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Underlying environment

> Yn n-dimensional, stationary and ergodic Markov process
X={X,:t=1,2,...}

> a k-dimensional process W of independent and identically
distributed shocks.

> a date ¢ information set [, generated by the histories of /" and Xj.

> a dynamic evolution:

X1 = Y (X, W)
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Multiplicative functionals
The (log) increments of a “multiplicative functional” exp(Y) satisfy
Yiii— Y=k (Xt; Wt+1) .

Two applications:
> stochastic discount factor process S over alternative horizons
> stochastic cash flow growth G over alternative horizons

Observation: product of multiplicative functionals is a multiplicative
functional.
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Example

Y1 — Y = K()(za Wt+1) = B(Xt) +0‘(Xt) Wit
where

> [(x) allows for nonlinearity in the conditional mean,

> «(x) introduces stochastic volatility.

Observations

> when X is a vector autoregression, (3 is affine in x and « is
constant, exp(Y) is log normal.

> sets the stage for continuous-time counterparts
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Stochastic discount process

Y stochastic discount factor process S is a positive (with probability
one) stochastic process such that for any ¢, 7 > 0 and payoff G-
maturing at time ¢ + 7, the time- price is given by

Sttr St+7Giryr
Tt t+7 (G) =E |:( i;; > Gt+T | 2[t:| = GtE |:<I+SIGZ+> ’ Qlt:|

Observation: This construction does not restrict how we initialize the
date zero stochastic discount factor, Sy. We may impose Sp = 1 as a
normalization.
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Proportional risk compensations

1 Gt+7’ 1 Gt+‘rSt+‘r 1 St+7’
—logE ——logE ( ——— —logE 2
T 8 (: (:;[ ’ gz{t:) T 8 (: (;t:S} | gz[t _+>7' 8 :;t | !

Interpretation:
> first term: logarithm of the expected cash flow growth
> first and second term: logarithm of the expected return
> third term: the negative of the logarithm of the riskless return

all over investment horizon 7.

Shows how risk compensations compound over time!
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Long-term Asset Pricing
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Factorization

exp(Y, — Yo) = exp(n?) <M’> [

a e(Xo)}

e(X))
where

> 7 is a growth or decay rate

> M is a multiplicative martingale:

() 1]

> e > 0 satisfies the eigenvalue problem (formally a
Perron-Frobenius problem):

E [exp(Yi1 — Y)e(Xin | 2] = ne(X,).

Conversely, solve the eigenvalue problem and construct the
multiplicative martingale M.
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Multiplicative martingale

Recall
E [exp(Yit1 — Y)e(Xiq1) | 2] = ne(X),
and u (Xon)
41 A1
= — Y1 — Y,
e = exp(-exp(Tis — 7) | )
> M’T“:l induces a change of probability measure where

~ M,
E(By1|2) =E [( &rl)Btﬂ I%)

t

for any bounded random variable B, in the date 7 + 1
conditioning information set.

> Eigenvalue problem solution is essentially unique if the implied
dynamics are stochastically stable. See Hansen-Scheinkman
(2009, Econometrica) and Hansen (2012, Econometrica).
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Log versus levels

Suppose that
Yi—Yo = it +  logM, — X)) +  flX)
—~ —— ~—~
trend martingale stationary invariant
Observations:

> the martingales are different
> whenever one has a martingale component so does the other

Reference: Hansen (2012, Econometrica)
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Factoring the stochastic discount
factor

5{’) = exp (") <ﬁ;> [i(())(((:))]

> n° typically negative (discounting)

Observations

> M’ is nongenderate when there are permanent shocks to log S

> M induces a change of probability measure

See: Alvarez-Jermann (2005, Econometrica) and Hansen (2012,
Econometrica) for more motivation
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Related literature

> Ross (JF, 2015) explores asset pricing implications without the
martingale component - recover probabilities from Arrow prices

> Borovicka, Hansen and Scheinkman (JF) show that the
probability measure associated with M absorbs the risk
adjustment for pricing growth-rate risk over (arbitrarily) long
investment horizons

> Kazemi (RFS, 1992) and Alvarez and Jermann (2005,
Econometrica) show that the one-period holding period return on
a limiting long-term discount bond is

ev(Xr+1)]
e (X))

exp(—7°) [

Observation: Last point opens the door to empirical estimation,
testing and measuring - see Bakshi, Gurdip and Fousseni Chabi-Yo
(JFE, 2012 and RFS, 2018) along with other references
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Long-term risk return tradeoff

> Form: 5, o) M§> [e‘(Xo)}
So PV ) e (x)
> Form: Q _ exp () M§> |:eg (Xo):|
Go T PUTIAME) Ler (X))
> Form: G, Sg M;g e (Xp)
0G0 = exp (1) <M(r)g> |:esg ()(t):|
Then

=

is the limiting risk premium.
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One-period asset pricing
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Underlying setup

Suppose that

logGy —logGy = B (Xo) + g (Xo) - W1
10g51 = logSo = Bs (X()) =+ oy (Xo) - W

The one-period return on this investment is the payoff in period one
divided by the period-zero price:

16/32



One-period risk premium

Recall

Proportional risk premium

S
logE (R | 2p) + logE (Sl | 22[0>
0

e G151 S
—logE( 2L 2] = logE 2A logE (21 | 2L
og <G0| 0) og (GOSOI o>+og (SOI 0>

= —as(Xo) - ag(Xo)

—a,(Xp) is the vector of risk prices.
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Local perturbations

Parameterize a family of random variables H; (r) indexed by r using
r2 2
lOng (I’) =rv (X[)) . W1 — 5 |V(X0)|
where r is a scalar parameter. Normalize v (Xj) so that
E [\y(xo)ﬂ =1
With this parameterization,
E [Hl (r) |Ql0] =1.

Observation: Even when shocks are not normally distributed, we shall
find it convenient to restrict H; (r) in this manner.
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Local one-period asset prices

Given baseline payoff process G, form a family of payoffs GH; (r)
with logarithmic increment:

log Gi —log Go +log Hy (1) = [ag (Xo) +rv (Xo)] - W1 + B (Xo)

new shock exposure
2

i 2
— — v (Xo)|”.
I (o)
Proportional risk premium:

—a(Xo) [ag(Xo) + rV(XO)} .

The derivative with respect to r, —a(Xp) - v(Xp), is the local price of
exposure direction v(Xj).

19/32



An alternative derivation

> shock exposure elasticity

d GlHl(l’)
— logE A
ar 8 < G, | o

> shock cost elasticity

d SlGlHl(r)
2 JogE 2 =
dr° < S0Go | 0|

V(Xo): (E |(88) m | Q‘O))
=0

> shock price elasticity is the difference

(U)o ()
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Multi-period asset pricing
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Multi-period elasticities

> shock exposure elasticity

d G H-(r)
2 1osE _
P < Go |910> r

> shock cost elasticity

d S.GHi(r)
4 1ogE 2
dr 8 < SoGo | °>

> shock price elasticity is the difference

() (i)




Linear-quadratic specification

State evolution:

X0 =x
Xip1 = 690 + 611 + Zi Wi
Xy = O3 + O3, + O5,X; + 653 (X; ® X;)
+ D501 + 551 (X ® Wep1) + by (W1 ® Wig)

Xl
with Markov state [ X’Q} .
t

Additive functional:

Yij1 - Y = @,(v) + @{Xl,t + @)2}X2,t + (Xl,t), @éXl,z
+ S W1 + (X0) Sy W1 + (Wigr) SoWi
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A tractable computation

Suppose that
1
logf(x) = d)o I d)l - X+ §x1/<I>x1

ol
where x = LQ . Then

E [exp (Yer1 — Y2 f(Xir1) | X = 5] = ()
where
2 2 A L =
logf(x) = ¢ + P1 - x + % dx

for some scalar ¢g, vector ¢, and matrix P.

Define a valuation operator:

Q) EE [exp (Y1 — Y) 1) | X = x]
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Multi-period construction

From the Law of Iterated Expectations:
Qf(x) = E[exp (Y2 — Y1) flX2) | X1 = ]

Q*flx) = E[exp (Y3 — Y1) IX2) | X1 = x]
Q" 'fx) = E[exp (Y, — 11) AXa) | X1 =]
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Computing shock elasticities I

E [GXp(YT — YO) W1 |X0)
E [exp (Y- — Yo) | Xo = x]
exp(Y; — Yo)Q™11(Xq) Wy
E [exp(Y1 — YQ)QT_]'].(Xl) |X0 = x]

’X():x

Note that
exp(¥1 — Y0)Q711(Xy)
E [exp(Y1 — Yo)QT_ll(X1> ’Xo = x]

is positive and has conditional expectation equal to one.
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Computing shock elasticities II

The random variable

exp(¥1 — Yo)Q"11(X1)
E [exp(Y1 — Yo)QT_ll(X1> ’ X0 = x]

> is positive and conditional expectation equal to one
> is the exponential of a linear-quadratic function of the shock W

> induces a change of probability measure altering the conditional
mean and covariance matrix of #; with a conditional mean that
is affine in the state X7 .
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Recursive utility example

Investor preferences represented as a homogeneous of degree one
representation of the recursive utility continuation value is

1

Vo= |(1=8) () +B(R) |

where )

R= (E (7)™ |2]) 7
and
0 < B < 1 is the subjective discount factor
p > 0and % is the intertemporal elasticity of substitution
~ adjusts for “risk.”

Use Bansal-Yaron calibration of the macro dynamics.
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SDF process

The one-period increment in the stochastic discount factor process for
recursive utility is:

E:ﬁ Cor\ ™ (Vi) 7 (Ve 7
é% (:) Igt I?t

where

has conditional expectation equal to one.
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Shock exposure elasticities

With respect to the growth shock
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Shock price elasticity p = 1

With respect to the growth shock With respect to the consumption shock
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Shock price elasticity p = 10

With respect to the growth shock With respect to the consumption shock
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