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Abstract

We study the implications of model uncertainty in a climate-economics framework with

three types of capital: “dirty” capital that produces carbon emissions when used for produc-

tion, “clean” capital that generates no emissions but is initially less productive than dirty

capital, and knowledge capital that increases with R&D investment and leads to technologi-

cal innovation in green sector productivity. To solve our high-dimensional, non-linear model

framework we implement a neural-network-based global solution method. We show there are

first-order impacts of model uncertainty on optimal decisions and social valuations in our in-

tegrated climate-economic-innovation framework. Accounting for interconnected uncertainty

over climate dynamics, economic damages from climate change, and the arrival of a green

technological change leads to substantial adjustments to investment in the different capital

types in anticipation of technological change and the revelation of climate damage severity.
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1 Introduction

The potential consequences of climate change are becoming increasingly apparent. The Sixth

Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) states

that “[i]t is unequivocal that human influence has warmed the atmosphere, ocean and land” and

that anthropogenic climate change “has caused widespread adverse impacts and related losses

and damages to nature and people, beyond natural climate variability.”1 Given these concerns,

policymakers and organizations are increasingly focusing on the necessity and feasibility of a

transition to a carbon-neutral economy. Reports from the OECD, the IEA, the White House,

McKinsey & Co., and Princeton University’s High Meadows Environmental Institute2, among

many others, emphasize the need to heavily invest in cleaner production methods to reduce current

carbon emissions, as well as the need to devote significant resources to R&D for developing new

green technology to prevent future carbon emissions. These conclusions are based largely on

scenario analysis aimed at achieving climate policy goals such as the 1.5 C ˝ GMT temperature

anomaly ceiling proposed by the 2015 Paris Climate Agreement. The implementation of a socially

efficient carbon-neutral transition, taking into account the various frictions, risks, uncertainties,

and endogenous feedbacks and responses related to climate change and climate policy action, is

the key economic question that we address in this paper.

We develop and solve a dynamic general equilibrium framework with three types of capital:

“dirty” capital that generates carbon emissions when used in production, “green” capital that

produces no emissions but is initially less productive than dirty capital, and “knowledge” capital

that increases the likelihood of a technology shock that augments the productivity of green capital.

By focusing on capital stocks, our model incorporates dynamic features that play an important role

in the transition to carbon-neutrality. First, the model framework leads to an emissions pathway

that is “sticky” or persistent because dirty capital depreciates gradually and is costly to disinvest.

Second, convex adjustment costs related to investment capital means that the accumulation of

new green capital can take significant time. Finally, the arrival of improved green technology

depends on the stock of knowledge capital in the economy, which requires R&D investment across

time and substitutes resources away from consumption, as well as from other types of investment.

An important consideration in our analysis is the substantial uncertainty about the central

mechanisms in our model. Specifically, our framework allows for uncertainty as it pertains to

carbon-climate dynamics, or the mapping from carbon emissions into atmospheric carbon into

temperature changes; economic damage functions, or the negative impact on output due to

changes in atmospheric temperature; and technological innovation, or the likelihood of a tech-

nology shock that augments the productivity of green capital via R&D investment. While each

1See Masson-Delmotte et al. (2021a) and Pörtner et al. (2022).
2See OECD (2019), Bouckaert et al. (2021), White House (2021), McKinsey Global Initiative (2022), and

Jenkins et al. (2021).
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of these model components allows for risk in the form of stochastic realizations, we are interested

in exploring alternative forms of uncertainty. This includes ambiguity about possible model pa-

rameterizations, as well as the possibility that a given model is misspecified in a meaningful and

unknown way. We explicitly incorporate these uncertainty considerations into the social planner’s

decision problem by applying tools from dynamic decision theory. Our analysis highlights the en-

dogenous interdependencies and feedback effects that substantially impact optimal policy choices

and social valuations related to green innovation coming from uncertainty aversion.

Our general equilibrium framework with multiple endogenous state variables requires solving

relatively high-dimensional PDEs with significant non-linearities due to the model uncertainty

concerns and stochastic jump processes related to technological change and climate damages. As

a result, our analysis requires computational methods that provide global solutions to accurately

characterize the endogenous optimal policies and the social valuations of interest. Standard

finite difference methods commonly used in economics and finance are not well equipped for

such problems. We, therefore, develop and implement an algorithm using deep neural network

methods for our multi-dimensional, continuous-time, climate-economic framework. Our algorithm

implements an extended deep Galerkin method that is able to handle multiple non-stationary,

endogenous state variables with considerable non-linearity in an infinite horizon setting. Our

numerical methodology is an important contribution of our work to the fields of macroeconomics,

finance, and climate-economics. The algorithm provides a toolbox that considerably expands the

ability of researchers to address research questions in these areas that can quickly be overwhelmed

by the “curse of dimensionality” when accounting for regional, household, and firm heterogeneities

across production technologies, economic frictions, and policy objectives.

1.1 Climate Economics Literature

Our paper builds on and contributes to a number of important areas of research across economics,

finance, geoscience, and applied mathematics. The implications of anthropogenic emissions have

been a central focus of geoscientists for many decades, beginning with the seminal work of Ar-

rhenius (1896). Recent work has focused on characterizing the dynamic relationship between

carbon emissions, atmospheric carbon concentration, and temperature change via pulse experi-

ments (Joos et al. 2013, Geoffroy et al. 2013, Eby et al. 2009), deriving simplified emulators or

approximations of these complex relationships for the use of policymakers (Matthews et al. 2009,

Pierrehumbert 2014, MacDougall et al. 2017), as well as quantifying the dynamic and stochastic

features of carbon-climate dynamics (Ricke and Caldeira 2014, Palmer and Stevens 2019). These

components are critical inputs into our model framework and uncertainty analysis.

The climate economics literature has given substantial focus to estimating the economic con-

sequences of climate change and deriving a Social Cost of Carbon (SCC), or the cost to social

welfare of emitting an additional amount of carbon emissions into the atmosphere. Economists
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have estimated the economic costs generated by observed climate change for numerous economic

sectors, regions, and dimensions of the economy (Dell et al. 2012, Hsiang et al. 2017, Colac-

ito et al. 2019, Allen et al. 2019, Carleton and Greenstone 2021). Theoretical modeling and

integrated assessment model analysis to derive SCC valuations have considered for numerous eco-

nomic mechanisms (Golosov et al. 2014, Acemoglu et al. 2016, Nordhaus 2018, Cai et al. 2017,

Cai and Lontzek 2019) and proposed climate damage function approximations and frameworks

(Lenton et al. 2008, Weitzman 2012, Cai et al. 2015, Drijfhout et al. 2015, Ritchie et al. 2021).

Recent work has begun to examine important dimensions related to interconnected climate

change and economic model uncertainty (Olson et al. 2012, Lemoine and Traeger 2014, Hassler

et al. 2018, Nordhaus 2018, Dietz and Venmans 2019, Barnett et al. 2020, Rudik 2020, Barnett

et al. 2021, Barnett 2023). Importantly, many of these studies of uncertainty have exploited the

powerful toolset developed in dynamic decision theory (Anderson et al. 2003, Maccheroni et al.

2006, Hansen and Sargent 2007, Klibanoff et al. 2009, Hansen and Miao 2018, Barnett et al. 2020,

Cerreia-Vioglio et al. 2021), allowing researchers to account for model uncertainty explicitly in

the decision-maker’s problem within the model.

This paper also links to an important area of macroeconomic research. This includes the foun-

dational work on endogenous economic growth (Brock and Mirman 1972, Baumol 1986, Lucas Jr

1988, Romer 1990), as well as recent analysis of the social and private benefits of innovation (Bloom

et al. 2019, Lucking et al. 2019), and considerations for the transition to a green economy (Ace-

moglu et al. 2012, 2016, Jaakkola and Van der Ploeg 2019). In addition, the connection between

macroeconomics and asset pricing in production-based asset pricing (Brock 1982, Cochrane 1991,

Jermann 1998), as well as the importance links to economic growth and innovation (Papanikolaou

2011, Kogan and Papanikolaou 2014, Kung and Schmid 2015) have important implications for

the social valuations we derive in our climate-economics-innovation linked framework.

1.2 Deep Learning Literature

In recent years, deep learning algorithms, built on the neural network’s remarkable ability to

represent and approximate high-dimensional functions and efficient gradient descent optimizers,

have been very successful in many areas, ranging from computer vision and speech recognition to

scientific computing (see, e.g. Carleo and Troyer (2017), Gao and Duan (2017), Han et al. (2018),

Zhang et al. (2018), Han et al. (2019)). The climate change problem considered in this paper

aims to study how choices for investment in clean and dirty capital, and R&D for technologi-

cal innovation, are determined when facing uncertainties, which, mathematically, is a stochastic

control problem. Along this direction, deep learning algorithms are roughly categorized into:

direct parameterization, partial differential equations (PDEs), and forward-backward stochastic

differential equations (FBSDEs) approach.

In this first category, the seminal work in high-dimension was proposed by Han and E (2016),
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which solves a global-in-time minimization problem in accordance with the utility of the control

problem. Later, Bachouch et al. (2021) extended to the local-in-time approach combined with

dynamic programming techniques. Han and Hu (2021) solve the control problem with aftereffects,

modeled by stochastic differential delayed equations, using the same spirit of Han and E (2016) but

with advanced network architectures, and Carmona and Laurière (2022) extended to mean-field

control problems.

In the PDE approach, the stochastic control problem will first be reformulated into a Hamilton-

Jacobi-Bellman (HJB) PDE using the dynamic programming principle, and then solved by deep

learning algorithms. For generic PDEs, Sirignano and Spiliopoulos (2018) proposed the deep

Galerkin method (DGM), and Raissi et al. (2019) proposed the physics-informed neural networks

(PINNs), roughly at the same time. Both approximate solutions to PDEs by training neural

networks to minimize the residuals coming from the initial conditions, the boundary conditions,

and the PDE operators. Saporito and Zhang (2021) followed this idea and solved path-dependent

PDEs using recurrent neural networks. Later, Al-Aradi et al. (2022) extended the DGM to deal

with HJB equations in their unsimplified primal form and solved for the value function and the

optimal control simultaneously by characterizing both as deep neural networks.

For semi-linear parabolic PDEs, which correspond to stochastic control problems with uncon-

trolled volatility, E et al. (2017) and Han et al. (2018) proposed a deep BSDE solver which, to the

best of our knowledge, is the first work in this area and has inspired much follow-up work. They

recast the solution of a semi-linear parabolic PDE into a global-in-time optimization problem

based on the associated BSDEs via the non-linear Feynman Kac formula and variational form.

Huré et al. (2020) dealt with the same associated BSDE but obtained the resolution by solving

backward in time using a sequence of small optimization problems and termed it as deep learning

backward dynamic programming (DBDP). Another work focusing on semi-linear PDE is the deep

splitting method proposed by Beck et al. (2021), where the partial differential operators are split

into the linear part and the nonlinear part, with the nonlinear part propagating first by freezing

the solution and the linear part then being taken care of by an approximate Feynman-Kac rep-

resentation. When the control appears in the state dynamics’ diffusion coefficient, this leads to a

fully nonlinear PDE. In this direction, in the same spirit of E et al. (2017) and Han et al. (2018),

Beck et al. (2019) proposed a DL algorithm by solving the corresponding second-order BSDE,

and Pham et al. (2021) extended the DBDP idea in Huré et al. (2020) by further approximating

the Hessian matrix using auto differentiation of first derivatives’ neural networks.

In the FBSDE approach, the control problem will first be reformulated into a coupled forward-

backward system using the stochastic Pontryagin maximum principle. The system is, in general,

hard to solve numerically, let alone in high dimensions, due to its coupled nature and opposing

directions: one with an initial condition running forward in time and one with a terminal condition

running backward in time. Han and Long (2020) solved the fully-coupled FBSDE by extending the
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deep BSDE solver with convergence analysis subject to neural networks’ universal approximation,

and Ji et al. (2020) further extended the results with the Picard iteration method.

Recently, attention has also been drawn to stochastic control problems with jumps. The

problem is more involved as the PDE becomes partial integro-differential, thus non-local; and the

FBSDE system now contains a Lévy process. For such problems, Boussange et al. (2022) solved

the associated non-local PDE by extending the deep splitting method in Beck et al. (2021) and

multilevel Picard approximation method in Hutzenthaler et al. (2019); Castro (2022) solved the

associated forward-backward system by extending the DBDP method in Huré et al. (2020); and

Gnoatto et al. (2022) solved the same system in the same spirit of the deep BSDE solver, proposed

in E et al. (2017) and Han et al. (2018).

When using neural networks to parameterize the quantity of interest, usually the value func-

tion or the control policy, people may want to incorporate domain knowledge, such as guaranteed

monotonicity or convexity of the learned function with respect to some of the input variables.

There have been fruitful studies on how to build network structures in order to fulfill such re-

quirements, see for instance, Sill (1997), Gupta et al. (2016), Wehenkel and Louppe (2019) and

Runje and Shankaranarayana (2022).

2 Climate-Economics Model

We now outline the main model for our analysis. The model incorporates components related

to climate dynamics, economic elements and dynamics related to damages from climate change,

production technologies, preferences, and technological innovation through R&D, as well as model

uncertainty aversion. We outline each of these model pieces in what follows, and then derive a

number of theoretical results before presenting the numerical solutions to the model.

2.1 Climate Dynamics

Recent work in geosciences has focused on constructing simplified approximations of climate

dynamics generated by large-scale atmosphere-ocean general circulation models (AOGCM) for

use in policy analysis. These include a tractable framework demonstrated by Matthews et al.

(2009) and Friedlingstein (2015) as a proportional relationship between temperature change and

cumulative carbon emissions. This relationship is of the general form:

temperature anomaly « climate sensitivity pβf q ˆ cumulative emissions.

Not only is this approximate relationship straightforward to incorporate into most continuous-

time macroeconomic and asset pricing models, it also directly provides a model comparison set

to use in our uncertainty analysis based on the constant of proportionality implied by different
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Figure 1: Implied TCRE coefficients across time and models, capturing carbon and temperature
uncertainty. The top figure shows the percentiles for temperature responses to emission pulses
for all carbon and temperature model combinations. The bottom figure is a histogram for the
exponentially weighted average responses of temperature to an emissions pulse from 144 different
models using a rate δ “ .01.
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large-scale climate models. For our analysis, we use a stochastic variant of this relationship

dYt “ Etpβfdt` ςdWtq,

where Yt is the global mean temperature anomaly, with respect to the preindustrial level, Et is

global carbon emissions, Wt is a Brownian motion process with filtration Ft, ς is the volatility

loading for temperature, and βf is the climate sensitivity proportionality constant. This model

abstracts from transitory “weather” fluctuations in temperature and assumes that emissions today

have a long-lasting, i.e., permanent, impact on future temperature. The inclusion of stochastic

variation, which allows for a meaningful uncertainty analysis by “disguising” the climate model

in the statistical sense that a small set of observations do not immediately reveal the true model,

is motivated by the argument about climate model predictability put forward in Palmer and

Stevens (2019). The parameter βf varies across different carbon-climate dynamics models, and

we will denote these different values as βf,ℓ for a given model ℓ P t1, ...,Lu. In the geoscience

literature, this parameter is known as the transient climate response to cumulative emissions

(TCRE) parameter and serves as a climate sensitivity measure.

While the proportionality relationship used here is based on a relationship of carbon emissions

to temperature change that is born out at a time horizon of 10 years and beyond, (Dietz and

Venmans 2019, Barnett et al. 2021, Barnett 2023) and others have shown that this relationship

is well suited for frequencies as short as one year. We follow Barnett et al. (2021) and use pulse

experiment results of Joos et al. (2013) and Geoffroy et al. (2013) to build the set of climate

sensitivity models for our analysis. Joos et al. (2013) examines carbon dynamics variation and

uncertainty based on responses of atmospheric carbon concentration to emission pulses of 100

GtC for several alternative Earth System models. Geoffroy et al. (2013) provides temperature dy-

namics variation and uncertainty based on approximate dynamics relating the log of atmospheric

carbon to future temperature, following Arrhenius equation. We combine these two sets of pulse

experiments by taking 9 different atmospheric carbon responses as inputs into 16 temperature

dynamics approximations to derive 144 different carbon-climate TCRE models. Figure 1 shows

the dynamic pathways and the implied TCRE parameters for these 144 models. We can see from

the pathways that the temperature response peaks around 10 years, and flattens out thereafter,

and the implied TCRE parameters are quite dispersed, with values ranging from around 1 to just

below 3, with the average value being 1.86.

2.2 Climate Damages

Following Barnett et al. (2023), our model of economic damages from climate change, or climate

damages, is piece-wise log quadratic. Damages Nt are assumed to impact capital, output, invest-

ments, and consumption in a proportional manner. This specification allows for a change in the
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Figure 2: Range of possible damage functions for different jump thresholds for two cases. The
shaded region in each plot gives the range of possible values for exp(-n), which measures the
proportional reduction of the productive capacity of the economy. The top figure shows the
damage function curvature when the jump occurs at Yt “ ȳ “ 1.5. The bottom figure shows the
damage function curvature when the jump occurs at Yt “ y “ 2.0.
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evolution of damages that is triggered by a jump process realization. Uncertainty about climate

damages is connected to the values of Ŷ , which is defined by Ŷ “ Y ` ȳ ´ Ỹ for y ă ỹ ď ȳ,

and γm3 , for which there are alternatives values denoted by m P M. There is a stochastic jump

process that determines dynamically which value of γm3 will be realized for the damage function

and at the value of Ỹ the jump will be realized. Specifically, the jump process has m absorbing

states, where each state m corresponds to a value of γm3 . Before the realization of the jump,

each γm3 value has a prior probability πpm. When the jump is realized, the value of γm3 is revealed

and the true damage function curvature becomes known to the social planner in the model. The

likelihood of a damage function jump is determined by a jump intensity Idpyq that is increasing in

the endogenous temperature anomaly state variable y and is localized to the range of temperature

values ry, ys. At the time of the jump τ , the state variable Ŷ shifts from the temperature anomaly

Y “ Ỹτ to the damage jump threshold ȳ. Thus Ŷ is a state variable that shifts from capturing

just the temperature anomaly to a jump-adjusted measure capturing the derivative shift of the

damage function as well. The uncertainty is associated both with the probability distribution on

possible γm3 model realizations, as well as the probability of when a damage jump will occur in

the ry, ys. The full functional form is left for the Appendix, but the evolution of log damages is

given by

d logNt “

$

&

%

´

γ1 ` γ2 pYt

¯

Et pβf,ℓdt` ςdWtq `
γ2|ς|2pEtq

2

2 dt, t ď τ,
´

γ1 ` γ2 pYt ` γm3

´

pYt ´ ȳ
¯¯

Et pβf,ℓdt` ςdWtq `
pγ2`γm3 q|ς|2pEtq

2

2 dt, t ď τ.

For our main setting, we assume ry, ys “ r1.5, 2.0s, consistent with the critical temperature

thresholds used by the IPCC and the 2015 Paris Climate Agreement. Figure 2 shows the im-

plied climate damages across all γm3 values for the jump realization occurring at the temperature

anomaly values of ỹ “ y “ 1.5 and ỹ “ ȳ “ 2 which bound our range for the damage jumps

occurring. The red shaded region shows the range of possible damage outcomes across the possi-

ble values of γm3 , and the black line gives the mean value.3 While there is significant discussion

about the likelihood of tipping points or thresholds at the global scale captured by discrete jumps

or shifts in climate damages4, our setting is instead a smooth shift where the planner realizes

whether the damage function is more concave than previously known. In this sense, we view our

framework as a valuable tool for characterizing the possibility and uncertainty of potentially se-

vere, nonlinear climate damage outcomes that are highly relevant for the optimal policy decisions

of a social planner confronting climate change. Moreover, the structure of our uncertainty is novel

3While these plots are nearly identical to those found in Barnett et al. (2021), there are key differences. Specif-
ically, in Barnett et al. (2021), there is a possibility for discontinuities in the damage function and jumps in the
climate damages, which are ignored in their analysis. Our specification removes such discontinuities, and allows
only for smooth shifts in the derivative of the damage function.

4See Brook et al. (2013) and Levitan (2013) for examples on this discussion.
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with regards to much of the existing climate-economics literature, as the information dynamics

in most settings is static, or uncertainty about the damage function is never resolved.

2.3 Production

For the economic component of the model, we assume there are two sectors producing perfectly

substitutable consumption goods using their own AK technologies:

FipKi,tq “ AiKi,t, i P td, gu,

F pKd,t,Kg,tq “ FdpKd,tq ` FgpKg,tq “ AdKd,t `AgKg,t.

Each sector has its own capital stock that evolves with logarithmic adjustment costs and

Brownian shocks as follows:

dKd{Kd “ rαd ` Γd logp1 ` θdidqsdt` σddW,

dKg{Kg “ rαg ` Γg logp1 ` θgigqsdt` σgdW.

For computational tractability, we redefine the state variables characterizing the capital stocks

in the model and use logK “ logpKd ` Kgq and R “
Kg

Kd`Kg
. By Ito’s lemma, these two state

variables have the following evolution processes:

d logK “ p1 ´Rqrαd ` Γd logp1 ` θdidqsdt`Rrαg ` Γg logp1 ` θgigqsdt

´
1

2
|σdp1 ´Rq|2 ´

1

2
|σgR|2dt

` p1 ´RqσddWd `RσgdWg,

dR{R “ p1 ´Rqtrαg ` Γg logp1 ` θgigqs ´ rαd ` Γd logp1 ` θdidqsudt

` p1 ´Rqtp1 ´Rq|σd|2 ´R|σg|2udt

` p1 ´RqσgdWg ´ p1 ´RqσddWd.

There are two key differences across these different consumption good production sectors in the

economy. First, Sector d is the only sector that generates emissions, so that Et in our temperature

evolution equation is given by

Et “ ηAdKd,

where η is the emissions intensity parameter of Sector d production. Second, Sector d is initially

more productive than Sector g in that Ad ą Ag. While Sector d is initially more productive than

Sector g, we also assume that there is the potential for a “green” technology shock that would

augment Sector g productivity. The arrival rate of this one-time jump in Sector g productivity is
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an increasing function of the aggregate knowledge capital stock in the economy κ. The evolution

of the aggregate knowledge stock is given by

d log κ “ ´ζdt` ψ0p
Iκ
κ

qψ1dt´
|σκ|2

2
dt` σκ ¨ dWt,

where Iκ is the level of R&D investment made to increase the knowledge capital stock, ζ is the

decay rate of the knowledge stock, ψ0 and ψ1 capture the effectiveness of R&D investment, and

σκ is the volatility associated with the knowledge capital stock.

We include uncertainty about the realization of the technology shock in the form of a discrete

set of possible realizations for the post-technology jump Sector g productivity Ajg. The dynamic

realization of the technological change shock that determines the value of Ajg is through a stochas-

tic jump process. There are j absorbing states, where alternative values are denoted by j P J ,

with each state j corresponding to a particular value of Ajg and each value of Ajg having a prior

probability πjg. For each potential realization of the technology shock, the value of Ajg is such that

Ajg ě Ag. The likelihood of a technological change jump is dependent upon a jump intensity Igpκq.

We choose the simple functional form Igpκq “ κϱ, where κ ą 0 is a constant, so that the arrival

rate is increasing in the endogenous knowledge stock state variable κ. The information dynamics

and framework and structure of the technological change jump are similar to the damage function

jump. Once the jump is realized, the true technological change outcome for the value of Ajg is

known to the social planner. In addition, the uncertainty pertains to the probability distribution

of potential Ajg realizations and the arrival rate of the technological change shock. This structure

focuses on the economic implications related to the uncertainty of breakthrough green technolo-

gies, again a relatively novel channel of innovation compared to the climate-economics literature.

We find this specification appealing as it allows for a broader interpretation of the uncertainty of

“green” technology change that further enriches our analysis and uncertainty quantification as it

relates to optimal policy considerations related to technological innovation and climate change.

2.4 Preferences

Finally, we assume that flow utility in the model is a log function over damaged aggregate con-

sumption, where exponential-quadratic damages multiplicatively scale consumption. The utility

function is therefore given by

UpC̃q “ UpC{Nq “ δ logpAdKd ´ idKd `AgKg ´ igKg ´ iκpKg `Kdqq ´ δ logN,

where δ is the subjective discount rate, the two types of consumption goods are perfectly sub-

stitutable. Investment decisions are made by optimally dividing the output net of consumption

across investment into the three types of capital in the economy (dirty production capital, green
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production capital, and knowledge capital), so that the market clearing final output constraint is

given by the relationship

C “ AdKd ´ idKd `AgKg ´ igKg ´ iκpKg `Kdq,

where id “ Id{Kd is the dirty investment-to-dirty capital ratio, ig “ Ig{Kg is the green investment-

to-green capital ratio, and iκ “ Iκ{pKd `Kgq is the R&D investment-to-total capital ratio.

3 Model Solution

With the model framework laid out, we can not turn to solving the Hamilton-Jacobi-Bellman

equations that characterize the solution to the Social Planner’s problem in our model. The solu-

tion to our model is a recursive Markovian equilibrium that solves the Hamilton-Jacobi-Bellman

equation characterizing the planner’s social welfare function, or value function. Therefore, the

equilibrium solution is determined by optimal investment choices:

ti˚g , i
˚
d , i

˚
κu

that maximize the planner’s discounted, lifetime expected utility as functions of the state variables

tlogK,R, Yt, log κ, logNtu.

These optimal controls must satisfy the evolution equations for the state variables, as well as the

market clearing conditions given in the model set-up above and the first order conditions from the

HJB equations we outline below. To arrive at the full model solution, we must derive solutions

sequentially working from the post-technology jump, post-damage-function-jump state back to

the pre-technology jump, pre-damage-function-jump state, accounting for the different possible

combinations of intermediate states, which are the pre-technology jump, post-damage-function-

jump state and the post-technology jump, pre-damage-function-jump state.

3.1 Post Damage and Technology Jumps HJB Equation

The first jump-state we must solve is after the technology jump and damage jump have already

occurred, or the post-technology jump, post-damage-function-jump state. We denote this value

function by V pm,jqpKd,Kg, Ŷ , logNq, indicating that we are at a given realization of γm3 and in

the second technology state with green capital productivity Ajg. We can guess-and-verify that the

value function solution in this stage can be analytically simplified as follows

V pm,jqpKd,Kg, Ŷ , logNq “ vpm,jqplogK,R, Ŷ q ´ logNt.

12



The remaining HJB equation characterizing the simplified value function is given by:

δvpm,jq “ max
ig ,id

δ logprAd ´ idsp1 ´Rq ` rA1
g ´ igsR ´ iκq ` δ logK

`

˜

p1 ´Rq rαd ` Γd logp1 ` θdidqs `R rαg ` Γg logp1 ` θgigqs ´
σ2dp1 ´Rq2 ` σ2gR

2

2

¸

v
pm,jq

logK

`
σ2dp1 ´Rq2 ` σ2gR

2

2
v

pm,jq

logK,logK

`
`

rαg ` Γg logp1 ` θgigqs ´Rσ2g ´ rαd ` Γd logp1 ` θdidqs ` p1 ´Rqσ2d
˘

Rp1 ´Rqv
pm,jq

R

`
1

2
R2p1 ´Rq2pσ2g ` σ2dqv

pm,jq

RR

`
“

´Rp1 ´Rq2σ2d `R2p1 ´Rqσ2g
‰

v
pm,jq

logK,R

` βfηAdp1 ´RqKvpm,jq
y `

|ς|2pηAdp1 ´RqKq2

2
vpm,jq
yy

´

ˆ

tγ1 ` γ2Ŷ ` γm3 pŶ ´ yquβfηAdp1 ´RqK `
1

2
pγ2 ` γm3 q|ς|2ηAdp1 ´RqKq2

˙

.

Taking first order conditions with respect to id and ig, we end up with the following two

expressions for optimal investment choices

δprAd ´ idsp1 ´Rq ` rA1
g ´ igsRq´1 “ Γdθdp1 ` θdidq´1rv

pm,jq

logK ´Rv
pm,jq

R s,

δprAd ´ idsp1 ´Rq ` rA1
g ´ igsRq´1 “ Γgθgp1 ` θgigq´1rv

pm,jq

logK ` p1 ´Rqv
pm,jq

R s.

Each expression equates the marginal benefit of an additional unit of a given type of capital to the

marginal utility of consumption, which is the utility loss of forgoing consumption for an additional

unit of investment.

3.2 Intermediate Jump State HJB Equations

Our next two HJB equations come from the intermediate jump states. The first case is when

the technology jump has already occurred, but the damage function jump has not. In this case,

we can apply a similar analytical simplification to the value function for the social planner. We

denote this value function by V pjqpKd,Kg,Y, logNq, indicating that we have not had a realization

of γm3 , but we are in the second technology state with green capital productivity Ajg. The value

function in this stage is given by

V pjqpKd,Kg,Y, logNq “ vpjqplogK,R, Ytq ´ logNt.

There are two adjustments made to the simplified HJB equation in this case relative to the

post-technology and -damage jump case. First, because the damage jump has not yet occurred,

13



the equation capturing the evolution of damages is altered to be

´

ˆ

tγ1 ` γ2Y quβfηAdp1 ´RqK `
1

2
pγ2q|ς|2pηAdp1 ´RqKq2

˙

.

Second, the expectation of damage function jump introduces the additional term

Idpyq

M
ÿ

m“1

πmd pvpm,jq ´ vpjqq.

We again take first order conditions with respect to id and ig. These expressions are unchanged

from the post-damage and technology jump case, equating the marginal benefit of an additional

unit of a given type of capital to the utility loss of forgoing consumption for an additional unit of

investment, which is the marginal utility of consumption.

The second intermediate case is when the technology jump has not yet occurred, but the

damage function jump has. We can again apply the same analytical simplification to the value

function for the social planner. We denote this value function by V pmqpKd,Kg,Y, log κ, logNq,

indicating that we have had a realization of γm3 , but we are in the technology state with green

capital productivity Ag. The value function in this stage is given by

V pmqpKd,Kg, Ŷ , log κ, logNq “ vpmqplogK,R, Ŷ , log κq ´ logNt.

Relative to the post-technology and -damage jump case, we introduce the following new terms

to the simplified HJB equation

p´ζ ` ψ0i
ψ1
κ exppψ1plogK ´ log κqq ´

1

2
|σκ|2qv

pmq

log κ `
|σκ|2

2
v

pmq

log κ,log κ

` Igpκq

J
ÿ

j“1

πjgrvpm,jq ´ vpmqs.

The first two terms account for the evolution of the knowledge capital and the possibility for R&D

investment to increase the knowledge capital stock. The last term accounts for the possibility of

the green technology jump that alters green capital productivity to Ajg and is increasingly more

likely as the knowledge capital stock increases.

In addition, allowing for R&D investment alters the output constraint in this setting, so that

our flow utility term net of climate damages is now given by

δ logprAd ´ idsp1 ´Rq ` rAg ´ igsR ´ iκq.

We now take first order conditions with respect to id, ig, and iκ, which give us expressions for
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optimal investment choices

δprAd ´ idsp1 ´Rq ` rAg ´ igsR ´ iκq´1 “ Γdθdp1 ` θdidq´1rv
pmq

logK ´Rv
pmq

R s,

δprAd ´ idsp1 ´Rq ` rAg ´ igsR ´ iκq´1 “ Γgθgp1 ` θgigq´1rv
pmq

logK ` p1 ´Rqv
pmq

R s,

δprAd ´ idsp1 ´Rq ` rAg ´ igsR ´ iκq´1 “ ψ0ψ1i
ψ1´1
κ exppψ1plogK ´ log κqqv

pmq

log κ.

As before, these expressions equate the marginal benefit of an additional unit of a given type

of capital to the marginal utility of consumption, which is the utility loss of forgoing consumption

for an additional unit of investment. However, given the altered output constraint expression, the

marginal utility of consumption on the left-hand side of these equations now also incorporates the

fact that some output is dedicated to R&D investment instead of consumption.

3.3 Pre Damage and Technology Jumps HJB Equation

Finally, we have the components needed for the value function associated with pre-technology

and -damage jumps. We denote this value function by V pKd,Kg,Y, log κ, logNq, indicating that

neither a realization of γm3 nor the jump to the green capital productivity has occurred. The same

analytical simplification can be applied here, and so the value function in this stage is given by

V pKd,Kg,Y, log κ, logNq “ vplogK,R, Yt, log κq ´ logNt.

The simplified HJB equation incorporates each of the changes applied to the two intermediate

jump state cases. In particular, relative to the post-damage and technology jump state HJB

equation, we introduce the following additional terms

p´ζ ` ψ0i
ψ1
κ exppψ1plogK ´ log κqq ´

1

2
|σκ|2qvlog κ `

|σκ|2

2
vlog κ,log κ

´

ˆ

tγ1 ` γ2Y quβfηAdp1 ´RqK `
1

2
pγ2q|ς|2pηAdp1 ´RqKq2

˙

` Igpκq

J
ÿ

j“1

πjgrvpjq ´ vs ` Idpyq

M
ÿ

m“1

πmd pvpmq ´ vq.

The first line accounts for the evolution of the knowledge capital and the possibility for R&D

investment to increase the knowledge capital stock. The second line captures the altered evo-

lution of damages because the damage jump has not yet occurred. The last line accounts for

the possibility of the green technology jump that alters green capital productivity to Ajg and is

increasingly more likely as the knowledge capital stock increases, as well as the expectation of

damage function jump that becomes more likely as temperature increases.

We again alter the output constraint in this setting relative to the post-damage and technology
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jump case due to the possibility of R&D investment. As a result, the first order conditions with

respect to id, ig, and iκ match those of the intermediate jump state before the technology jump

and after the damage jump, except that the relevant value function derivatives do not pertain to

v. As in each case, the FOCs equate the marginal benefit of an additional unit of a given type of

capital to the marginal utility of consumption, which is the utility loss of forgoing consumption

for an additional unit of investment.

4 Model Uncertainty

With the baseline model results in place, we now introduce the various channels of model uncer-

tainty of focus in our analysis. We explore uncertainty aversion in the form of model misspecifi-

cation and/or smooth ambiguity across the following channels:

• Climate Sensitivity to Carbon Emissions

• Climate Damage Function Severity and Arrival

• “Green” Technological Change

Aversion to these different channels of uncertainty are introduced into our baseline model

using the tools of dynamic decision theory. Importantly, the planner in our model is wary of

model uncertainty of these different forms and channels, and thus adopts a preference structure

to identify potential worst-case models, constrained by a penalization function, and make optimal

policy decisions that are robust to these possible outcomes. We outline the different forms of model

uncertainty for our framework in what follows, focusing specifically on misspecification concerns

about jump and diffusion processes. Further elaboration on alternative settings, including smooth

ambiguity aversion, and complete details on the HJB and FOC equations characterizing the model

solutions, is provided in the appendix.

4.1 Jump Misspecification Concerns

We first consider the setting with misspecification concerns about the damage function and tech-

nological change jump channels. Before the jumps occur, the relevant contributions to the HJB

equation related to the technological change and damage function jumps are

Igpκq

J
ÿ

j“1

πjgpvpjq ´ vq ` Idpyq

M
ÿ

m“1

πmd pvpmq ´ vq.
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Assuming a common robustness parameter ξ across each channel, these terms are replaced by

the following uncertainty-adjusted contributions

min
gj ,fm

Igpκq

J
ÿ

j“1

πjggjpv
pjq ´ vq ` Idpyq

M
ÿ

m“1

πmd fmpvpmq ´ vq

` ξ

«

Igpκq

J
ÿ

j“1

πjg p1 ´ gj ` gj log gjq ` Idpyq
ÿ

πmd p1 ´ fm ` fm log fmq

ff

.

The adjustment introduces probability distortions gj and fm to the jump processes for techno-

logical change and climate damages. These distortions impact expectations about the arrival rate

and distribution of post-jump outcomes related to these jumps. To constrain these distortions, the

relative entropy terms ξ
”

Igpκq
řJ
j“1 π

j
g p1 ´ gj ` gj log gjq ` Idpyq

ř

πmd p1 ´ fm ` fm log fmq

ı

are

introduced into preferences, penalizing distortions that are “too large” based on the uncertainty

aversion parameter ξ. Note that gj , and fm are endogenous objects solved for by the decision

maker by minimizing discounted lifetime expected utility, subject to the relative entropy penalties.

The FOCs resulting from this minimization objective are given by

gj “ exp

ˆ

´
1

ξ
pvpjq ´ vq

˙

,

fm “ exp

ˆ

´
1

ξ
pvpmq ´ vq

˙

.

Each of these represents probability distortions that adjust the distributions associated with

the jump processes related to the economic and climate channels for which there are concerns

about model uncertainty. The inclusion of these probability distortions into the planner’s prob-

lem leads to robustly-altered optimal policy choices that account for the distorted likelihood of

outcomes based on potential worst-case outcomes.

We note that in each of the various jump realization states, there are modifications that

need to be made to these components. After the technology and damage jumps have both taken

place, jump uncertainty is no longer relevant for the social planner. After the technology jump

has occurred, but not the damage jump, we replace Ag with Ajg and the relevant uncertainty

adjustments to the HJB equation and minimization FOC pertaining to the climate model and

damage function jump are given by

min
fm

Idpyq

M
ÿ

m“1

πmd fmpvpm,jq ´ vpjqq ` ξIdpyq
ÿ

πmd p1 ´ fm ` fm log fmq ,

fm “ exp

ˆ

´
1

ξ
pvpm,jq ´ vpjqq

˙

.

Before the technology jump has occurred, but after the damage jump, the relevant uncertainty
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adjustments to the HJB equation and minimization FOC pertaining to the climate model and

technology jump are as follows

min
gj

Igpκq

J
ÿ

j“1

πjggjpv
pm,jq ´ vpmqq ` ξIgpκq

J
ÿ

j“1

πjg p1 ´ gj ` gj log gjq ,

gj “ exp

ˆ

´
1

ξ
pvpm,jq ´ vpmqq

˙

.

4.2 Diffusion Misspecification Concerns

We now consider the setting with misspecification concerns about the climate and capital stocks

diffusion channels. Before the technology and damage jumps occur, the relevant contributions to

the HJB equation related to the diffusion components are of the form

˜

p1 ´Rq rαd ` Γd logp1 ` θdidqs `R rαg ` Γg logp1 ` θgigqs ´
σ2dp1 ´Rq2 ` σ2gR

2

2

¸

vlogK

`
`

rαg ` Γg logp1 ` θgigqs ´Rσ2g ´ rαd ` Γd logp1 ` θdidqs ` p1 ´Rqσ2d
˘

Rp1 ´RqvR

`

ˆ

rvy ´ tγ1 ` γ2Y usβfηAdp1 ´RqK `
1

2
γ2|ς|2pηAdp1 ´RqKq2

˙

`

ˆ

´ζ ` ψ0i
ψ1
κ exppψ1plogK ´ log κqq ´

1

2
|σκ|2

˙

vlog κ.

Assuming the same common robustness parameter ξ for each channel as before, these terms

are replaced by the following uncertainty-adjusted contributions

min
h

˜

p1 ´Rq rαd ` Γd logp1 ` θdidqs `R rαg ` Γg logp1 ` θgigqs ´
σ2dp1 ´Rq2 ` σ2gR

2

2

¸

vlogK

`
`

rαg ` Γg logp1 ` θgigqs ´Rσ2g ´ rαd ` Γd logp1 ` θdidqs ` p1 ´Rqσ2d
˘

Rp1 ´RqvR

` ppvlogK ´RvRq p1 ´Rqσd ` pvlogK ` p1 ´RqvRqRσgq ¨ h

`

ˆ

rvy ´ tγ1 ` γ2Y us pβf ` ς ¨ hqηAdp1 ´RqK `
1

2
γ2|ς|2pηAdp1 ´RqKq2

˙

`

ˆ

´ζ ` ψ0i
ψ1
κ exppψ1plogK ´ log κqq ´

1

2
|σκ|2 ` σκ ¨ h

˙

vlog κ ` ξ
|h|2

2
.

This adjustment introduces a drift distortion h to the diffusion processes for the different types

of capitals and for temperature, disguised by the Brownian shocks. This type of drift distortion is

a known result from the Girsanov theorem, and captures a distributional change represented by

a likelihood ratio. To constrain this distortion, again, a relative entropy term is introduced into

preferences, in this setting, the quadratic expression ξ|h|2{2, penalizing distortions that are “too

large” based on the uncertainty aversion parameter ξ. As with gj and fm, h is an endogenous
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object solved by the decision maker by minimizing discounted lifetime expected utility, subject to

the relative entropy penalties. The FOC resulting from this minimization objective is given by

h “ ´
1

ξ
rpvlogK ´RvRq p1 ´Rqσd ` pvlogK ` p1 ´RqvRqRσgs

´
1

ξ
ςηAdp1 ´RqK pvy ´ tγ1 ` γ2Y uq

´
1

ξ
σκvlog κ.

The inclusion into the planner’s problem of this probability distortion in the form of a drift

distortion leads to further robustly-altered optimal policy choices that account for the distorted

likelihood of outcomes based on potential worst-case outcomes.

As with the jump misspecification concerns, in each of the various jump realization states there

are modifications that need to be made to these components. After the technology and damage

jumps have both taken place, the remaining uncertainty implications come from the climate

sensitivity channel and the green and dirty capital stocks. Therefore, in addition to replacing Ag

with Ajg, and denoting the realized γm3 value, the uncertainty-adjusted contribution to the HJB

and the relevant minimization FOC are given by

min
h

˜

p1 ´Rq rαd ` Γd logp1 ` θdidqs `R rαg ` Γg logp1 ` θgigqs ´
σ2dp1 ´Rq2 ` σ2gR

2

2

¸

v
pm,jq

logK

`
`

rαg ` Γg logp1 ` θgigqs ´Rσ2g ´ rαd ` Γd logp1 ` θdidqs ` p1 ´Rqσ2d
˘

Rp1 ´Rqv
pm,jq

R

`

´´

v
pm,jq

logK ´Rv
pm,jq

R

¯

p1 ´Rqσd `

´

v
pm,jq

logK ` p1 ´Rqv
pm,jq

R

¯

Rσg

¯

¨ h

`

´”

vpm,jq
y ´ tγ1 ` γ2Ŷ ` γm3 pŶ ´ ỹqu

ı

pβf ` ς ¨ hqηAdp1 ´RqK
¯

` ξ
|h|2

2
,

h “ ´
1

ξ

”´

v
pm,jq

logK ´Rv
pm,jq

R

¯

p1 ´Rqσd `

´

v
pm,jq

logK ` p1 ´Rqv
pm,jq

R

¯

Rσg

ı

´
1

ξ
ςηAdp1 ´RqK

´

vpm,jq
y ´ tγ1 ` γ2Ŷ ` γm3 pŶ ´ ỹqu

¯

.

After the technology jump has occurred, but not the damage jump, we replace Ag with Ajg

and the relevant uncertainty adjustments to the HJB equation and minimization FOC pertaining
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to the diffusion terms are given by

min
h

˜

p1 ´Rq rαd ` Γd logp1 ` θdidqs `R rαg ` Γg logp1 ` θgigqs ´
σ2dp1 ´Rq2 ` σ2gR

2

2

¸

v
pjq

logK

`
`

rαg ` Γg logp1 ` θgigqs ´Rσ2g ´ rαd ` Γd logp1 ` θdidqs ` p1 ´Rqσ2d
˘

Rp1 ´Rqv
pjq

R

`

´´

v
pjq

logK ´Rv
pjq

R

¯

p1 ´Rqσd `

´

v
pjq

logK ` p1 ´Rqv
pjq

R

¯

Rσg

¯

¨ h

`

´”

vpjq
y ´ tγ1 ` γ2Y u

ı

pβf ` ς ¨ hqηAdp1 ´RqK
¯

` ξ
|h|2

2
,

h “ ´
1

ξ

”´

v
pjq

logK ´Rv
pjq

R

¯

p1 ´Rqσd `

´

v
pjq

logK ` p1 ´Rqv
pjq

R

¯

Rσg

ı

´
1

ξ
ςηAdp1 ´RqK

´

vpjq
y ´ tγ1 ` γ2Y u

¯

.

Before the technology jump has occurred, but after the damage jump, the relevant uncertainty

adjustments to the HJB equation and minimization FOC pertaining to the diffusion terms are

min
h

˜

p1 ´Rq rαd ` Γd logp1 ` θdidqs `R rαg ` Γg logp1 ` θgigqs ´
σ2dp1 ´Rq2 ` σ2gR

2

2

¸

v
pmq

logK

`
`

rαg ` Γg logp1 ` θgigqs ´Rσ2g ´ rαd ` Γd logp1 ` θdidqs ` p1 ´Rqσ2d
˘

Rp1 ´Rqv
pmq

R

`

´´

v
pmq

logK ´Rv
pmq

R

¯

p1 ´Rqσd `

´

v
pmq

logK ` p1 ´Rqv
pmq

R

¯

Rσg

¯

¨ h

`

ˆ

”

vpmq
y ´ tγ1 ` γ2Ŷ ` γm3 pŶ ´ ỹqu

ı

pβf ` ς ¨ hqηAdp1 ´RqK `
1

2
γ2|ς|2pηAdp1 ´RqKq2

˙

`

ˆ

´ζ ` ψ0i
ψ1
κ exppψ1plogK ´ log κqq ´

1

2
|σκ|2 ` σκ ¨ h

˙

v
pmq

log κ ` ξ
|h|2

2
,

h “ ´
1

ξ

”´

v
pmq

logK ´Rv
pmq

R

¯

p1 ´Rqσd `

´

v
pmq

logK ` p1 ´Rqv
pmq

R

¯

Rσg

ı

´
1

ξ
ςηAdp1 ´RqK

´

vpmq
y ´ tγ1 ` γ2Ŷ ` γm3 pŶ ´ ỹqu

¯

´
1

ξ
σκv

pmq

log κ.

4.3 Full Misspecification Concerns

We have so far shown the introduction of the jump and diffusion uncertainty separately in our

analysis. However, in our analysis, we incorporate each of the uncertainty channels simultane-

ously, allowing for broadly conceived uncertainty considerations in our results. There are explicit

contributions related to diffusion uncertainty and jump uncertainty in the model. However, al-

lowing for all of the uncertainty channels simultaneously allows for important interaction effects

as the jump misspecification distortions fm and gj , and the diffusion misspecification distortion h,

will alter the value functions and their derivatives across jump states and states of nature. These
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more implicit effects will influence the optimized distortions arising from uncertainty aversion,

and as a result, impact the social valuations and optimal policy choices of the social planner.

5 Computational Method

Before delving into numerical results, we outline the numerical method used to derive those

results. The computational algorithm developed here is a critical contribution of our paper to the

literature. Much of the theoretical work in climate economics and climate finance requires, by

necessity, the use of computational methods to derive solutions. The integrated structure of these

models requires a multi-dimensional state space, often times with non-linear dynamic relationships

and functional forms, in order to rigorously account for relevant model features. The result of

specifying such models is the need to confront the “curse of dimensionality”, or the fact that the

complexity of deriving numerical solutions exponentially increases in the number of dimensions.

As noted by (Han et al. 2018), numerical solutions are almost always unavailable for problems

where the number of dimensions is greater than or equal to 4 when solving with standard finite

difference or finite element methods. Incorporating model uncertainty, which introduces non-

linear endogenous responses to model uncertainty, such as exponential tilting to the distribution

of expected future model outcomes, can further exacerbate the computational burden. As we

will outline below, we provide a novel implementation of deep neural networks for deriving the

numerical solutions to our HJB equations.

Only very recently have deep learning and neural network methods been applied to solving

dynamic economic models. Because of the ability of these methods to provide global solutions

for problems with high dimensions where the “curse of dimensionality” can make computational

solutions infeasible for other methods, or where significant non-linearities can cause other com-

putational methodologies to fail, deep learning solution methods have been seen as a potentially

“game-changing” toolset. By approximating the representative agent’s value function and op-

timal controls with deep neural networks, the problems of exponentially increasing complexity

from high-dimensional state spaces can be ameliorated due to the representation of functions in

a compositional form, rather than by the standard additive form resulting from finite difference

and element methods. Applications in macroeconomics (Fernandez-Villaverde et al. 2020, Maliar

et al. 2021, Azinovic et al. 2022) and finance (Duarte 2018, Sauzet 2021) implementing these

types of solutions methods are only beginning to scratch the surface of the potential value and

importance for study key problems in the literature more broadly.

While this existing work has explored settings with (potentially many) more state variables

than our current setting, they tend to rely on symmetric, stationary, and exogenous state variables,

as well as linearity in the model framework, to maintain tractability with such scale. Our method-

ology allows us to go beyond these settings, which is essential to analyzing our climate-economics
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model with model uncertainty aversion. Specifically, while an improvised finite difference method

using neural networks to solve linear systems may help mitigate the curse of dimensionality, it

does not produce satisfactory results for complex models with strong nonlinearities such as ours.

Also, due to the strong nonlinearities in our model, naively parameterizing the value function

using a neural network and minimizing the loss associated with the PDE operator (like the stan-

dard deep Galerkin method) will not produce accurate enough results. While an extended version

of the deep Galerkin method (Al-Aradi et al. 2022) is indeed helpful in improving accuracy, it

does not effectively preserve the value function’s monotonicity with respect to certain parameters

which are supported by economic arguments.

We address these issues in our framework by implementing an extended deep Galerkin method

algorithm that considers critical parameters as additional (pseudo) variables in the network input,

an approach not previously explored in the literature. Because of this, we are able to derive

global numerical solutions for a continuous-time, infinite horizon setting with significant non-

linearities and multiple endogenous state variables. This is critical to our analysis, as exploring

transition dynamics for endogenous optimal policy responses is at the heart of understanding and

analyzing outcomes related to climate change, model uncertainty, and the transition to carbon-

neutrality. Furthermore, our algorithm can still handle high-dimensional PDEs, avoiding the

“curse of dimensionality” in such cases. As such, the resiliency of our algorithm to various

modeling complexities, while still being able to scale to higher-dimensional settings, opens the

door to exploring models with regional, household, and firm heterogeneities across technologies,

economic frictions, policy objectives, and other sources. Thus, our numerical algorithm not only

enriches our ability to explore a more extensive set of questions and models in climate-economics

and climate finance than before, but also more broadly in economics, finance, and other areas of

research that require solving dynamic stochastic optimal control problems.

5.1 Implementing Neural Nets for Numerical Solutions

We now outline our algorithm, and provide pseudo-code and further details about implementation

in the appendix. We use the deep Galerkin method-policy improvement algorithms (DGM-PIA)

proposed in Al-Aradi et al. (2022) to solve the aforementioned HJB equations. We first illustrate

the algorithm on a generic HJB equation for V pxq:

´δV pxq ` sup
αPA

tLαV pxq ` fpx,αqu “ 0,

where x and α denote the state and control variables, A is the control space, the differential

operator Lα is the infinitesimal generator of the controlled state process Xα, f is the utility

function and δ is the discount factor. DGM-PIA solves for the value function V and the optimal

control α simultaneously by parameterizing both as deep neural networks V θ and αφ. Then, the
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networks are trained by taking alternating stochastic gradient descent steps for the two functions.

Let αφ0 (as a function of x) be the initial control parameterized by the neural net, at stage n,

the algorithm contains two steps:

Step 1. Find a solution to the linear PDE

´δV θnpxq ` Lαφn
V θnpxq ` fpx,αφnpxqq “ 0,

for the fixed control αφn , by updating θn via minimizing

LV pθq “ ∥´δV θpxq ` Lαφn
V θpxq ` fpx,αφnpxqq∥2.

Step 2. Update the policy corresponding to

αφn`1pxq P argmax
αPA

tLαV θnpxq ` fpx,αqu,

for the fixed value function V θn , by update φn`1 via minimizing

Lαpφq “ ´

ż

Ω

”

Lαφ
V θnpxq ` fpx,αφpxqq

ı

dνpxq,

where νpxq is a probability measure on the domain Ω of x characterizing the different regions’

relative importance.

In our problem, depending on the setting we are solving, the state processes could contain

plogK,R, Yt, log κ, logNtq, the control variables could contain pid, ig, iκ, gj , fm, hq. In addition, in

order to keep the value function’s monotonicity with respect to γm3 , we take γm3 as an input or

“pseudo-state” of the parameterized neural network.

6 Numerical Results

We next present and discuss the numerical model solution results, which are derived using the

numerical algorithm outlined above. Before getting into the results, we briefly outline a few

details for completeness regarding model assumptions, functional forms, and parameter values.

After presenting and discussing the numerical results, we discuss details about how we validate

our neural-network-based solutions.
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6.1 Functional Forms and Assumptions

First, for tractability we consider the case of independent Brownian shocks, i.e.,

0 “ σ1
dσg “ σ1

dς “ σ1
dσκ,

0 “ σ1
gς “ σ1

gσκ,

0 “ ς 1σκ.

Second, we use the following functional forms for our jump arrival rates. For the technology

change jump, we assume an arrival rate that is proportional to the knowledge stock: Igpκq “ κ{ϱ.

The parameter ϱ scales the knowledge capital stock variable to change the units into arrival rate

units, and is chosen based on expected green policy implementation timelines proposed by various

countries. Section 6.2 provides further details about the choice of this parameter value.

The damage jump intensity Idpyq follows the arrival rate proposed in Barnett et al. (2021):

Idpyq “ r1

´

exp
”r2
2

py ´ yq2
ı

´ 1
¯

1yěy.

Figure 3: Intensity function, r1 “ 1.5 and r2 “ 2.5. With this intensity function, the probability
of a jump at an anomaly of 1.6 is approximately .02 per annum, increasing to about .08 per
annum at an anomaly of 1.7, increasing further to approximately .18 per annum at an anomaly
of 1.8 and then to about one third per annum when the anomaly is 1.9.

Figure 3 shows the increasing nature of the arrival rate as temperature anomaly y increases.

The calibration is such that the probability of a jump taking place by y “ 2 is essentially 1.
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6.2 Parameter Values

We now outline how we chose the parameter values used in our numerical analysis. The economic

parameter values are given in Table 1. We note that the special case of our model without climate

change and technological innovation is the model given in Eberly and Wang (2009). We therefore

use their assumed parameters values of the relevant economic parameters as our baseline solution

values. These parameters are not without justification from empirical estimates and previous

modeling set-ups. The choice of δ is consistent with values of the subjective discount rate used

in the macroeconomics and asset pricing literature. pΓd, θdq produces a value of Tobin’s q of 2.5,

which is consistent with estimated values in the macroeconomics literature. The values of σd and

σg are within the range of values used in the macro-asset pricing literature to produce values of

the price of risk observed in the data. The values of Ad and Ag generate output consistent with

World Bank World GDP values. Way et al. (2022) provide estimates of future costs of green

technology across various scenarios (fast transition, slow transition, no transition) by estimating

coefficients for stochastic Wright’s law and Moore’s law. The values for Ajg coincide with implied

productivity gains in different green technologies over the next 50 years for these estimates.

Table 1: Economic Parameters

Parameters values

δ 0.025

pαd,Γd, θd, σdq ( -0.035, 0.025, 100, 0.15)

pαg,Γg, θg, σgq ( -0.035, 0.025, 100, 0.15)

pAd, Agq (0.12, 0.10)

tAjgu Ag ˆ t1 `
pj´1q

J´1 uj“1,...,3

pζ, ψ0, ψ1, σκq (0, 0.10583, 0.5, 0.016)

ϱ 448

We assume ζ “ 0. Lucking et al. (2019) and Bloom et al. (2019) have provided estimates for

the returns to R&D investment which guide our choice of pψ0, ψ1q. The choice of ϱ translates our

initial value of knowledge stock, which is based on estimates from the BLS of the total US R&D

stock values (scaled up to World values), to an expected arrival time of a green technological

innovation occurring between 30 and 80 years. The value of σκ is chosen to match the other

capital volatilities, which are based on estimates from the World Bank database.
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Table 2: Climate Dynamics and Damages Parameters

Parameters values

βf 1.86 / 1000

η 0.17

ς 1.2 ˆ 1.86{1000

pγ1, γ2q p0.00017675, 2 ˆ 0.0022q

tγm3 u t1
3
m´1
M´1um“1,...,5

pr1, r2, yq p1.5, 2.5, 1.5q

ȳ 2

The climate dynamics and climate damage parameter values are given in Table 2. The values

of βf,ℓ come from pulse experiments estimates produced by Barnett et al. (2021), based on the

results from Joos et al. (2013) and Geoffroy et al. (2013), and are consistent with values reported

in Masson-Delmotte et al. (2021b). The value βf is the average value across all climate 144

models. The value of η is chosen to match the current estimate of annual carbon emissions of 10

GtC from Figueres et al. (2018), based on World Bank estimates of World GDP and EIA/IEA

estimates of the clean and dirty capital split. The value of ς matches volatility used by Barnett

et al. (2021). The values of γ1, γ2, γ
m
3 , and ȳ match damage function parameters used by Barnett

et al. (2021), which are designed to incorporate the spread of potential climate damage outcomes

based on Nordhaus (2019), Weitzman (2012), and others in the literature.

Table 3: State Variable Initial Values and Ranges

State variables values

K0 739

R0 0.5

Y0 1.1

κ0 11.2

State variables range

logpKq r4, 8.5s

R r0.01, 0.99s

Y r0, 4s

logpκq r1, 6s

For our computations, we must also specify ranges and initial values for our state variables.

These values are given in Table 3. The initial value of total capital K0 matches estimates from

the World Bank of World GDP. The initial value of global mean temperature anomaly Y0 matches
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the estimated current value from Masson-Delmotte et al. (2021b). The initial value of the green

capital-to-total capital ratio R0 is based on estimates of clean and dirty capital splits from the

EIA and IEA. The initial value of knowledge stock κ0 matches estimates from the BLS of Total

US R&D stock values (scaled up to World values).

6.3 Model Solution Results

We now discuss the computational results of our model. The results shown are simulation pathway

outcomes based on the solutions to the HJB equations and are initialized at today’s values of the

state variables and shown out to 30 years, which is near the time when the temperature anomaly

hits 1.5˝C and the probability of a damage jump occurring becomes non-zero. For the probability

of the technology and damage jumps occurring, we examine the outcomes out to 40 years. The

results provided are for the following specifications related to model uncertainty:

• βf as the average of the 144 climate models

• 20 damage models γ3 P t0, ..., 1{3u

• Misspecification over technology and damage jumps and the climate model dynamics

• Comparison across uncertainty parameters ξ P t0.1,8u

We focus on the simulated pathways from the pre-damage jump and pre-technology jump

state for emissions, R&D investment, green and dirty capital investment, as well the distribution

of climate and damage models, and the probabilities of a damage or technology jump occurring.

We examine each of these results across different uncertainty aversion parameters to highlight the

implications of increased model uncertainty on the optimal policy choices by our planner. The

red lines, or red histogram bars, represent the uncertainty neutral case when ξ “ 8, and the blue

lines, or blue histogram bars, represent the uncertainty averse case when ξ “ 0.1.

Figure 4 provides the main economic policy outcomes of interest. Figures 4a and 4b show

the pathways for emissions and R&D investment across the uncertainty averse and uncertainty

neutral cases. First, in the top left panel we see that emissions in each case start out similarly, and

though they are increasing over time for both cases, we can see that the emissions diverge and are

lower for the uncertainty averse case of ξ “ 0.1. In the top right panel, we see R&D investment

as a percent of total output. Note first that the magnitude of R&D is fairly substantial in each

case, ranging between 2.5% and 3.5% of total output initially. For comparison’s sake, Stine (2008)

notes that expenditure on R&D directed towards the Manhattan, Apollo, and the Federal Energy

Technology programs reach magnitudes near 0.5%, with total R&D levels reaching over 2%. We

can also see that when the planner is concerned about model uncertainty, i.e., for ξ “ 0.1, the

fraction of output committed to R&D investment starts substantially higher, and though the

27



(a) Gigatons of carbon emissions (b) R&D investment-to-output ratio

(c) Dirty capital investment (d) Green capital investment

Figure 4: Simulated outcomes under different uncertainty penalty configurations based on the
numerical solutions. Panel (a) shows the pathway for carbon emissions. Panel (b) shows the
pathway for R&D investment as a fraction of total output. Panel (c) shows the level of dirty capital
investment. Panel (d) shows the level of green capital investment. The trajectories are simulated
under the baseline probabilities abstracting from the intrinsic randomness. The pathways stop
after 30 years of simulated outcomes, near the time that the temperature anomaly reaches 1.5˝C.
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R&D investment beings to decrease before the uncertaintry neutral case, it always remains higher

when there are concerns about model uncertainty.

Figures 4c and 4d show the levels of dirty and clean investment across the uncertainty aversion

cases. Comparing the dirty investment in the bottom left panel and the clean investment in the

bottom right panel, we see three key points. First, the level of investment in green capital is

substantially higher than in dirty capital. At the beginning of the simulation pathway, the green

investment level is about 50% higher, but by the end of the pathway, it is nearly four to five times

higher. This highlights the second key observation related to investment, that green investment

persistently increases during the simulation pathway, whereas dirty investment begins to taper

off and diminish over time. Finally, we see that uncertainty concerns lead to initially higher dirty

investment, that decreases more rapidly than in the uncertainty neutral case, whereas there is

only a slight amplification of green investment due to difference in uncertainty aversion.

From Figure 5 we can see why the planner responds the way they do. The histograms in

Figures 5a and 5b show the baseline and distorted probabilities given to damage models (left

panel) and climate models (right panel) by the planner. For each type of model, the planner

adjusts the probability to give more weight to the right end of the distribution where the implied

level of climate damage and climate change are both more severe. The effect is fairly modest for the

climate models, and somewhat more pronounced for the damage models. Thus, the planner has

an increased incentive to move away from dirty capital and towards green capital when concerns

about model uncertainty are present. The pathways in Figures 5c and 5d show the baseline and

distorted probability of a technology jump (left panel) and damage jump (right panel) taking place

by the planner. We see only a small adjustment to the jump probability for damages. However,

the uncertainty averse planner significantly down-weights the probability of a technology jump

occurring when they incorporate concerns about model uncertainty. This adjustment is the larger

distributional impact in relative terms, and highlights how the optimal endogenous response by

the planner for determining robust policy is to focus their model uncertainty concerns on the

technology jump. However, rather than reduce their R&D investment, the planner emphasizes

even further the technological change channel and increases their R&D investment to try and

increase the likelihood of the innovation shock occurring.

In summary, it is clear that climate concerns lead to substantial policy action, where the

social planner allocates significant resources to R&D investment and green capital investment,

while diverting some of those resources away from dirty investment. However, concerns about

uncertainty aversion have relatively modest impacts on investment choices in clean production

capital, instead focusing somewhat more on reducing dirty production capital and leaning even

more heavily into the policy response of amplifying R&D investment. The social optimality of this

response is driven by the potentially significant payoff from technological innovation in this setting,

the fact that emissions are sticky in the sense that they are proportional to output from production
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(a) Gigatons of carbon emissions (b) R&D investment-to-output ratio

(c) Dirty capital investment (d) Green capital investment

Figure 5: Distorted model distributions and distorted probability of a jump under different un-
certainty penalty configurations based on the numerical solutions. Panel (a) shows the distorted
distribution of damage models. Panel (b) shows the distorted distribution of climate models.
Panel (c) shows the distorted probability of a technology jump occurring. Panel (d) shows the
distorted probability of a damage jump occurring. The trajectories are simulated under the base-
line probabilities abstracting from the intrinsic randomness. The histograms are calculated at
year 40, and the pathways stop after 40 years of simulated outcomes.
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using dirty capital and there is no direct mechanism for removing or transforming capital, and

the costly nature of accumulating new green capital that is less productive than dirty capital until

a technology jump occurs. As a result, the planner places a substantial social valuation on R&D

investment as a policy response tool in order to potentially initiate the technology jump as relying

mainly on emissions reductions through additional dirty capital investment reduction or further

investment in green capital.

6.4 Validation of Neural Network Solutions

An important issue to address for our numerical solutions is the validation of the accuracy of our

results. We address this in three ways, with the results shown in Figure 6. First, we examine

the training loss for our neural net solutions to determine the magnitude of the HJB equation

error for our solution from the DGM-PIA method. Figure 6a shows the training error for the

post-technology, post-damage jump state solution across epochs. We are able to reach a training

error of approximately 10´4, suggesting our solution is reasonably accurate.

In addition, because the post-jump model solutions require only 3 state variables, we can

compare and validate these results with solutions derived using the solution derived from more

standard finite difference methods. In particular, we use the false-transient, conjugate gradient-

based numerical algorithm implemented in Barnett et al. (2020) and Barnett et al. (2021) for our

finite difference solutions. Figure 6b shows the neural net and finite difference solutions of the

value function and optimal clean and dirty investment for different values of R, and values of

logK and Y fixed at the midpoints of our state space range (logK “ 5.5, Y “ 1.5). We see that

the two solutions methods provide consistent outcomes.

Finally, for the pre-technology, pre-damage jump state, we note that the training errors are

similar to the post-damage, post-technology jump state, but we cannot derive finite difference

method solutions for this setting. Therefore, we propose the DGM-PIA solution at a given point

in the state space to the solution derived from another deep learning method proposed in Han

and E (2016), in which the authors directly parameterize the control by neural nets and obtain

the optimal parameters by maximizing the approximated utility. This method is known to be

very stable, though significantly slower, because the solution is derived point-by-point via training

neural nets across repeated simulations of the state variables. We provide these results in future

work, though preliminary results show the solutions for the two methods are roughly consistent.
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(a) HJB Error for post-technology, post-damage jump state solution

(b) Finite difference and DGM-PIA solution comparison

Figure 6: Model solution validation. The top figure plots the training error over epochs for the
post-damage and post-technology jump state. The bottom figures plot the value function and
optimal controls for the FD and NN solutions in the post-technology and post-damage jump state.
Still to come is the Han and E (2016) solution for a given point in the state space.
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7 Conclusion

Model uncertainty along multiple dimensions is a central issue when studying optimal climate

policy for a carbon-neutral transition. We integrate dynamic decision theory under uncertainty

into a climate-economics-innovation framework with multiple capital stocks to guide uncertainty

quantification of optimal R&D investment, and investment in dirty and clean production capital.

We examine different forms of uncertainty, including diffusion and jump process model misspeci-

fication, as well as the implications of uncertainty from climate sensitivity, climate damages, and

technological innovation. Concerns about model uncertainty feed into the endogenous equilibrium

policy responses in our model by “tilting” the stochastic discounting implicitly used in construct-

ing the marginal valuations related to the externalities in our framework. This results in first-order

implications for the socially optimal outcomes in our model as a result of incorporating aversion to

model uncertainty in the planner’s decision problem. In particular, uncertainty aversion amplifies

the incentive to invest in technological innovation as the major policy mechanism.

Given the richness of our economic and geoscientific model components, we develop and im-

plement a deep learning-based algorithm to solve the Hamilton-Jacobi-Bellman equations that

characterize the planner’s value function in our setting. The algorithm allows us to derive global

solutions for models that have many endogenous and non-stationary state variables, maximize

lifetime expected utility over an infinite horizon, are in continuous-time, and have potentially

significant non-linearities. Because the computational method can handle such computationally

difficult problems without being bogged down by “the curse of dimensionality” or other numerical

issues, we see significant potential for our algorithm in addressing other economically and geosci-

entifically rich climate-economic problems. For the same reasons, our computational method also

has significant promise for recursive, dynamic general equilibrium models used across economics

and finances. We leave exploration of such alternative settings for future work.
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Appendix

This appendix is provided in support of the paper “A Deep Learning Analysis of Climate Change,

Innovation, and Uncertainty” by Michael Barnett, William Brock, Lars Peter Hansen, Ruimeng

Hu, and Joseph Huang. Included here are details on theoretical derivations, alternative model

settings, the model parameters, and the numerical methods used in the paper.

Appendix A Full HJB Equations

A.1 No Model Uncertainty Aversion

A.1.1 Post Damage and Technology Jumps HJB Equation

We provide this HJB equation in the main text.

A.1.2 Intermediate Jump State HJB Equations

The HJB equation for the pre-damage and post-technology jumps state is given by
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The HJB equation for the post-damage and pre-technology jumps state is given by
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A.1.3 Pre Damage and Technology Jumps HJB Equation

The HJB equation for the pre damage and technology jumps setting is given by
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A.2 Full Misspecification Concerns

A.2.1 Post Damage and Technology Jumps Setting

The HJB equation for the post damage and technology jumps setting is given by

δvpm,jq “ max
ig ,id

min
h
δ logprAd ´ idsp1 ´Rq ` rAjg ´ igsRq ` δ logK

`

˜

p1 ´Rq rαd ` Γd logp1 ` θdidqs `R rαg ` Γg logp1 ` θgigqs ´
σ2dp1 ´Rq2 ` σ2gR

2

2

¸

v
pm,jq

logK

`
σ2dp1 ´Rq2 ` σ2gR

2

2
v

pm,jq

logK,logK

`
`

rαg ` Γg logp1 ` θgigqs ´Rσ2g ´ rαd ` Γd logp1 ` θdidqs ` p1 ´Rqσ2d
˘

Rp1 ´Rqv
pm,jq

R

`
1

2
R2p1 ´Rq2pσ2g ` σ2dqv

pm,jq

RR

`

´´

v
pm,jq

logK ´Rv
pm,jq

R

¯

p1 ´Rqσd `

´

v
pm,jq

logK ` p1 ´Rqv
pm,jq

R

¯

Rσg

¯

¨ h

`
“

´Rp1 ´Rq2σ2d `R2p1 ´Rqσ2g
‰

v
pm,jq

logK,R

` pβf ` ς ¨ hqηAdp1 ´RqKvpm,jq
y `

|ς|2pηAdp1 ´RqKq2

2
vpm,jq
yy

´

ˆ
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A.2.2 Pre Damage and Post Technology Jumps Setting

The HJB equation for the pre damage and post technology jumps setting is given by

δvpjq “ max
ig ,id

min
fm,h

δ logprAd ´ idsp1 ´Rq ` rAjg ´ igsR ´ iκq ` δ logK

`

˜

p1 ´Rq rαd ` Γd logp1 ` θdidqs `R rαg ` Γg logp1 ` θgigqs ´
σ2dp1 ´Rq2 ` σ2gR

2

2

¸

v
pjq

logK

`
σ2dp1 ´Rq2 ` σ2gR

2

2
v

pjq

logK,logK

`
`

rαg ` Γg logp1 ` θgigqs ´Rσ2g ´ rαd ` Γd logp1 ` θdidqs ` p1 ´Rqσ2d
˘

Rp1 ´Rqv
pjq

R

`
1

2
R2p1 ´Rq2pσ2g ` σ2dqv

pjq

RR

`

´´

v
pjq

logK ´Rv
pjq

R

¯

p1 ´Rqσd `

´

v
pjq

logK ` p1 ´Rqv
pjq

R

¯

Rσg

¯

¨ h

`
“

´Rp1 ´Rq2σ2d `R2p1 ´Rqσ2g
‰

v
pjq

logK,R

` pβf ` ς ¨ hqηAdp1 ´RqKvpjq
y `

|ς|2pηAdp1 ´RqKq2

2
vpjq
yy

´

ˆ

tγ1 ` γ2Y upβf ` ς ¨ hqηAdp1 ´RqK `
1

2
γ2|ς|2pηAdp1 ´RqKq2

˙

` ξ
|h|2

2

` Idpyq

M
ÿ

m“1

πmd fmpvpm,jq ´ vpjqq ` ξIdpyq
ÿ

πmd p1 ´ fm ` fm log fmq .

FOC

fm “ exp

ˆ

´
1

ξm
pvpm,jq ´ vpjqq

˙

,

h “ ´
1

ξ

”´

v
pjq

logK ´Rv
pjq

R

¯

p1 ´Rqσd `

´

v
pjq

logK ` p1 ´Rqv
pjq

R

¯

Rσg

ı

´
1

ξ
ςηAdp1 ´RqK

´

vpjq
y ´ tγ1 ` γ2Y u

¯

.

5



A.2.3 Post Damage and Pre Technology Jumps Setting

The HJB equation for the post damage and pre technology jumps setting is given by
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A.2.4 Pre Damage and Technology Jumps Setting

The HJB equation for the pre damage and technology jumps setting is given by
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Using the solutions for gj , fm, and h allows for an algebraic simplification of the form:
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R2p1 ´Rq2pσ2g ` σ2dqvRR

`
“

´Rp1 ´Rq2σ2d `R2p1 ´Rqσ2g
‰

vlogK,R

` βfηAdp1 ´RqKvy `
|ς|2pηAdp1 ´RqKq2

2
vyy

´

ˆ

tγ1 ` γ2Y upβf ` ς ¨ hqηAdp1 ´RqK `
1

2
γ2|ς|2pηAdp1 ´RqKq2

˙

`

ˆ

´ζ ` ψ0i
ψ1
κ exppψ1plogK ´ log κqDq ´

1

2
|σκ|2

˙

vlog κ `
|σκ|2

2
vlog κ,log κ

´
1

2ξ
pvlogK ´RvRq2p1 ´Rq2σ2d ´

1

2ξ
pvlogK ` p1 ´RqvRq2R2σ2g

´
1

2ξ
ς2η2A2

dp1 ´Rq2K2pvy ´ tγ1 ` γ2Y uq2 ´
1

2ξ
σ2κv

2
log κ

` ξIgpκq

J
ÿ

j“1

πjg p1 ´ gjq ` ξIdpyq
ÿ

πmd p1 ´ fmq .

Appendix B Abatement Model

Consider allowing for carbon abatement in the following way. First, emissions are given by

Et “ λtAdKdp1 ´ ιtq,

where βt is the emissions intensity of dirty output. Note that ιt is the choice of abatement and

can be solved for as a function of emissions:

ιt “ 1 ´
Et

λtAdKd
.

The cost of abatement is given as a fraction of the dirty output, given by

J “ rAdKd `AgKgsϕ0pιqϕ1 .
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Finally, market clearing gives us the output constraint

C “ AdKd `AgKg ´ Id ´ Ig ` Iκ ´ J

“ rAdp1 ´ ϕ0p1 ´
E

λtAdKd
qϕ1q ´ idsKd ` rAgp1 ´ ϕ0p1 ´

E

λtAdKd
qϕ1q ´ igsKg ´ iκK.

With that, we can construct the HJB equation for this setting, which is given as

δV “ max
ig ,id,iκ,E

δ logprAdKd `AgKgsp1 ´ ϕ0p1 ´
E

λtAdKd
qϕ1q ´ idKd ´ igKg ´ iκKq ´ δ logNt

`tαd ` Γd logp1 ` θdidquVdKd ` tαg ` Γg logp1 ` θgigquVgKg `
|σd|2K2

d

2
Vdd `

|σg|2K2
g

2
Vgg

`βfEtVY `
|ς|2pEtq

2

2
VY Y ` rtγ1 ` γ2YtuβfEt `

1

2
γ2|ς|2E2

t sVlogN `
|ς|2E2

t

2
VlogN logN

`p´ζ ` ψ0i
ψ1
κ exppψ1plogK ´ log κqq ´

1

2
|σκ|2qVlog κ `

|σκ|2

2
Vlog κ,log κ.

The FOC for investment and R&D are given by

0 “ ´δprAdp1 ´ ϕ0p1 ´
E

λtAdKd
qϕ1q ´ idsKd ` rAgp1 ´ ϕ0p1 ´

E

λtAdKd
qϕ1q ´ igsKg ´ iκKq´1

`Γdθdp1 ` θdidq´1Vd

0 “ ´δprAdp1 ´ ϕ0p1 ´
E

λtAdKd
qϕ1q ´ idsKd ` rAgp1 ´ ϕ0p1 ´

E

λtAdKd
qϕ1q ´ igsKg ´ iκKq´1

`Γgθgp1 ` θgigq´1Vg

0 “ ´δprAdp1 ´ ϕ0p1 ´
E

λtAdKd
qϕ1q ´ idsKd ` rAgp1 ´ ϕ0p1 ´

E

λtAdKd
qϕ1q ´ igsKg ´ iκKq´1K

`ψ0ψ1i
ψ1´1
κ exppψ1plogK ´ log κqqVlog κ

0 “ δprAdp1 ´ ϕ0p1 ´
E

λtAdKd
qϕ1q ´ idsKd ` rAgp1 ´ ϕ0p1 ´

E

λtAdKd
qϕ1q ´ igsKg ´ iκKq´1

ˆ
ϕ0ϕ1pAdKd `AgKgq

λtAdKd
p1 ´

E

λtAdKd
qϕ1´1

`βfVY ` |ς|2EtVY Y ` rtγ1 ` γ2Ytuβf ` γ2|ς|2EtsVlogN ` tγ1 ` γ2Ytu|ς|2EtVlogN logN

Now we redefine the states to get it all correct. We use logK “ logpKd`Kgq and R “
Kg

Kd`Kg
.

Define dWg as the green capital shock and dWd as the dirty capital shock. Having assumed

the shocks are independent, then our cross-partial terms should drop out and we end up with the
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following:

d logK “ p1 ´Rqrαd ` id ´
ϕd
2
i2dsdt`Rrαg ` ig ´

ϕg
2
i2gsdt

´
1

2
|σdp1 ´Rq|2 ´

1

2
|σgR|2dt` p1 ´RqσddWd `RσgdWg

dR “ ´rαd ` id ´
ϕd
2
i2dsRp1 ´Rqdt`Rp1 ´Rqrαg ` ig ´

ϕg
2
i2gsdt

`Rp1 ´Rq2|σD|2dt´R2p1 ´Rq|σG|2dt´Rp1 ´RqσddWd `Rp1 ´RqσgdWg

The new HJB equation is given by V pKd,Kg,Y, log Ig, logNq “ vpK,R, Yt, log Igq ´ logNt:

δv “ max
ig ,id,iκ,E

δ logprAdp1 ´Rq `AgRsp1 ´ ϕ0p1 ´
E

λtAdKp1 ´Rq
qϕ1q ´ idp1 ´Rq ´ igR ´ iκq ` δ logK

`rtαd ` Γd logp1 ` θdidqup1 ´Rq ` tαg ` Γg logp1 ` θgigquR ´ p1 ´Rq2
|σd|2

2
´R2 |σg|2

2
svlogK

`rtαg ` Γg logp1 ` θgigquRp1 ´Rq ´ tαd ` Γd logp1 ` θdidquRp1 ´Rq

`|σd|2Rp1 ´Rq2 ´ |σg|2R2p1 ´RqsvR

`t
|σd|2

2
`

|σg|2

2
uR2p1 ´Rq2vRR ` t

|σg|2

2
R2 `

|σd|2

2
p1 ´Rq2uvlogK,logK

´|σd|2vlogK,RRp1 ´Rq2 ` |σg|2vlogK,RR
2p1 ´Rq

`βfEtvY `
|ς|2pEtq

2

2
vY Y ´ rtγ1 ` γ2YtuβfEt `

1

2
γ2|ς|2E2

t s

`p´ζ ` ψ0i
ψ1
κ exppψ1plogK ´ log κqq ´

1

2
|σκ|2qvlog κ `

|σκ|2

2
vlog κ,log κ

The FOC for investment and R&D are given by

0 “ ´δprAdp1 ´Rq `AgRsp1 ´ ϕ0p1 ´
E

λtAdKp1 ´Rq
qϕ1q ´ idp1 ´Rq ´ igR ´ iκq´1

`Γdθdp1 ` θdidq´1rvk ´ p1 ´RqvRs

0 “ ´δprAdp1 ´Rq `AgRsp1 ´ ϕ0p1 ´
E

λtAdKp1 ´Rq
qϕ1q ´ idp1 ´Rq ´ igR ´ iκq´1

`Γgθgp1 ` θgigq´1rvk ` p1 ´RqvRs

0 “ ´δprAdp1 ´Rq `AgRsp1 ´ ϕ0p1 ´
E

λtAdKp1 ´Rq
qϕ1q ´ idp1 ´Rq ´ igR ´ iκq´1

`ψ0ψ1i
ψ1´1
I exppψ1plogK ´ log κqqvlog Ig

0 “ δprAdp1 ´Rq `AgRsp1 ´ ϕ0p1 ´
E

λtAdKp1 ´Rq
qϕ1q ´ idp1 ´Rq ´ igR ´ iκq´1

ˆ
ϕ0ϕ1pAdp1 ´Rq `AgRq

λtAdp1 ´Rq
p1 ´

E

λtAdKp1 ´Rq
qϕ1´1

`βf pvY ´ tγ1 ` γ2Ytuq ` |ς|2EtpvY Y ´ γ2q
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So far, the model presented here abstracts from jumps and uncertainty. We could introduce

jumps as before with different realizations of γm3 and Ajg possible, a jump, or jumps, in the value

of λt, and jump and diffusion misspecification concerns across the various different channels as

outlined in the main text of the paper.

Appendix C Social Valuations

An important component of our analysis can be captured by social valuations, which are shadow

prices for the marginal benefit or marginal cost of an additional unit of flows or stocks the various

stocks in our model. In particular, the Social Cost of Carbon (SCC), Social Value of R&D (SVR),

Social Value of Green Capital (SVG), and the Social Value of Dirty Capital (SVD), can each be

computed from the FOC of the social planner’s problem

SCCt 9 1000ηt´βfvY ´ |ς|2EtvY Y ` tγ1 ` γ2Ytuβf ` γ2|ς|2Etu

SV Rt 9 ψ0ψ1

˜

Ijt
κt

¸ψ1´1

vlog κ

SV Gt 9 Γgθgp1 ` θgigq´1rvlogK ` p1 ´RqvRs

SV Dt 9 Γdθdp1 ` θdidq´1rvlogK ´RvRs

where the proportionality scaling for each social valuation term is the inverse of the marginal

utility of consumption:

pMUCq´1 “ δ´1prAd ´ idsp1 ´Rq ` rAg ´ igsR ´ iIq.

Following Barnett et al. (2020) and Barnett et al. (2021), we can decompose the contribution to

these social valuations coming from uncertainty of different forms and from different sources. The

decomposition requires solving Feynman-Kac equations that represent the expected discounted

value of marginal contributions to each stock variable, where the expectation is varied across the

different distributions of the potential models under consideration in our setting, e.g., the baseline

prior distribution or various forms of the distorted, uncertainty-adjusted distribution of models.

We plan to explore these important valuations in future work on this project.

Appendix D Alternative Model Parameterization

Economic Framework Parameters (Log Adjustment Costs - BBH RFS):
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Parameters values

δ 0.01

pα,Γ, θ, σq ( -0.035, 0.060, 16.7, {0.01, 0.016, 0.02} )

pα1,Γ1, θ1, σ1q ( -0.038, 0.0633, 15.7895, {0.01, 0.016, 0.02})
pζ, ψ0, ψ1, σκq (0, 0.10583, 0.5, 0.0078)

ϱ 1120

pAd, Ag; tAjguq p0.12, 0.10; t0.15, 0.20, 0.30uq

pKd,Kg, Y, κq 0.5 ˆ p85{0.11q, 0.5 ˆ p85{0.11q, 1.1, 11.2q

• δ is consistent with the subjective discount rate used in macro-asset pricing literature.

• pΓd, θdq and pΓg, θgq are chosen so that the no-climate, one capital version of the model

satisfies three conditions as in Barnett et al. (2020):

1 “ Γθ “ 1

0.02 “ α ` Γ logp1 ` θiq “ ErdK{Ks

2.5 “
A´ i

δ
vlogK “

1 ` θi

Γθ
“ q

• σd and σg are chosen to match the values used in the World Bank database.

• Ad, Ag, A
j
g generate output consistent with World Bank World GDP values, and allow for a

meaningful technological change upon realization of the technology jump.

• pζ, ψ0, ψ1, ϱq values are based on BLS Total US R&D stocks values (scaled to World values),

Lucking et al. (2019) and Bloom et al. (2019) estimates for the returns to R&D invest-

ment, and consistent with an expected arrival time of potential carbon neutral technology

innovation occurring between 30 and 80 years based on current knowledge levels.

• σκ is chosen to match the volatility of the other capital stocks.

Appendix E Neural Nets Implementations

Below we give the pseudo-code for the deep Galerkin method - policy improvement algorithms

(DGM-PIA) described in Section 5.1, as well as implementation details, including network archi-

tectures and training hyperparameters.

For the DGM-PIA described in Section 5.1, we use feedforward neural networks with 4 hidden

layers of width 32 and tanh activation function (except for the output layer) to approximate

both the unknown value functions and the optimal controls. At the output layer, a customized

hyperbolic tangent function is used for ig, id, and the sigmoid function is used for iκ.
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To train the neural nets, we run 250000 epochs with a batch size of 32. The learning rates

lrV “ 10e´5 and lrα “ 10e´5 and we use the ADAM optimizer proposed in Kingma and Ba

(2014). The training is done on Google Colab with a total runtime of 2.29 hours.

For the Han and E (2016) method solution, we use feedforward neural networks with 4 hidden

layers of size 32 and tanh activation function to approximate the optimal controls. To train the

neural nets, we run N = 100,000 epochs with a batch size of 27. The infinite time horizon is

approximated by r0, 1000s, and the time step size is 0.1.

Algorithm 1 The DGM-PIA algorithm for solving the generic HJB (5.1)

Require: a maximum number of epochs N , initial neural networks for the value function V px; θ0q

and the control αpx;φ0q, learning rates for the value function and the control lrV , lrα
1: for n “ 0, 1, 2, . . . , N do
2: Generate random samples txmuMm“1 from the domain Ω according to ν
3: Compute the value function loss in (5.1) using samples txmuMm“1:

LV
`

θn; txmuMm“1

˘

“
1

M

M
ÿ

m“1

”

´δV pxm; θnq ` Lαpxm;φnqV pxm; θnq ` fpxm,αpxm;φnqq

ı2

4: Take a gradient descent step to update θn`1:

θn`1 “ θn ´ lrV∇θLV pθn; txmuMm“1q

5: Compute the control loss in (5.1) using samples txmuMm“1:

Lα

`

φn; txmuMm“1

˘

“ ´
1

M

M
ÿ

m“1

”

Lαpxm;φnqV pxm; θnq ` fpxm,αpxm;φnqq

ı2

6: Take a gradient descent step to update φn`1:

φn`1 “ φn ´ lrα∇φLαpφn; txmuMm“1q

7: end for
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