Production and Asset Pricing

Lars Peter Hansen (University of Chicago)
January 18, 2023

AK adjustment cost economy

\triangleright Output

$$
C_{t}+I_{t}=\alpha K_{t}
$$

with multiplier denoted $M C_{t}$. Divide by K_{t} to obtain:

$$
\frac{C_{t}}{K_{t}}+\frac{I_{t}}{K_{t}}=\alpha
$$

\triangleright Capital evolution:

$$
K_{t+1}=K_{t}\left[1+\theta_{2}\left(\frac{I_{t}}{K_{t}}\right)\right]^{\theta_{1}} \exp \left(B_{t+1}-B_{t}\right)
$$

with costate $M K_{t+1}$ where $0<\theta_{1}<1, \theta_{1} \theta_{2}=1$.

Exogenous state evolution

$$
\begin{aligned}
B_{t+1}-B_{t} & =-\delta_{k}+Z_{t}-\frac{1}{2}\left|\sigma_{k}\right|^{2}+\sigma_{k} \cdot W_{t+1} \\
Z_{t+1} & =\mathbb{A} Z_{t}+\mathbb{B} W_{t+1}
\end{aligned}
$$

Adjustment cost specification

Functional form:

$$
\left(1+\theta_{2} i\right)^{\theta_{1}}
$$

where $0<\theta_{1}<1$ and $\theta_{1} \theta_{2}=1$.

Second-order approximation (around $i=0$)

$$
\left(1+\theta_{2} i\right)^{\theta_{1}} \approx 1+i+\frac{\left(1-\theta_{2}\right)}{2} i^{2}
$$

State equation rewritten

$$
\left(\frac{K_{t+1}}{K_{t}}\right)=\left[1+\theta_{2}\left(\frac{I_{t}}{K_{t}}\right)\right]^{\theta_{1}} \exp \left(B_{t+1}-B_{t}\right)
$$

or

$$
\log K_{t+1}-\log K_{t}=\theta_{1} \log \left[1+\theta_{2}\left(\frac{I_{t}}{K_{t}}\right)\right]+B_{t+1}-B_{t}
$$

Costate

$$
\begin{aligned}
& M C_{t} \mathbb{E}\left[\left.\left(\frac{S_{t+1}}{S_{t}}\right)\left(\frac{M K_{t+1}}{M C_{t+1}}\right)\left(\frac{K_{t+1}}{K_{t}}\right) \right\rvert\, \mathfrak{A}_{t}\right] \\
& -M C_{t} \mathbb{E}\left[\left.\left(\frac{S_{t+1}}{S_{t}}\right)\left(\frac{M K_{t+1}}{M C_{t+1}}\right)\left(\frac{K_{t+1}}{K_{t}}\right)\left(\left[1+\theta_{2}\left(\frac{I_{t}}{K_{t}}\right)\right]^{-1}\left(\frac{I_{t}}{K_{t}}\right)\right] \right\rvert\, \mathfrak{A}_{t}\right] \\
& -M K_{t}+\alpha M C_{t}=0
\end{aligned}
$$

Costate rewritten

$$
\begin{aligned}
& \mathbb{E}\left[\left.\left(\frac{S_{t+1}}{S_{t}}\right)\left(\frac{M K_{t+1}}{M C_{t+1}}\right)\left(\frac{K_{t+1}}{K_{t}}\right) \right\rvert\, \mathfrak{A}_{t}\right] \\
& -\mathbb{E}\left[\left.\left(\frac{S_{t+1}}{S_{t}}\right)\left(\frac{M K_{t+1}}{M C_{t+1}}\right)\left(\frac{K_{t+1}}{K_{t}}\right)\left(\left[1+\theta_{2}\left(\frac{I_{t}}{K_{t}}\right)\right]^{-1}\left(\frac{I_{t}}{K_{t}}\right)\right] \right\rvert\, \mathfrak{A}_{t}\right] \\
& -\frac{M K_{t}}{M C_{t}}+\alpha=0
\end{aligned}
$$

A digression

\triangleright Solve the optimization problem from the perspective of time 0 while looking ahead to the subsequent time periods t and $t+1$.
\triangleright Use conditional expectations as a convenient way to sum across states that are yet to realized.
\triangleright The state equation for dates t and $t+1$ with multipliers ℓ_{t} and ℓ_{t+1} and the output equation with multiplier $\hat{\ell}_{t}$ add three terms to the Lagrangian:

$$
\begin{aligned}
& \mathbb{E}\left[\left.\ell_{t}\left(K_{t}-K_{t-1}\left[1+\theta_{2}\left(\frac{I_{t-1}}{K_{t-1}}\right)\right]^{\theta_{1}} \exp \left(B_{t}-B_{t-1}\right)\right) \right\rvert\, \mathfrak{A}_{0}\right] \\
& +\mathbb{E}\left[\left.\ell_{t+1}\left(K_{t+1}-K_{t}\left[1+\theta_{2}\left(\frac{I_{t}}{K_{t}}\right)\right]^{\theta_{1}} \exp \left(B_{t+1}-B_{t}\right)\right) \right\rvert\, \mathfrak{A}_{0}\right] \\
& +\mathbb{E}\left[\hat{\ell}_{t}\left(C_{t}+I_{t}-\alpha K_{t}\right) \mid \mathfrak{A}_{0}\right]
\end{aligned}
$$

Digression continued

The optimization problem has a recursive structure, leading us to perform calculations conditioned on time t leading us to look at:

$$
\begin{aligned}
& \ell_{t}\left(K_{t}-K_{t-1}\left[1+\theta_{2}\left(\frac{I_{t-1}}{K_{t-1}}\right)\right]^{\theta_{1}} \exp \left(B_{t}-B_{t-1}\right)\right) \\
& +\mathbb{E}\left[\left.\ell_{t+1}\left(K_{t+1}-K_{t}\left[1+\theta_{2}\left(\frac{I_{t}}{K_{t}}\right)\right]^{\theta_{1}} \exp \left(B_{t+1}-B_{t}\right)\right) \right\rvert\, \mathfrak{A}_{t}\right] \\
& +\hat{\ell}_{t}\left(C_{t}+I_{t}-\alpha K_{t}\right)
\end{aligned}
$$

The first-order conditions for consumption imply that

$$
\hat{\ell}_{t}=M C_{t}
$$

We then construct $M K_{t}$ and $M K_{t+1}$ using the formulas:

$$
\ell_{t}=M K_{t} \quad \ell_{t+1}=M K_{t+1}\left(\frac{S_{t+1} M C_{t}}{S_{t} M C_{t+1}}\right)
$$

Digression continued

Suppose we revert to the date zero perspective. The first-order conditions for consumption now imply that

$$
\hat{\ell}_{t}=M C_{t}\left(\frac{S_{t} M C_{0}}{S_{0} M C_{t}}\right)=\frac{S_{t} M C_{0}}{S_{0}}
$$

In this case, we set

$$
\begin{aligned}
\ell_{t} & =M K_{t}\left(\frac{S_{t} M C_{0}}{S_{0} M C_{t}}\right) \\
\ell_{t+1} & =M K_{t+1}\left(\frac{S_{t+1} M C_{t}}{S_{0} M C_{t+1}}\right)\left(\frac{S_{t} M C_{0}}{S_{0} M C_{t}}\right)=M K_{t+1}\left(\frac{S_{t+1} M C_{0}}{S_{0} M C_{t+1}}\right)
\end{aligned}
$$

to be consistent with the presumed recursive structure.

Digression observations

\triangleright The multiplier construction using the ℓ 's and $\hat{\ell}$'s depend on the choice of date zero.
\triangleright Our derivation rescales the multiple to capture the change in vantage point by exploiting the recursive structure of the problem.
\triangleright The solutions for particular ratios of interest are functions of the current Markov state vector

First-order conditions for investment

$$
\begin{aligned}
M C_{t} \mathbb{E} & {\left[\left.\left(\frac{S_{t+1}}{S_{t}}\right) \frac{M K_{t+1}}{M C_{t+1}}\left(\theta_{1} \theta_{2}\left[1+\theta_{2}\left(\frac{I_{t}}{K_{t}}\right)\right]^{\theta_{1}-1} \exp \left(B_{t+1}-B_{t}\right)\right) \right\rvert\, \mathfrak{A}_{t}\right] } \\
& -M C_{t}=0
\end{aligned}
$$

Dividing this first-order condition by $M C_{t}$ and substituting in $\frac{K_{t+1}}{K_{t}}$ gives:

$$
\begin{aligned}
& \mathbb{E}\left[\left.\left(\frac{S_{t+1}}{S_{t}}\right)\left(\frac{M K_{t+1}}{M C_{t+1}}\right)\left(\frac{K_{t+1}}{K_{t}}\right)\left[1+\theta_{2}\left(\frac{I_{t}}{K_{t}}\right)\right]^{-1} \right\rvert\, \mathfrak{A}_{t}\right] \\
& \quad-1=0
\end{aligned}
$$

A revealing "asset return" formula

$$
\mathbb{E}\left[\left.\left(\frac{S_{t+1}}{S_{t}}\right) R_{t+1}^{i} \right\rvert\, \mathfrak{A}_{t}\right]-1=0
$$

where

$$
R_{t+1}^{i} \stackrel{\text { def }}{=}\left(\frac{M K_{t+1}}{M C_{t+1}}\right)\left(\frac{K_{t+1}}{K_{t}}\right)\left[1+\theta_{2}\left(\frac{I_{t}}{K_{t}}\right)\right]^{-1}
$$

is the physical return to investment.

Collecting variables and equations

Jump variables: $\log M K_{t}-\log M C_{t}, \log I_{t}-\log K_{t}, \log C_{t}-\log K_{t}$

State variables: $\log K_{t}-\log K_{t_{1}}, B_{t}-B_{t-1}, Z_{t}$

Three equations in addition the state evolution equations: output equation, costate evolution equation and first-order conditions for investment.

Solve for the jump variables as functions of the state variables.

Observations

\triangleright limited state dependence: jump variable only depend on Z_{t}
\triangleright jump variables are constant when $\rho=1$, including both the investment capital ratio and the consumption-capital ratio

Recall

$$
\log K_{t+1}-\log K_{t}=\theta_{1} \log \left[1+\theta_{2}\left(\frac{I_{t}}{K_{t}}\right)\right]+B_{t+1}-B_{t}
$$

Simple connection to an long-run risk type economy when $\rho=1$.

Exposure elasticity: I over K

Exposure Elasticity of Investment over Capital

Steady states for C / I are .015 for $\rho=2 / 3, .281$ for $\rho=1$ and .510 for $\rho=3 / 2$.

Price elasticity: K as growth process

Price Elasticity of Capital

