribution for the regression coeffi-
cients, for numerical tractability we use the conditional normal inverse gamma spec-
ification in our computations, which includes the regression error variances. We
then construct numerically the implied marginal distribution for the regression co-
efficients consistent with formula (7).

This means that we sample from

exp
[

´
1

ξ
f(d, β)

]
dπ(βθ, σ

2
θ |Rθ, yθ)dπ(βγ, σ

2
γ|Rγ, yγ) (17)

If ρ := (β, σ2), taking logs and multiplying by ´1, we get the potential energy
term U :

U(ρ) = 1

ξ
f(d, β) ´ log dπ(βθ, σ

2
θ |Rθ, yθ) ´ log dπ(βγ, σ

2
γ|Rγ, yγ) (18)

=
1

ξ
f(d, β) ´ log dπ(βθ|σ

2
θ , Rθ, yθ) ´ log dπ(βγ|σ2

γ, Rγ, yγ)

´ log dπ(σ2
θ |Rθ, yθ) ´ log dπ(σ2

γ|Rθ, yγ)

(19)

HMC relies on an auxiliary momentum vector ω of the same dimension as ρ, where
ω „ N (0,M) andM is a symmetric, positive-definite mass matrix. The Hamilto-
nian is then defined as:

H(ρ, ω) := U(ρ) + 1

2
ω1M´1ω (20)

The HMC algorithm then consists of:

1. Initialize ρ(0).
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2. Sample momentum ω(0) „ N(0,M).

3. Generate a state proposal (ρ̃(0), ω̃(0)) by evolving its position according to
Hamilton’s equations, using the leapfrog integrator with step size ϵ and a num-
ber of steps L:

dρ

dt
=

BH
Bω

(21)

dω

dt
= ´

BH
Bρ

(22)

4. Perform a Metropolis test to accept or reject the state update (ρ(1), ω(1)) Ð

(ρ̃(0), ω̃(0)), with the acceptance probability given by:

min
␣

1, exp
(
H(ρ(0), ω(0)) ´ H(ρ̃(0), ω̃(0))

)(
5. Repeat steps 2-4 until the desired number of samples is reached.

We then iterate between solving the planner’s problem for d and sampling ρ as
follows:

1. Initialize φ(0) as the transformed mean of the baseline distribution π.

2. Solve the planner’s problem for decision vector d(0) using the updated param-
eters.

3. Sample tρ(s)u
4000
s=1 from 17 by running HMC simultaneously across 4 inde-

pendent Markov chains, taking 1000 samples and 500 burn-in samples per
chain.

4. Transform samples tβ(s)u
4000
s=1 back into the φ space, compute φ̄ as the mean

across samples, and update φ using φ(t+1) := wφ̄ + (1 ´ w)φ(t), with w =

0.25.

5. Repeat steps 2 – 4 until ||φ(t+1) ´ φ(t)||8 ă 0.001.
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D.1 Computational implementation details

To sample from 17, we rely on the Stan software (Carpenter, 2017, Stan Develop-
ment Team, 2023) for high-performance statistical computation. The Stan imple-
mentation for HMC makes a few adaptations to the algorithm described above to
improve computation speed and sampling efficiency. We summarize these below:

• To ensure convergence onto the stationary target distribution, Stan discards
the pre-specified number of burn-in samples at the start of the sampling pro-
cess.

• Stan utilizes the No U-turn sampling (NUTS) variant of HMC, which adap-
tively determines the number of leapfrog steps L at each iteration to avoid U-
turns in the state trajectory (Hoffman and Gelman, 2014, Betancourt, 2016).

• Stan determines the leapfrog step size ϵ using the dual averaging Nesterov
algorithm (Nesterov, 2009).

• By default, Stan utilizes a diagonal matrix forM which is estimated using the
burn-in samples collected at the start of the algorithm.

• Stan uses reverse-mode automatic differentiation to compute the Hamiltonian
gradient.
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