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Statisticians’ wisdom
In what circumstances is a minimax solution reasonable? I
suggest that it is reasonable if and only if the least favorable
initial distribution is reasonable according to your body of
beliefs. Irving J. Good (1952)

Now it would be very remarkable if any system existing in
the real world could be exactly represented by any simple
model. However, cunningly chosen parsimonious models of-
ten do provide remarkably useful approximations. George
Box (1979)
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Why are we interested in this topic?
John F. Muth, “Rational Expectations and the Theory of Price
Movements,” 1961.

Rational Expectations Hypothesis:

. . . expectations of firms (or, more generally, the subjective
probability distribution of outcomes) tend to be distributed,
for the same information set, about the prediction of the
theory (or the “objective” probability distributions of out-
comes).
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What we want to do

▷ Build models that include people (investors and entrepreneurs)
who themselves use statistical models and who, like
econometricians, have doubts about their specifications.

▷ Explore how to acknowledge model uncertainty when
statistically evaluating economic policies in the tradition of
Haavelmo, Koopmans, Marschak, Hurwicz, Lucas, . . .

▷ Include econometric and statistical challenges formally.
▷ Formulate “confidence” in ways new to “behavioral economics”.
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Decision theories

▷ Statistical decision theory - Wald, Savage, Ferguson
◦ axiomatic - Savage
◦ partial ordering - admissibility
◦ complete class theorem

▷ Extensions of axiomatic decision theory (within economics) that
formalize ambiguity aversion as distinct from risk aversion
◦ max-min expected utility - Gilboa and Schmeidler
◦ smooth ambiguity aversion - Klobanoff, Marinacci, and
Mukerji

◦ variational preferences - Maccheroni, Marinacci and
Rustichini

◦ objective and subjective rationality - Gilboa, Maccheroni,
Marinacci and Schmeidler
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Our starting point
Likelihoods and priors are central objects in the statistics literature but
are obscure in the economics literature that is motivated by revealed
preferences.
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Findings

▷ modifications of Savage-style axiomatic formulations in the
economics literature open doors to extending notions of
uncertainty beyond risk in ways that make contact with applied
econometric challenges

▷ we distinguish concerns about potential misspecifications of
likelihoods from concerns about robustness of alternative priors
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Anscombe-Aumann (AA)

▷ preferences defined over acts
▷ act: maps state→ probabilities (lotteries) over outcomes

In a static setting, we assume:
▷ a state is a parameter vector that indexes a statistical model
▷ each statistical model induces a probability distribution over
outcomes

▷ a probability distribution over “states” is a prior distribution

Remark: For us, a statistical model conditions on an unknown
parameter vector.
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Static decision theory
Consider a parameterized model of a random vector with realization
w:

ℓ(w | θ)dτo(w)

where ∫
W
ℓ(w | θ)dτo(w) = 1

and θ ∈ Θ and Θ is a parameter space. Put a baseline prior
distribution πo over Θ and consider a “decision rule” γ(w).

Θ can be infinite dimensional.

Decision rules are constrained to belong to a restricted set of
functions, e.g., γ(w) = Γ(d,w) for d ∈ D.

γ(w) is an uncertain outcome of a decision.
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Subjective expected utility

Order preferences over γ by∫
Θ

[∫
W
u[γ(w)]ℓ(w | θ)dτo(w)

]
dπo(θ).
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Ambiguity?

... if I knew of any good way to make a mathematical model
of these phenomenon [vagueness and indecision], I would
adopt it, but I despair of finding one. One of consequences
of vagueness is that we are able to elicit precise probabilities
by self-interrogation in some situations but not others.

Personal communication from L. J. Savage to Karl Popper in 1957
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Sets of likelihoods and priors

▷ Likelihoods: Let m(w | θ) ≥ 0 inM satisfy∫
W
m(w | θ)ℓ(w | θ)dτo(w) = 1.

▷ Priors: Let n(θ) ≥ 0 in N satisfy∫
Θ
n(θ)dπ0(θ) = 1.

Use these to explore two forms of possible misspecifications.
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Statistical Divergences

Use two convex functions ϕm and ϕp for constructing divergence
between probability measures. Each ϕ is a convex function with
ϕ(1) = 0 and ϕ′′(1) = 1 (normalization).

▷ For each θ, form statistical divergence∫
ϕm[m(w | θ)]ℓ(w | θ)dτo(w) ≥ 0.

▷ For priors over Θ, form∫
ϕp[n(θ)]dπo(θ) ≥ 0.

We often use relative entropy, e.g. ϕm(m) = m logm.
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Max-min expected utility: Gilboa
Schmeidler

▷ Recall that πo is a baseline prior
▷ Form No ⊂ N , a convex set; each No induces a prior
n(θ)dπo(θ) over Θ

▷ Construct

Q =

{
q : q(w) =

∫
Θ
ℓ(w | θ)n(θ)dπo(θ), n ∈ No

}
.

This is a convex set of predictive distributions.
▷ Represent preferences over γ with

min
Q

[∫
W
u[γ(w)]q(w)dτo(w)

]
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Axiomatic generalization:
Maccheroni, Marinacci, and
Rustichini

▷ Weak Certainty Independence: If f, g ∈ A, h, k ∈ Ao, and
α ∈ (0, 1), then

αf+(1−α)h ≿ αg+(1−α)h ⇒ αf+(1−α)k ≿ αg+(1−α)k

Observations:
▷ Weakens certainty independence by holding fixed α when
making comparisons.

▷ Introduces a smooth tradeoff between the expected utility gain
and the divergence loss.
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Prior divergence

▷ Let πo be a baseline prior.
▷ Consider alternative priors of the form dπ(θ) = n(θ)dπo(θ) for
n ∈ N .

Represent preferences over γ with:

min
n∈N

∫
Θ

(∫
W
u[γ(w)]ℓ(w | θ)dτo(w)

)
n(θ)dπo(θ)

+ ξp

∫
Θ
ϕp[n(θ)]dπo(θ)

for ξp > 0.
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Comments about prior divergences

▷ Reinterpret previous contributions to decision theory literature as
representing a prior ambiguity instead of potential model
misspecifications

▷ With relative entropy divergence, the implied preference
ordering agrees with smooth ambiguity preferences but is
rationalized in a fundamentally different way

17 / 25



Variational preferences for model
misspecification concerns

▷ Condition on a specific θ.
▷ Replace ℓ(w | θ)dτo(w) with m(w | θ)ℓ(w | θ)dτo(w) and
explore consequences.

▷ Rank alternative γ’s conditioned on θ by solving:

min
m∈M

∫
W
(u[γ(w)]m(w | θ) + ξmϕm[m(w | θ)]) ℓ(w | θ)dτo(w)

for ξm > 0.

Observations:
▷ A prior distribution is not imposed over a space of alternative
models

▷ Links to parts of robust control theory.
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Robust Bayes with model
misspecification, I
Represent preferences over γ using:

min
n∈No

min
m∈M

∫
Θ

(∫
W
u[γ(w)]m(w | θ)ℓ(w | θ)dτo(w)

)
n(θ)dπo(θ)

+ ξm

∫
Θ

(∫
W
ϕm[m(w | θ)]ℓ(w | θ)dτo(w)

)
dπ(θ)

The contribution of the divergence is zero whenever m = 1 for some
n ∈ No.
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Robust Bayes with model
misspecification, II
Represent preferences over γ with:

min
n∈N

min
m∈M

∫
Θ

(∫
W
u[γ(w)]m(w | θ)ℓ(w | θ)dτo(w)

)
n(θ)dπo(θ)

+ ξm

∫
Θ

(∫
W
ϕm[m(w | θ)]ℓ(w | θ)dτo(w)

)
n(θ)dπo(θ)

+ ξp

∫
Θ
ϕp[n(θ)]dπo(θ)

Joint divergence over (m, n).
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Dynamics

▷ Hansen, and Sargent, American Economic Review , 2001
▷ Epstein and Schneider Journal of Economic Theory, 2003
▷ Maccheroni, Marinacci, and Rustichini Journal of Economic
Theory, 2006

▷ Hansen and Miao, Proceedings of the National Academy of
Sciences, 2018 and Economic Theory, 2022

▷ Hansen and Sargent, Journal of Economic Theory, 2022
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Dynamics
Use conditional counterparts to the previous analysis

▷ explore consequences of misspecifying Markov transition
dynamics by representing potential changes in probabilities as
nonnegative martingales

▷ explore consequences of misspecifying priors/posteriors over
alternative parameters

▷ address dynamic consistency
◦ recursive construction of possible conditional probabilities
over parameterized models

◦ recursive construction of statistical divergences and their set
counterpart

Hansen and Sargent (JET, 2022) confront a tension between dynamic
consistency and admissibility
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A dynamic discrete-time formulation
Three preference aggregator recursions

V̂t =
1

1− ρ
log

[
(1− β) exp

[
(1− ρ)Ĉt

]
+ β exp

[
(1− ρ)Rt

]]
R̂t = −ξm logE

[
exp

(
− 1

ξm
V̂t+1

)
| At, θ

]
Rt = −ξp logE

[
exp

(
− 1

ξp
R̂t

)
| At

]
where

▷ first one adjusts for discounting and intertemporal substitution
▷ second one adjusts for model misspecification (or risk aversion)
▷ third one adjusts for prior misspecification (or smooth ambiguity)
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Other divergence measures

R̂t = min
Mt+1≥0,E(Mt+1|At,θ)=1

E [Mt+1Vt+1 + ξmϕm (Mt+1) | At, θ]

Rt = min
Nt≥0,E(Nt|At)=1

E
[
NtR̂t + ξnϕn (Nt) | At

]

Apply the Envelope Theorem and conclude
▷ MV̂t+1 = M∗

t+1

▷ MR̂t = N∗
t
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Stochastic discount factor
Recall that the marginal utilities:

MCt = (1− β) exp
[
(ρ− 1)V̂t

]
(Ct)

−ρ

MRt = β exp
[
(ρ− 1)V̂t

]
exp

[
(1− ρ)Rt

]
By using the various marginal utility formulas, the stochastic discount
factor ratio is

St+1

St
=

MCt+1MRtM∗
t+1N∗

t
MCt

= β

(
Ct+1

Ct

)−ρ

exp
[
(ρ− 1)

(
V̂t+1 − Rt+1

)]
M∗

t+1N∗
t

where
▷ M∗

t+1 adjusts for potential model misspecification
▷ N∗

t adjusts for potential prior misspecification
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