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Continuous time

Level evolution:

dV, = Vi dt+ Vo] - dw,

Logarithm evolution:
dV, = pldt+ o) - dw,

where if = uf — 3! 2.
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Discrete-time approximation

7= 1= log (1= B exp (1= p)C] + Beexp [(1 = )R]

Ro= 1t ~togE [exp ((1 = 1)iec) | ]

where . = exp(—de). Rewrite this as:

g (1= B exp [(1 = ) (G = 7)) + Beexp [(1= ) (R = 72)]
=0

iét - j>} =

= 1ogE (exp [(1 =) (Ve = 72)] 1)
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Discrete-time approximation cont.

i (R=7) J%li og (erp (1) (v = T5) 1),
U 17
o
=uf—%raf|2

by local log normality.
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Discrete-time approximation cont.

Differentiate with respect to e:

—tlog (1= g exp [(1= ) (G =72)] + Beexp [(1— ) (R~ )

Duffie-Epstein refer to y as a “variance multiplier.”
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Robustness and subjective beliefs

Girsanov theory:

> Consider H processes with the same dimension as the underlying
Brownian motion.

> Form a positive martingales to induce changes in the probability
measure:
th = Mth . th

> Observe that
dlog M, — —% L2 di + H, - dW,
> Under the H change of measure:
dW, = H,dt + dw!

where W' is a Brownian motion.
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Robustness and subjective beliefs

Recall two relations:

1
leth = —5 |Ht‘2dl‘+Ht . th
dW, = Hdt + dw¥

Observations:

> Change of measure induces a local mean or drift H process in the
Brownian motion

> Under the change of measure, the drift in log M is |H,|? - local
relative entropy
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A heuristic digression

Discrete approximation:
€
log My e — log M; = D) ‘Ht‘Q +H - (Wipe — W)

Let w be a realized W, — W, and & be a realization H;. Then
log M, — log M, contributes —S$/4'h + h - w to the log-likelihood.

The standard normal density for (W, — W;) contributes — 1 w'w. Put
together, we have a log-likelihood:
Wt how— o L (o — o — )
w 26w w=—o (w—eh)(w—e

The altered density has mean e/, which is the realized value of H,.
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Robust adjustment in cont. time

> Replace the value function drift /)" with

Mz +Ut H,
> Solve: ¢
I?%}Il/it aF (Tt 11} aF é? ]i} }1}
> Minimizing H;:
L y
=——0
t gbn t
> Minimized objective
T “71 |

Sety—1= % to connect to our previous analysis.
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Smooth ambiguity/prior robustness 1

> Suppose that
dv, = i) (0)dt + o] dW,

where 0 is not observed.

> Replace:

+fy — 5 |UtV’2 =0

with

1—p
: [(%) - 1] — = logE (exp [~} (6)] | %)~ 5|07 P = 0
1—p & e 28m !

Hansen-Maio (PNAS)
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Smooth ambiguity/prior robustness 2

— 5— logEE (exp [— fpﬂf(e)] | )
p

—]rvrtl(lr;E [N:(0)ia (0) | ] + &E [N,(0) log Ni(6) | 2]

where
€Xp [—5,,,&,[/(0)]

NiO) = & (oxp 6,2 0)] [2)

Exponential tilting
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Value functions in a Markov world

> Markov state dynamics
X, = (X)) + o (X)dW,

> Suppose that

Vi, = fiX,)
> Then
A= %(Xt)ﬂx()(z) - %trace [Ux(x)laf;j;/()(t)o'x()(t)}
o) = oe(X) [gf:(Xt)]/
of|’ = [g(xt)] 02 (Xy) o (X7)' Bf:(xt)]/

Note that % is n (# of state variables) by 1 and 8‘3—;;, is n by n.
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Stochastic discount factor evolution

Abstract from ambiguity (see Hansen-Miao, forthcoming ET for the
inclusion of ambiguity)

> Local evolution:
Cﬂs} :;[[Lttit 4— :;[CTZ Cipig
dlog$, = fijdt — \at} dt+ o/ - dW,

dC,j Ct,u, dt aF Ctat dVVt
dlog C; = dt+0t -dW,

where
Mz _,Ut - *“71‘
Nz _Nt =3 ‘Ut ’

> —u? local risk-free rate; —o? -vector of local shock prices
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Evolution of logarithms

> Evolution over a period of length € :
log Si+e —logS; = —€d — p [6’,+5 — 6’,}
+(1-) [IA/tJre - ﬁt] +(p—-1) |:/I>t+€ - E}
> Instantaneous counterparts

N —1
_5_pc ( ’t‘ P )O_V’2

N
iy = t T T !

1)(
:—5—pﬂ$+—” o/ °

vy = _pUtC +(1- V)UzV+ (p— 1)Ut
= —poi +(p— o/

=+ ol
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Elaboration

Consider: - _
(I—") |:I/t+6 - R,}
Recall that
E (exp [(1 —) [/V[J’_E — EH | 91,) = .
Thus

(1—7)?

=0
2

]. - ~ ~
lim ( ’Y)E <I/l+€ —Rt ’ QL[) T ‘O'tV‘2
€l0 €

and

lim Y= Vg (me —R, | Q[,) + W(,UW —o.

el0 €
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