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Approximating processes
Follow Lombardo and Uhlig (IER, 2018) by considering the
stochastic processes indexed by a q.

Xt+1 (q) = ψ [Xt (q) , qWt+1, q]

▷ X is an n-dimensional stochastic process
▷ W is an iid. normally distributed random vector with conditional
mean 0 and conditional covariance I.

▷ q = 1 is the model of interest.
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A convenient approximation
Consider a local approximation of the form:

Xt ≈ X0
t + qX1

t +
q2
2
X2
t

where the order zero process is invariant and satisfies:

X0
t+1 = ψ

(
X0
t , 0, 0

)
.
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Order one
The first-derivative process obeys

X1
t+1 =


ψ1
x′

ψ2
x′
...
ψnx′

X1
t +


ψ1
w′

ψ2
w′
...
ψnw′

Wt+1 +


ψ1

q
ψ2

q
...
ψnq

 .

Write this compactly as a first-order vector autoregression t

X1
t+1 = ψx′X1

t + ψw′Wt+1 + ψq

We assume that the matrix ψ′
x is stable in the sense that all of its

eigenvalues are strictly less than one in modulus.
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Order two

X2
t+1 = ψx′X2

t +


X1′
t ψ

1
xx′X

1
t

X1′
t ψ

2
xx′X

1
t

...
X1′
t ψ

n
xx′X

1
t

+ 2


X1′
t ψ

1
xw′Wt+1

X1′
t ψ

2
xw′Wt+1
...

X1′
t ψ

n
xw′Wt+1

+


Wt+1

′ψ1
ww′Wt+1

Wt+1
′ψ2

ww′Wt+1
...

Wt+1
′ψnww′Wt+1



+ 2


ψ1

qx′X
1
t

ψ2
qx′X

1
t

...
ψnqx′X

1
t

+ 2


ψ1

qw′Wt+1

ψ2
qw′Wt+1

...
ψnqw′Wt+1

+


ψ1

qq
ψ2

qq
...
ψnqq
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Growth-rate approximation

Ŷt+1 − Ŷt = κ(Xt, qWt+1, q)

Approximate this process by:

Ŷt+1 − Ŷt ≈ Ŷ0t+1 − Ŷ0t + q
(
Ŷ1t+1 − Ŷ1t

)
+

q2
2

(
Ŷ2t+1 − Ŷ2t

)
where

Ŷ0t+1 − Ŷ0t = κ(X0
t , 0, 0) ≡ η

y
0

Ŷ1t+1 − Ŷ1t = κx′X1
t + κw′Wt+1 + κq

Ŷ2t+1 − Ŷ2t = κx′X2
t + X1

t
′
κx,x′X1

t + 2X1
t
′
κxw′Wt+1 +Wt+1

′κww′Wt+1

+ 2κq,x′X1
t + 2κqw′Wt+1 + κqq.
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First-order approximation of cont
values

R̂1
t − Ĉ1

t =

(
1

1− γo

)
logE

(
exp

[
(1− γo)

(
V̂1
t+1 − Ĉ1

t

)]
| At

)
V̂1
t − Ĉ1

t =

(
λ

1− γo

)
logE

(
exp

[
(1− γo)

(
V̂1
t+1 − Ĉ1

t

)]
| At

)
where it is convenient to write

V̂1
t+1 − Ĉ1

t =
(
V̂1
t+1 − Ĉ1

t+1

)
+
(
Ĉ1
t+1 − Ĉ1

t

)
.

and where: λ = β exp
[
(1− ρ)η0c

]
.
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Uncertainty measure approximation
Measure

N∗
t+1

def
=

(
Vt+1

Rt

)1−γ

Approximation

N0
t+1 =

exp
[
(1− γo)

(
V̂1
t+1 − Ĉ1

t

)]
E
(
exp

[
(1− γo)

(
V̂1
t+1 − Ĉ1

t

)]
| At

) .
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Posterior histograms

Left figure: one period volatility and right figure martingale
increment volatility for consumption
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Second-order approximation of cont
values

R̂2
t − Ĉ2

t = E
[
N0
t+1

(
V̂2
t+1 − Ĉ2

t

)
| At

]
V̂2
t − Ĉ2

t = λE
[
N0
t+1

(
V̂2
t+1 − Ĉ2

t

)
| At

)
+ (1− ρ)(1− λ)λ

(
R̂1
t − Ĉ1

t

)2
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SDF approximation
St+1

St
= N∗

t+1 exp
(
Ŝt+1 − Ŝt

)
where

N∗
t+1

def
=

(
Vt+1

Rt

)1−γ

and

Ŝt+1 − Ŝt
def
= logβ − ρ

(
Ĉt+1 + Ĉt

)
+ (ρ− 1)

(
V̂t+1 − R̂t

)
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SDF approx I

Ŝt+1 − Ŝt:

log St+1 − log St ≈ (1− γo)

[(
V̂1
t+1 − R̂1

t

)
+

1

2

(
V̂2
t+1 − R̂2

t

)]
+
(
Ŝ0t+1 − Ŝ0t

)
+
(
Ŝ1t+1 − Ŝ1t

)
+

1

2

(
Ŝ2t+1 − Ŝ2t

)
where logN∗

t+1 ≈ log Ñt+1 and

Ñt+1
def
= exp

[
(1− γo)

[(
V̂1
t+1 − R̂1

t

)
+

1

2

(
V̂2
t+1 − R̂2

t

)]]
Observation:
▷ approximation Ñt+1 does not have a conditional expectation that
is equal to one
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SDF approx II

log Ñt+1 =
exp

[
(1− γo)

[(
V̂1
t+1 − R̂1

t

)
+ 1

2

(
V̂2
t+1 − R̂2

t

)]]
E
(
exp

[
(1− γo)

[(
V̂1
t+1 − R̂1

t

)
+ 1

2

(
V̂2
t+1 − R̂2

t

)]]
| At

) .
Observation:
▷ approximation Ñt+1 has a conditional expectation that is equal to
one

▷ induces a change in probability measure forWt+1 with a
conditional mean that is affine in X1

t and an altered state
independent covariance matrix
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Model solution

E
[
N∗
t+1Q∗

t+1ψ1(Xt, Jt,Xt+1, Jt+1) | At
]
+ ψ2(Xt, Jt) = 0

where Xt is a state vector, Jt is jump vector and

▷

N∗
t+1

def
=

(
Vt+1

Rt

)1−γ

▷

Q∗
t+1

def
=

(
Vt+1

Rt

)ρ−1

▷ β
(
Ct+1

Ct

)−ρ
is absorbed in ψ1.
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Model solution
Schmidtt-Grohe and Lombardo and Uhlig treat the case in which

E [ψ1(Xt, Jt,Xt+1, Jt+1) | At] + ψ2(Xt, Jt) = 0

combined with the state evolution. m+ n equations where n is the
number of states and m is the number of jump variables.

▷ First order - affine difference equation in (X1
t , J1t ). n+ m

equations and n initial conditions for the state. Find J1t as an
affine function of X1

t so that the combined system is
stochastically stable.

▷ Second order - affine difference equation in (X2
t , J2t ) and

linear-quadratic in (X1
t , J1t ). Find J2t as an affine function of X2

t
and linear-quadratic function of X1

t so that the combined system
is stochastically stable
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Incorporating recursive utility
Iterate to convergence
▷ Take guesses for N∗

t+1 and Q∗
t+1 and use the guess for N∗

t+1 as a
change in probability. Compute first and second order
approximations for states and jumps

▷ Given approximate state dynamics deduce a new guess for N∗
t+1

and Q∗
t+1 by applying the approximation formulas
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