
Robust Identification
of Investor Beliefs

Lars Peter Hansen (University of Chicago)
January 26, 2023
collaborators: X. Chen and P. G. Hansen, PNAS, 2020



Motivation

Behavioral “distortions” and “ambiguity aversion” are compelling in
environments for which uncertainty is complex and speculation about
the future is challenging

▷ WHAT?
◦ We propose and justify a data and model-based method
for deducing market beliefs

◦ We construct bounds on expectations of unknown future
aggregates captured as a nonlinear expectation

▷ WHY?
◦ They provide a formal way to address the public and
private sector interest in market perceptions

◦ They serve as a diagnostic for models in which asset
prices are represented with distorted beliefs
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Two observations

Asset prices are:

▷ REVEALING: forward-looking and serve as barometers for
market beliefs

▷ CHALLENGING:
◦ entangle beliefs and risk aversion
◦ data are sparse along some important dimensions
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Two approaches

We could:
▷ impose rational expectations and explore “exotic” or “ad hoc”
models with time-varying risk aversion

▷ model beliefs that are distorted (relative to rational
expectations) justified by a) psychology or b) ambiguity
aversion with moderate risk aversion

We speak to this second approach:

We bound private sector beliefs by limiting how much these
beliefs conflict with the probabilities implied by historical ev-
idence.
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Our method

▷ presume that a dynamic model is misspecified under rational
expectations

▷ correct this misspecification, we allow for beliefs to differ and
to be “distorted” (from rational expectations)

▷ limit the alternative probabilities using statistical measures of
“divergence” that capture the magnitude of the distortion

▷ derive bounds on the beliefs that are consistent with the
observed asset prices and survey evidence
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Basic formulation

▷ Moment equations under rational expectations:

E [f(X, θ) | A] = 0.

where the function f captures the parameter dependence (θ) along
with variables (X) observed by the econometrician.

▷ A typical asset pricing example:

E(SRet− 1n|A) = 0

where Ret is a vector of returns, S is the stochastic discount
factor (SDF), I denote the investor information set.

For simplicity, I will drop the parameter dependence but comment
later on how unknown parameters can be included.
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Market beliefs

We consider conditional moment restrictions of the form:

Ẽ [f(X) | A] = E [Nf(X) | A] = 0.

where N ≥ 0 and E (N | A) = 1.

The random variable N provides a flexible change in the probability
measure. N captures how the rational expectations are altered by
market beliefs.

▷ each N is a “belief distortion”
▷ N not uniquely identified!

General applicability to dynamic, stochastic, general equilibrium
models.
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Two Applications
▷ long-term risk-neutral pricing

S = (Reth)−1

where Reth is the limiting holding period return on a long-term
bond

▷ unitary relative risk aversion in recursive utility

S = (Retw)−1

where Retw is the one-period return on the wealth portfolio
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Digression 1
For recursive utility,
▷ The SDF ratio is:

St+1

St
= β

(
Ct+1

Ct

)−ρ(Vt+1

Rt

)ρ−1(Vt+1

Rt

)1−γ

.

▷ The return on wealth is:

Retwt+1 = β−1

(
Vt+1

Rt

)1−ρ(Ct+1

Ct

)ρ

.

Observation: for γ = 1,
(
Retwt+1

)−1 is the one-period stochastic
discount factor ratio
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Digression 2
For long-term approximation, consider the eigenvalue problem:

E
[(

St+1

St

)
es(Xt+1) | At

]
= exp(ηs)es(Xt)

▷ Limiting holding-period return is

Retht+1 = exp(−ηs)
[
es(Xt+1)

es(Xt)

]
▷ One-period transition for the long-term risk neutral probability:

Nt+1 =

(
St+1

St

)[
es(Xt+1)

es(Xt)

]
exp(−ηs)

Observation: St+1

St = Nt+1

(
Rh
t+1

)−1
.
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Proportional risk premia

The proportional risk premia from the perspective of the altered
probability is:

logE (NRet | A) + 1n logE (NS | A) .

▷ The first term is the logarithm altered expectation of Ret
▷ The second term is the negative of the logarithm of the risk-free
return

Our methods allow us to compare the rational expectations version of
the risk compensations to bounds on these proportional
compensations as implied by market data.
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Dynamic recursive formulation

▷ environment: Baseline probability triple (Ω,G,P) used to
govern the data generation

▷ alternative probability measure Q
▷ conditioning information: let At denote the date t information
(sigma algebra) where At ⊂ At+1

Recall: Qt and Pt are the restrictions of Q and P to At
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Alternative probabilities
▷ consider probabilities Q for which there exists an
N = {Nt+1 : t = 0, 1, ...} ≥ 0 where Nt+1 is in the date t+ 1
information set and satisfies:∫

BtdQt =

∫
E (Nt+1Bt+1 | At) dQt

for bounded stochastic process B
▷ form

MT =

T∏
t=1

Nt

where E (MTBT | A0) is the conditional expectation of BT under
Q.

Note: Nt+1 distorts the one-period transition probabilities between
dates t and t+ 1.
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Conditional Divergence

We use the conditional version of ϕ divergence as an important
building block:

E [ϕ(Nt+1) | At]

for a strictly convex function ϕ defined on (0,∞) with ϕ(1) = 0.
▷ by Jensen’s Inequality,

E [ϕ(Nt+1) | At] ≥ 0.

▷ leading example:
ϕ(n) = n log n

which is conditional relative entropy or Kullback-Leibler
devergence.
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Equivalent representation

Construct a function ψ such that

nψ
(
1

n

)
= ϕ(n).

Observations:
▷ ψ is also strictly convex with ψ(1) = 0

▷ ψ satisfies

E
[
Nt+1ψ

(
1

Nt+1

)
| At

]
= E [ϕ(Nt+1) | At]

▷ for Kullback-Leibler

ψ(n) = − log n
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Intertemporal divergence

R(N) = lim
T→∞

1

T
E

[
MT

T∑
t=1

ψ

(
1

Nt

)
| A0

]

Observations:
▷ by the Law of Large Numbers for stationary, ergodic processes:∫

ψ

(
1

Nt+1

)
dQt+1 =

∫
E [ϕ(Nt+1) | At] dQt.

where Q is the probability measure implied by N.
▷ Divergence depends on Nt+1 and Qt which are linked via the
stationarity restriction.
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Problem of interest
For a given function g, we solve:

inf
N≥0

lim
t→∞

1

T
E

[
MT

T∑
t=1

g(Xt)

∣∣∣∣A0

]

subject to the constraints

R(N) ≤ κ

E[Nt+1f(Xt+1) | It] = 0

E[Nt+1 | It] = 1

Mt+1 = Nt+1Mt

Impose additional restrictions to ensure implied probability measures
satisfy the Law of Large Numbers.
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Solution
Three steps:

i) introduce a nonnegative multiplier to enforce the constraint
R(N) ≤ κ and solve the problem for alternative values of this
multiplier,
ii) use a martingale decomposition of the objective to produce a
recursive representation of the multiplier problem,
iii) solve this problem using recursive methods familiar from
dynamic programming.
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Step one
Solve

inf
N≥0

lim
t→∞

1

T
E

(
MT

[ T∑
t=1

g(Xt) + ξψ

(
1

Nt

)] ∣∣∣∣A0

)
− ξκ

subject to the constraints

E[Nt+1f(Xt+1) | It] = 0

E[Nt+1 | It] = 1

Mt+1 = Nt+1Mt

where ξ ≥ 0 is a Lagrange multiplier

Taking the supremum over ξ enforces the divergence constraint.

19 / 28



Martingale decomposition
Recursion: find a real number µ and a stochastic process v such that

E
(
Nt+1

[
g(Xt+1) + ξψ

(
1

Nt+1

)
+ vt+1

]
| At

)
− µ− vt = 0

Observe that

T∑
t=1

[
g(Xt+1) + ξψ

(
1

Nt+1

)]
− Tµ+ vT − v0

is martingale under Q.
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Step three
Recursion: find a number µ and a process v such that

inf
Nt+1≥0

E
(
Nt+1

[
g(Xt+1) + ξψ

(
1

Nt+1

)
+ vt+1

]
| At

)
− µ− vt = 0

subject to

E [Nt+1f(Xt+1) | At] = 0

E (Nt+1 | At) = 1

Compute using dynamic programming methods.
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Nonlinear expectation

We represent restricted belief distortions by an alternative nonlinear
expectation. K maps bounded functions g into real numbers and
satisfies:

i) if g2 ≥ g1, then K(g2) ≥ K(g1).
ii) if g constant, then K(g) = g.
iii) K(rg) = rK(g), r ≥ 0

iv) K(g1) +K(g2) ≤ K(g1 + g2)
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Unitary risk aversion
▷ consider the recursive utility model as in Kreps and Porteus and
Epstein and Zin

▷ explore belief distortions instead of large and/or time-varying
risk aversion

▷ value assets with the stochastic discount factor

St+1 = Nt+1(Retwt+1)
−1

where Retwt+1 denotes the return on wealth.
▷ Expected logarithm of the wealth portfolio:

E
(
Nt+1 logRetwt+1 | At

)
= − logβ+ρE

[
Nt+1

(
Ĉt+1 − Ĉt

)
| At

]
.

since R̂t = E
(
Nt+1V̂t+1 | At

)
.

Simple link between the expected log return on wealth and expected
growth rate in the macro economy.
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Risk compensation
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The ·’s are empirical averages and the boxes give the imputed bounds
when we inflated the minimum relative entropy by 20%. The
minimum relative entropy is .028 with a half-life of 24 quarters.
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Expected log market return
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The ·’s are empirical averages and the boxes give the imputed bounds
when we inflated the minimum relative entropy by 20%.

25 / 28



Transition Probability
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Stationary Distribution
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Concluding Remarks
Use intertemporal statistical divergence as a form of bounded
rationality - private sector belief distortions are more prominent when
statistical inference challenges are more difficult.

Extensions:
▷ incorporate parameter dependence in f and g by including an
additional minimization over the parameter space

▷ bound ratios (conditional expectations), log differences (risk
compensations), etc with extra one-dimensional minimizations

▷ incorporate into policy problem where the policymaker cares
about the beliefs of private sector

▷ provide statistical inference methods for our bound
measurements
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