Term Structure of Uncertainty and Pricing

Lars Peter Hansen (University of Chicago)
Ysset Pricing Class
January 2023

Underlying environment

\triangleright Yn n-dimensional, stationary and ergodic Markov process $X=\left\{X_{t}: t=1,2, \ldots\right\}$
\triangleright a k-dimensional process W of independent and identically distributed shocks.
\triangleright a date t information set \mathfrak{A}_{t} generated by the histories of W and X_{0}.
\triangleright a dynamic evolution:

$$
X_{t+1}=\psi\left(X_{t}, W_{t+1}\right)
$$

Multiplicative functionals

The (log) increments of a "multiplicative functional' $\exp (Y)$ satisfy

$$
Y_{t+1}-Y_{t}=\kappa\left(X_{t}, W_{t+1}\right) .
$$

Two applications:
\triangleright stochastic discount factor process S over alternative horizons
\triangleright stochastic cash flow growth G over alternative horizons
Observation: product of multiplicative functionals is a multiplicative functional.

Example

$$
Y_{t+1}-Y_{t}=\kappa\left(X_{t}, W_{t+1}\right)=\beta\left(X_{t}\right)+\alpha\left(X_{t}\right) \cdot W_{t+1}
$$

where
$\triangleright \beta(x)$ allows for nonlinearity in the conditional mean,
$\triangleright \alpha(x)$ introduces stochastic volatility.
Observations
\triangleright when X is a vector autoregression, β is affine in x and α is constant, $\exp (Y)$ is \log normal.
\triangleright sets the stage for continuous-time counterparts

Stochastic discount process

Y stochastic discount factor process S is a positive (with probability one) stochastic process such that for any $t, \tau \geq 0$ and payoff $G_{t+\tau}$ maturing at time $t+\tau$, the time- t price is given by

$$
\pi_{t, t+\tau}(G)=\mathbb{E}\left[\left.\left(\frac{S_{t+\tau}}{S_{t}}\right) G_{t+\tau} \right\rvert\, \mathfrak{A}_{t}\right]=G_{t} \mathbb{E}\left[\left.\left(\frac{S_{t+\tau} G_{t+\tau}}{S_{t} G_{t}}\right) \right\rvert\, \mathfrak{A}_{t}\right]
$$

Observation: This construction does not restrict how we initialize the date zero stochastic discount factor, S_{0}. We may impose $S_{0}=1$ as a normalization.

Proportional risk compensations

$$
\frac{1}{\tau} \log \mathbb{E}\left(\left.\frac{G_{t+\tau}}{G_{t}} \right\rvert\, \mathfrak{A}_{t}\right)-\frac{1}{\tau} \log \mathbb{E}\left(\left.\frac{G_{t+\tau} S_{t+\tau}}{G_{t} S_{t}} \right\rvert\, \mathfrak{A}_{t}\right)+\frac{1}{\tau} \log \mathbb{E}\left(\left.\frac{S_{t+\tau}}{S_{t}} \right\rvert\, \mathfrak{A}_{t}\right)
$$

Interpretation:
\triangleright first term: logarithm of the expected cash flow growth
\triangleright first and second term: logarithm of the expected return
\triangleright third term: the negative of the logarithm of the riskless return all over investment horizon τ.

Shows how risk compensations compound over time!

Long-term Asset Pricing

Factorization

$$
\exp \left(Y_{t}-Y_{0}\right)=\exp (\eta t)\left(\frac{M_{t}}{M_{0}}\right)\left[\frac{e\left(X_{0}\right)}{e\left(X_{t}\right)}\right]
$$

where
$\triangleright \eta$ is a growth or decay rate
$\triangleright M$ is a multiplicative martingale:

$$
\mathbb{E}\left[\left.\left(\frac{M_{t+1}}{M_{t}}\right) \right\rvert\, \mathfrak{A}_{t}\right]=1
$$

$\triangleright e>0$ satisfies the eigenvalue problem (formally a Perron-Frobenius problem):

$$
\mathbb{E}\left[\exp \left(Y_{t+1}-Y_{t}\right) e\left(X_{t+1} \mid \mathfrak{A}_{t}\right]=\eta e\left(X_{t}\right) .\right.
$$

Conversely, solve the eigenvalue problem and construct the multiplicative martingale M.

Multiplicative martingale

Recall

$$
\mathbb{E}\left[\exp \left(Y_{t+1}-Y_{t}\right) e\left(X_{t+1}\right) \mid \mathfrak{A}_{t}\right]=\eta e\left(X_{t}\right),
$$

and

$$
\frac{M_{t+1}}{M_{t}}=\exp (-\eta) \exp \left(Y_{t+1}-Y_{t}\right)\left[\frac{e\left(X_{t+1}\right)}{e\left(X_{t}\right)}\right]
$$

$\triangleright \frac{M_{t+1}}{M_{t}}$ induces a change of probability measure where

$$
\widetilde{\mathbb{E}}\left(B_{t+1} \mid \mathfrak{A}_{t}\right)=\mathbb{E}\left[\left.\left(\frac{M_{t+1}}{M_{t}}\right) B_{t+1} \right\rvert\, \mathfrak{A}_{t}\right)
$$

for any bounded random variable B_{t+1} in the date $t+1$ conditioning information set.
\triangleright Eigenvalue problem solution is essentially unique if the implied dynamics are stochastically stable. See Hansen-Scheinkman (2009, Econometrica) and Hansen (2012, Econometrica).

Log versus levels

Suppose that

$$
Y_{t}-Y_{0}=\underbrace{\hat{\eta} t}_{\text {trend }}+\underbrace{\log \widehat{M}_{t}}_{\text {martingale }}-\underbrace{f\left(X_{t}\right)}_{\text {stationary }}+\underbrace{f\left(X_{0}\right)}_{\text {invariant }}
$$

Observations:
\triangleright the martingales are different
\triangleright whenever one has a martingale component so does the other Reference: Hansen (2012, Econometrica)

Factoring the stochastic discount factor

$$
\frac{S_{t}}{S_{0}}=\exp \left(t \eta^{s}\right)\left(\frac{M_{t}^{s}}{M_{0}^{s}}\right)\left[\frac{e^{s}\left(X_{0}\right)}{e^{s}\left(X_{t}\right)}\right]
$$

Observations
$\triangleright \eta^{s}$ typically negative (discounting)
$\triangleright M^{5}$ is nongenderate when there are permanent shocks to $\log S$
$\triangleright M^{s}$ induces a change of probability measure

See: Alvarez-Jermann (2005, Econometrica) and Hansen (2012, Econometrica) for more motivation

Related literature

\triangleright Ross (JF, 2015) explores asset pricing implications without the martingale component - recover probabilities from Arrow prices
\triangleright Borovicka, Hansen and Scheinkman (JF) show that the probability measure associated with M^{\Im} absorbs the risk adjustment for pricing growth-rate risk over (arbitrarily) long investment horizons
\triangleright Kazemi (RFS, 1992) and Alvarez and Jermann (2005, Econometrica) show that the one-period holding period return on a limiting long-term discount bond is

$$
\exp \left(-\eta^{s}\right)\left[\frac{e^{s}\left(X_{t+1}\right)}{e^{s}\left(X_{t}\right)}\right]
$$

Observation: Last point opens the door to empirical estimation, testing and measuring - see Bakshi, Gurdip and Fousseni Chabi-Yo (JFE, 2012 and RFS, 2018) along with other references

Long-term risk return tradeoff

\triangleright Form:

$$
\frac{S_{t}}{S_{0}}=\exp \left(t \eta^{s}\right)\left(\frac{M_{t}^{s}}{M_{0}^{s}}\right)\left[\frac{e^{s}\left(X_{0}\right)}{e^{s}\left(X_{t}\right)}\right]
$$

\triangleright Form:

$$
\frac{G_{t}}{G_{0}}=\exp \left(t \eta^{g}\right)\left(\frac{M_{t}^{g}}{M_{0}^{g}}\right)\left[\frac{e^{g}\left(X_{0}\right)}{e^{g}\left(X_{t}\right)}\right]
$$

\triangleright Form:

$$
\frac{S_{t} G_{t}}{S_{0} G_{0}}=\exp \left(t \eta^{s g}\right)\left(\frac{M_{t}^{s g}}{M_{0}^{s g}}\right)\left[\frac{e^{s g}\left(X_{0}\right)}{e^{s g}\left(X_{t}\right)}\right]
$$

Then

$$
\eta^{g}+\eta^{s}-\eta^{s g}
$$

is the limiting risk premium.

One-period asset pricing

Underlying setup

Suppose that

$$
\begin{aligned}
\log G_{1}-\log G_{0} & =\beta_{g}\left(X_{0}\right)+\alpha_{g}\left(X_{0}\right) \cdot W_{1} \\
\log S_{1}-\log S_{0} & =\beta_{s}\left(X_{0}\right)+\alpha_{s}\left(X_{0}\right) \cdot W_{1}
\end{aligned}
$$

The one-period return on this investment is the payoff in period one divided by the period-zero price:

$$
R_{1} \stackrel{\text { def }}{=} \frac{\left(\frac{G_{1}}{G_{0}}\right)}{\mathbb{E}\left[\left.\left(\frac{S_{1}}{S_{0}}\right)\left(\frac{G_{1}}{G_{0}}\right) \right\rvert\, \mathfrak{A}_{0}\right]}
$$

One-period risk premium

Recall

$$
R_{1} \stackrel{\text { def }}{=} \frac{\left(\frac{G_{1}}{G_{0}}\right)}{\mathbb{E}\left[\left.\left(\frac{S_{1}}{S_{0}}\right)\left(\frac{G_{1}}{G_{0}}\right) \right\rvert\, \mathfrak{A}_{0}\right]}
$$

Proportional risk premium

$$
\begin{aligned}
& \log \mathbb{E}\left(R_{1} \mid \mathfrak{A}_{0}\right)+\log \mathbb{E}\left(\left.\frac{S_{1}}{S_{0}} \right\rvert\, \mathfrak{A}_{0}\right) \\
& =\log \mathbb{E}\left(\left.\frac{G_{1}}{G_{0}} \right\rvert\, \mathfrak{A}_{0}\right)-\log \mathbb{E}\left(\left.\frac{G_{1} S_{1}}{G_{0} S_{0}} \right\rvert\, \mathfrak{A}_{0}\right)+\log \mathbb{E}\left(\left.\frac{S_{1}}{S_{0}} \right\rvert\, \mathfrak{A}_{0}\right) \\
& =-\alpha_{s}\left(X_{0}\right) \cdot \alpha_{g}\left(X_{0}\right)
\end{aligned}
$$

$-\alpha_{s}\left(X_{0}\right)$ is the vector of risk prices.

Local perturbations

Parameterize a family of random variables $H_{1}(r)$ indexed by r using

$$
\log H_{1}(\mathrm{r})=\mathrm{r} \nu\left(X_{0}\right) \cdot W_{1}-\frac{\mathrm{r}^{2}}{2}\left|\nu\left(X_{0}\right)\right|^{2}
$$

where r is a scalar parameter. Normalize $\nu\left(X_{0}\right)$ so that

$$
\mathbb{E}\left[\left|\nu\left(X_{0}\right)\right|^{2}\right]=1
$$

With this parameterization,

$$
\mathbb{E}\left[H_{1}(\mathrm{r}) \mid \mathfrak{A}_{0}\right]=1
$$

Observation: Even when shocks are not normally distributed, we shall find it convenient to restrict $H_{1}(r)$ in this manner.

Local one-period asset prices

Given baseline payoff process G, form a family of payoffs $G H_{1}(\mathbf{r})$ with logarithmic increment:
$\log G_{1}-\log G_{0}+\log H_{1}(\mathrm{r})=\underbrace{\left[\alpha_{g}\left(X_{0}\right)+\mathrm{r} \nu\left(X_{0}\right)\right]}_{\text {new shock exposure }} \cdot W_{1}+\beta_{g}\left(X_{0}\right)$

$$
-\frac{r^{2}}{2}\left|\nu\left(X_{0}\right)\right|^{2}
$$

Proportional risk premium:

$$
-\alpha_{s}\left(X_{0}\right)\left[\alpha_{g}\left(X_{0}\right)+\mathrm{r} \nu\left(X_{0}\right)\right] .
$$

The derivative with respect to $\mathrm{r},-\alpha_{s}\left(X_{0}\right) \cdot \nu\left(X_{0}\right)$, is the local price of exposure direction $\nu\left(X_{0}\right)$.

An alternative derivation

\triangleright shock exposure elasticity

$$
\left.\frac{d}{d r} \log \mathbb{E}\left(\left.\frac{G_{1} H_{1}(\mathrm{r})}{G_{0}} \right\rvert\, \mathfrak{A}_{0}\right)\right|_{\mathrm{r}=0}=\nu\left(X_{0}\right) \cdot\left(\frac{\mathbb{E}\left[\left.\left(\frac{G_{1}}{G_{0}}\right) W_{1} \right\rvert\, \mathfrak{A}_{0}\right)}{\mathbb{E}\left[\left.\left(\frac{G_{1}}{G_{0}}\right) \right\rvert\, \mathfrak{A}_{0}\right]}\right)
$$

\triangleright shock cost elasticity

$$
\left.\frac{d}{d \mathrm{r}} \log \mathbb{E}\left(\left.\frac{S_{1} G_{1} H_{1}(\mathrm{r})}{S_{0} G_{0}} \right\rvert\, \mathfrak{A}_{0}\right)\right|_{\mathrm{r}=0}=\nu\left(X_{0}\right) \cdot\left(\frac{\mathbb{E}\left[\left.\left(\frac{S_{1} G_{1}}{S_{0} G_{0}}\right) W_{1} \right\rvert\, \mathfrak{A}_{0}\right)}{\mathbb{E}\left[\left.\left(\frac{S_{1} G_{1}}{S_{0} G_{0}}\right) \right\rvert\, \mathfrak{A}_{0}\right]}\right)
$$

\triangleright shock price elasticity is the difference

$$
\nu\left(X_{0}\right) \cdot\left(\frac{\mathbb{E}\left[\left.\left(\frac{G_{1}}{G_{0}}\right) W_{1} \right\rvert\, \mathfrak{A}_{0}\right)}{\mathbb{E}\left[\left.\left(\frac{G_{1}}{G_{0}}\right) \right\rvert\, \mathfrak{A}_{0}\right]}\right)-\nu\left(X_{0}\right) \cdot\left(\frac{\mathbb{E}\left[\left.\left(\frac{S_{1} G_{1}}{S_{0} G_{0}}\right) W_{1} \right\rvert\, \mathfrak{A}_{0}\right)}{\mathbb{E}\left[\left.\left(\frac{S_{1} G_{1}}{S_{0} G_{0}}\right) \right\rvert\, \mathfrak{A}_{0}\right]}\right)
$$

Multi-period asset pricing

Multi-period elasticities

\triangleright shock exposure elasticity

$$
\left.\frac{d}{d \mathrm{r}} \log \mathbb{E}\left(\left.\frac{G_{\tau} H_{\tau}(\mathrm{r})}{G_{0}} \right\rvert\, \mathfrak{A}_{0}\right)\right|_{\mathrm{r}=0}=\nu\left(X_{0}\right) \cdot\left(\frac{\mathbb{E}\left[\left.\left(\frac{G_{\tau}}{G_{0}}\right) W_{1} \right\rvert\, \mathfrak{A}_{0}\right)}{\mathbb{E}\left[\left.\left(\frac{G_{\tau}}{G_{0}}\right) \right\rvert\, \mathfrak{A}_{0}\right]}\right)
$$

\triangleright shock cost elasticity

$$
\left.\frac{d}{d \mathrm{r}} \log \mathbb{E}\left(\left.\frac{S_{\tau} G_{\tau} H_{1}(\mathrm{r})}{S_{0} G_{0}} \right\rvert\, \mathfrak{A}_{0}\right)\right|_{\mathrm{r}=0}=\nu\left(X_{0}\right) \cdot\left(\frac{\mathbb{E}\left[\left.\left(\frac{S_{\tau} G_{\tau}}{S_{0} G_{0}}\right) W_{1} \right\rvert\, \mathfrak{A}_{0}\right)}{\mathbb{E}\left[\left.\left(\frac{S_{\tau} G_{\tau}}{S_{0} G_{0}}\right) \right\rvert\, \mathfrak{A}_{0}\right]}\right)
$$

\triangleright shock price elasticity is the difference

$$
\nu\left(X_{0}\right) \cdot\left(\frac{\mathbb{E}\left[\left.\left(\frac{G_{\tau}}{G_{0}}\right) W_{1} \right\rvert\, \mathfrak{A}_{0}\right)}{\mathbb{E}\left[\left.\left(\frac{G_{\tau}}{G_{0}}\right) \right\rvert\, \mathfrak{A}_{0}\right]}\right)-\nu\left(X_{0}\right) \cdot\left(\frac{\mathbb{E}\left[\left.\left(\frac{S_{\tau} G_{\tau}}{S_{0} G_{0}}\right) W_{1} \right\rvert\, \mathfrak{A}_{0}\right)}{\mathbb{E}\left[\left.\left(\frac{S_{\tau} G_{\tau}}{S_{0} G_{0}}\right) \right\rvert\, \mathfrak{A}_{0}\right]}\right)
$$

Linear-quadratic specification

State evolution:

$$
\begin{aligned}
X_{t}^{0}= & \bar{x} \\
X_{t+1}^{1}= & \Theta_{10}^{x}+\Theta_{11}^{x} X_{t}^{1}+\Sigma_{10}^{x} W_{t+1} \\
X_{t+1}^{2}= & \Theta_{20}^{x}+\Theta_{21}^{x} X_{t}^{1}+\Theta_{22}^{x} X_{t}^{2}+\Theta_{23}^{x}\left(X_{t}^{1} \otimes X_{t}^{1}\right) \\
& +\Sigma_{20}^{x} W_{t+1}+\Sigma_{21}^{x}\left(X_{t}^{1} \otimes W_{t+1}\right)+\Sigma_{22}^{x}\left(W_{t+1} \otimes W_{t+1}\right)
\end{aligned}
$$

with Markov state $\left[\begin{array}{l}X_{t}^{1} \\ X_{t}^{2}\end{array}\right]$.

Additive functional:

$$
\begin{aligned}
Y_{t+1}-Y_{t}= & \Theta_{0}^{y}+\Theta_{1}^{y} X_{1, t}+\Theta_{2}^{y} X_{2, t}+\left(X_{1, t}\right)^{\prime} \Theta_{3}^{y} X_{1, t} \\
& +\Sigma_{0}^{y} W_{t+1}+\left(X_{1, t}\right)^{\prime} \Sigma_{1}^{y} W_{t+1}+\left(W_{t+1}\right)^{\prime} \Sigma_{2}^{y} W_{t+1}
\end{aligned}
$$

A tractable computation

Suppose that

$$
\log f(x)=\phi_{o}+\phi_{1} \cdot x+\frac{1}{2} x^{1^{\prime}} \Phi x^{1}
$$

where $x=\left[\begin{array}{l}x^{1} \\ x^{2}\end{array}\right]$. Then

$$
\mathbb{E}\left[\exp \left(Y_{t+1}-Y_{t}\right) f\left(X_{t+1}\right) \mid X_{t}=x\right]=\hat{f}(x)
$$

where

$$
\log \hat{f}(x)=\hat{\phi}_{o}+\hat{\phi}_{1} \cdot x+\frac{1}{2} x^{1^{\prime}} \widehat{\Phi} x^{1}
$$

for some scalar $\hat{\phi}_{0}$, vector $\hat{\phi}_{1}$, and matrix $\widehat{\Phi}$.

Define a valuation operator:

$$
\mathbb{Q} f(x) \stackrel{\text { def }}{=} \mathbb{E}\left[\exp \left(Y_{t+1}-Y_{t}\right) f\left(X_{t+1}\right) \mid X_{t}=x\right]
$$

Multi-period construction

From the Law of Iterated Expectations:

$$
\begin{aligned}
\mathbb{Q} f(x) & =\mathbb{E}\left[\exp \left(Y_{2}-Y_{1}\right) f\left(X_{2}\right) \mid X_{1}=x\right] \\
\mathbb{Q}^{2} f(x) & =\mathbb{E}\left[\exp \left(Y_{3}-Y_{1}\right) f\left(X_{2}\right) \mid X_{1}=x\right] \\
\mathbb{Q}^{\tau-1} f(x) & =\mathbb{E}\left[\exp \left(Y_{\tau}-Y_{1}\right) f\left(X_{2}\right) \mid X_{1}=x\right]
\end{aligned}
$$

Computing shock elasticities I

$$
\begin{aligned}
& \frac{\mathbb{E}\left[\exp \left(Y_{\tau}-Y_{0}\right) W_{1} \mid X_{0}\right)}{\mathbb{E}\left[\exp \left(Y_{\tau}-Y_{0}\right) \mid X_{0}=x\right]} \\
& =\mathbb{E}\left[\left.\frac{\exp \left(Y_{1}-Y_{0}\right) \mathbb{Q}^{\tau-1} 1\left(X_{1}\right) W_{1}}{\mathbb{E}\left[\exp \left(Y_{1}-Y_{0}\right) \mathbb{Q}^{\tau-1} 1\left(X_{1}\right) \mid X_{0}=x\right]} \right\rvert\, X_{0}=x\right]
\end{aligned}
$$

Note that

$$
\frac{\exp \left(Y_{1}-Y_{0}\right) \mathbb{Q}^{\tau-1} 1\left(X_{1}\right)}{\mathbb{E}\left[\exp \left(Y_{1}-Y_{0}\right) \mathbb{Q}^{\tau-1} 1\left(X_{1}\right) \mid X_{0}=x\right]}
$$

is positive and has conditional expectation equal to one.

Computing shock elasticities II

The random variable

$$
\frac{\exp \left(Y_{1}-Y_{0}\right) \mathbb{Q}^{\tau-1} 1\left(X_{1}\right)}{\mathbb{E}\left[\exp \left(Y_{1}-Y_{0}\right) \mathbb{Q}^{\tau-1} 1\left(X_{1}\right) \mid X_{0}=x\right]}
$$

\triangleright is positive and conditional expectation equal to one
\triangleright is the exponential of a linear-quadratic function of the shock W_{1}
\triangleright induces a change of probability measure altering the conditional mean and covariance matrix of W_{1} with a conditional mean that is affine in the state X_{t}^{1}.

Recursive utility example

Investor preferences represented as a homogeneous of degree one representation of the recursive utility continuation value is

$$
V_{t}=\left[(1-\beta)\left(C_{t}\right)^{1-\rho}+\beta\left(R_{t}\right)^{1-\rho}\right]^{\frac{1}{1-\rho}}
$$

where

$$
R_{t}=\left(\mathbb{E}\left[\left(V_{t+1}\right)^{1-\gamma} \mid \mathfrak{A}_{t}\right]\right)^{\frac{1}{1-\gamma}}
$$

and
$0<\beta<1$ is the subjective discount factor
$\rho>0$ and $\frac{1}{\rho}$ is the intertemporal elasticity of substitution
γ adjusts for "risk."
Use Bansal-Yaron calibration of the macro dynamics.

SDF process

The one-period increment in the stochastic discount factor process for recursive utility is:

$$
\frac{S_{t+1}}{S_{t}}=\beta\left(\frac{C_{t+1}}{C_{t}}\right)^{-\rho}\left(\frac{V_{t+1}}{R_{t}}\right)^{1-\gamma}\left(\frac{V_{t+1}}{R_{t}}\right)^{\rho-1}
$$

where

$$
N_{t+1}^{*}=\left(\frac{V_{t+1}}{R_{t}}\right)^{1-\gamma}
$$

has conditional expectation equal to one.

Shock exposure elasticities

Time units are months.

Shock price elasticity $\rho=1$

Time units are months. $\gamma=10, \beta=.998$.

Shock price elasticity $\rho=10$

Time units are months. $\gamma=10, \beta=.998$.

