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Motivation

Behavioral “distortions” and “ambiguity aversion” are compelling in
environments for which uncertainty is complex and speculation about
the future is challenging
> WHAT?
o We propose and justify a data and model-based method
for deducing market beliefs
o We construct bounds on expectations of unknown future
aggregates captured as a nonlinear expectation
> WHY?
o They provide a formal way to address the public and
private sector interest in market perceptions
o They serve as a diagnostic for models in which asset
prices are represented with distorted beliefs
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Two observations

Asset prices are:

> REVEALING: forward-looking and serve as barometers for
market beliefs

> CHALLENGING:

o entangle beliefs and risk aversion
o data are sparse along some important dimensions
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Two approaches

We could:

> impose rational expectations and explore “exotic” or “ad hoc”
models with time-varying risk aversion

> model beliefs that are distorted (relative to rational
expectations) justified by a) psychology or b) ambiguity
aversion with moderate risk aversion

We speak to this second approach:
We bound private sector beliefs by limiting how much these

beliefs conflict with the probabilities implied by historical ev-
idence.
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Our method

> presume that a dynamic model is misspecified under rational
expectations

> correct this misspecification, we allow for beliefs to differ and
to be “distorted” (from rational expectations)

> limit the alternative probabilities using statistical measures of
“divergence” that capture the magnitude of the distortion

> derive bounds on the beliefs that are consistent with the
observed asset prices and survey evidence
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Basic formulation

> Moment equations under rational expectations:
E[f1X,0) | ] = 0.

where the function f captures the parameter dependence () along
with variables (X) observed by the econometrician.

> A typical asset pricing example:
E(SRet — 1,|2) =0

where Ret is a vector of returns, S is the stochastic discount
factor (SDF), J denote the investor information set.

For simplicity, [ will drop the parameter dependence but comment
later on how unknown parameters can be included.
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Market beliefs

We consider conditional moment restrictions of the form:

E [f(x) | 2] = E[NAX) | 2] = 0.
where N> 0and E (N | 2A) = 1.

The random variable N provides a flexible change in the probability
measure. N captures how the rational expectations are altered by
market beliefs.

> each NV is a “belief distortion”
> N not uniquely identified!

General applicability to dynamic, stochastic, general equilibrium
models.
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Two Applications

> long-term risk-neutral pricing
S = (Ret")™!

where Ret is the limiting holding period return on a long-term
bond

> unitary relative risk aversion in recursive utility
S = (Ret”)™!

where Ret" is the one-period return on the wealth portfolio
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Digression 1

For recursive utility,
> The SDF ratio is:

Sz+1:5 Cor\ ™ (Ver \°7' (Ve 7
:% Cb }e[ Iet ‘
> The return on wealth is:
Vil N\ P [ Crr \?
-1 t+1 t+1
Ret',, = <R> <C)

. -1. . .
Observation: for y = 1, (Ref};) " is the one-period stochastic
discount factor ratio
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Digression 2

For long-term approximation, consider the eigenvalue problem:

B | (%) et | 3] = e )

> Limiting holding-period return is

es(Xerl)]

> One-period transition for the long-term risk neutral probability:

e (5) [  o

_ ~1
t+1
Observation: =+ = Nt+1( t+1)
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Proportional risk premia

The proportional risk premia from the perspective of the altered
probability is:

logE (NRet | ) + 1,logE (NS | 2) .

> The first term is the logarithm altered expectation of Ret

> The second term is the negative of the logarithm of the risk-free
return

Our methods allow us to compare the rational expectations version of
the risk compensations to bounds on these proportional
compensations as implied by market data.
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Dynamic recursive formulation

> environment: Baseline probability triple (€2, &, P) used to
govern the data generation

> alternative probability measure Q

> conditioning information: let 2(; denote the date ¢ information
(sigma algebra) where A, C 2,4

Recall: Q; and P, are the restrictions of Q and P to 2,
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Alternative probabilities

> consider probabilities Q for which there exists an
N ={Ng1:t=0,1,...} > 0 where Ny is in the date  + 1
information set and satisfies:

/Btth = /E(Nt+lBt+1 | Q'[I) th

for bounded stochastic process B

> form
T
jL[T = ITI:ZVQ
=1

where E (M7B7r | 2p) is the conditional expectation of Br under

Q.

Note: N;; 1 distorts the one-period transition probabilities between
dates rand ¢ + 1.
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Conditional Divergence

We use the conditional version of ¢ divergence as an important
building block:
E [¢(Nt+1) ‘ le]

for a strictly convex function ¢ defined on (0, co) with ¢(1) = 0.

> by Jensen’s Inequality,
E[¢p(Net1) [ 2] = 0.

> leading example:
¢(n) =nlogn

which is conditional relative entropy or Kullback-Leibler
devergence.
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Equivalent representation

Construct a function v such that
1
ny <n> = ¢(n).

> 1) is also strictly convex with ¢)(1) = 0

Observations:

> 1) satisfies

E [Naw () 1] = Elo(v) 12

t+1

> for Kullback-Leibler

Y(n) = —logn
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Intertemporal divergence

1
R(N) = Jim ZE

L 1
M w() P
thl ) | %o

Observations:

> by the Law of Large Numbers for stationary, ergodic processes:

/w <Nz1+1> dQi11 = /E [p(Ne+1) | 2] dQ:.

where Q is the probability measure implied by N.

> Divergence depends on N, and Q; which are linked via the
stationarity restriction.
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Problem of interest

For a given function g, we solve:

inf lim E
N>0t—oc0 T

MTZng

subject to the constraints

R(N) <k
E[Nit1fXi41) | 3] =0
HE[]\G{.l | :jt] = 1

Mt+1 - Nl+1Mt

Impose additional restrictions to ensure implied probability measures
satisfy the Law of Large Numbers.

17/28



Solution

Three steps:

1) introduce a nonnegative multiplier to enforce the constraint
R(N) < k and solve the problem for alternative values of this
multiplier,

i1) use a martingale decomposition of the objective to produce a
recursive representation of the multiplier problem,

iii) solve this problem using recursive methods familiar from
dynamic programming.
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Step one

Solve

Q[o) - f/i

1 ! 1
jnf lim (MT [Z g(X) + &y <M>

=1

subject to the constraints

E[Nit1f(Xi41) | 3] =0
HE[]\G{.l | :jt] = 1
Mt+1 = Nl+1Mt

where £ > 0 is a Lagrange multiplier

Taking the supremum over £ enforces the divergence constraint.
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Martingale decomposition

Recursion: find a real number p and a stochastic process v such that

E (Nr+1 |:g()(f+1) + &y (Nz1+1> + Vr+1} | le) —p—v=0

Observe that

T

> [g(XHl) + &y (N}Hﬂ —Tp+vr—w

=1

is martingale under Q.
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Step three

Recursion: find a number x and a process v such that

: 1
inf E <Nz+1 [g(Xm) + &y <> + Vt+1:| | Qlt) —p—=v=0
0 Nit1

Niy12>
subject to

E [Nt 1fXig1) |24 =0
]E (Nt+1 ’ Qlt) = 1

Compute using dynamic programming methods.
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Nonlinear expectation

We represent restricted belief distortions by an alternative nonlinear

expectation. K maps bounded functions g into real numbers and
satisfies:

i)if g2 > g1, then K(g2) > K(g1).
ii) if g constant, then K(g) = g.
iii) K(rg) = rK(g), r>0

iv) K(g1) + K(ga2) < K(g1 + g2)
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Unitary risk aversion

> consider the recursive utility model as in Kreps and Porteus and
Epstein and Zin

> explore belief distortions instead of large and/or time-varying
risk aversion

> value assets with the stochastic discount factor
1
St+1 = Nry1(Retyy )

where Ret}', | denotes the return on wealth.
> Expected logarithm of the wealth portfolio:

E (Nt+l logRetﬁl | Qlt) = — IOg /8+pE |:Nl+1 (6[+1 — 6;) | 2[;:| o

since E[ =E (Nt_t'_l/I}H_l | Qlt>

Simple link between the expected log return on wealth and expected

growth rate in the macro economy.
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Risk compensation
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The -’s are empirical averages and the boxes give the imputed bounds
when we inflated the minimum relative entropy by 20%. The

minimum relative entropy is .028 with a half-life of 24 quarters.
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Expected log market return
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The -’s are empirical averages and the boxes give the imputed bounds
when we inflated the minimum relative entropy by 20%.
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Transition Probability
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Stationary Distribution
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Concluding Remarks

Use intertemporal statistical divergence as a form of bounded
rationality - private sector belief distortions are more prominent when
statistical inference challenges are more difficult.

Extensions:

> incorporate parameter dependence in f'and g by including an
additional minimization over the parameter space

> bound ratios (conditional expectations), log differences (risk
compensations), etc with extra one-dimensional minimizations

> incorporate into policy problem where the policymaker cares
about the beliefs of private sector

> provide statistical inference methods for our bound
measurements
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