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Chapter 1

Stochastic Processes and Laws
of Large Numbers

1.1 Introduction

A probabilistic form of invariance gives rise to a Law of Large Numbers.
The invariance notion is a stochastic counterpart to a steady state of a
dynamic economic model. The Law of Large Numbers conditions on a set
of special events called invariant events that we can interpret as indexing
alternative possible statistical models. These ideas allow us to characterize
what can be learned from time series evidence and what must originate
elsewhere.

1.2 Stochastic Processes

A sequence of random vectors is called a stochastic process. we are inter-
ested in time series so we index the sequence by time.

We start with a probability space, namely, a triple (Ω,F, P r), where F
is a collection of events (a sigma algebra) and Pr assigns probabilities to
events. The following definition makes reference to Borel sets. Borel sets
include open sets, closed sets, finite intersections, and countable unions of
such sets.

Definition 1.2.1. X is an n-dimensional random vector if X : Ω → Rn

has the property that for any Borel set b in Rn {X ∈ b} is in F.

1



2 Chapter 1. Stochastic Processes and Laws of Large Numbers

A result from measure theory states that if {X ∈ o} is an event in F
whenever o is an open set in Rn, then X is an n-dimensional random vector.

This formal structure facilitates using mathematical analysis to formu-
late problems in probability theory. A random vector induces a probability
distribution over the collection of Borel sets in which the probability as-
signed to set b is given by

Pr{X ∈ b}

By changing the set b, we trace out a probability distribution implied by the
random vector X that is called the induced distribution. An induced distri-
bution is what typically interests an applied worker. In practice, an induced
distribution is just specified directly without constructing the foundations
under study here. However, proceeding at a deeper level as we have by
defining a random vector to be a function that satisfies particular measur-
able properties and imposing the probability measure Pr over the domain
of that function has mathematical payoffs that we will exploit in various
ways, among them being in construction of stochastic processes.

Definition 1.2.2. An n-dimensional stochastic process is an infinite se-
quence of n-dimensional random vectors {Xt : t = 0, 1, ...}.

The measure Pr assigns probabilities to a rich and interesting collection
of events. For example, consider a stacked random vector

X [`](ω)
.
=


X0(ω)
X1(ω)

...
X`(ω)


and Borel sets b in Rn(`+1). The joint distribution of X [`] induced by Pr
over such Borel sets is

Pr{X [`] ∈ b}.

Since the choice of ` is arbitrary, Pr implies a distribution over a sequence
of random vectors {Xt(ω) : t = 0, 1, ...}: given a probability distribution,
we can construct a probability space and a random vector that induces
this distribution. This insight extends to the study of stochastic processes.
Thus, the following way to construct a probability space is particularly
enlightening.
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Construction 1.2.3. Let Ω be a collection of infinite sequences in Rn with
an element ω ∈ Ω being a sequence of vectors ω = (r0, r1, ...), where rt ∈ Rn.
To construct F, proceed as follows. Let B be the collection of Borel sets of
Rn. Let F̃ denote the collection of all subsets Λ of Ω that can be represented
in the following way. For a nonnegative integer ` and Borel sets b0, b1, ..., b`,
let

Λ = {ω = (r0, r1, ...) : rj ∈ bj, j = 0, 1, .., `} . (1.1)

Then F is the smallest sigma-algebra that contains F̃. By assigning proba-
bilities to events in F with Pr, we construct a probability distribution over
sequences of vectors.

Next we construct a measure that assigns probabilities to events in F.
For each integer ` ≥ 0, let Pr` assign probabilities to the Borel sets of
Rn(`+1). A Borel set in Rn(`+1) can also be viewed as a Borel set in Rn(`+2)

with rn(`+1) left unrestricted. Specifically, let b` be a Borel set in Rn(`+1).
Then

b`+1
` = {(r0, r1, ..., r`, r`+1) : (r0, r1, ..., r`) ∈ b`} .

For the probability measures {Pr` : ` = 0, 1, ...} to be consistent, we require
that the probability assigned by Pr`+1 satisfy

Pr` (b`) = Pr`+1

(
b`+1
`

)
for any ` ≥ 0 and any Borel set b` in Rn(`+1). If consistency in this sense
prevails, we can extend this construction to form a probability Pr on the
space (Ω,F) that is consistent with the probability assigned by Pr` for all
nonnegative integers `.1

Finally, we construct the stochastic process {Xt : t = 0, 1, ...} by letting

Xt(ω) = rt

for t = 0, 1, 2, .... A convenient feature of this construction is that Pr` is
the probability induced by the random vector [X0

′, X1
′, ..., X`

′]
′
.

We refer to this construction as canonical. While this is only one
among other possible constructions of probability spaces, it illustrates the
flexibility in building sequences of random vectors that induce alternative
probabilities of interest.

1This essentially follows from the Kolomorov Extension Theorem or from Theorem
2.26 of Breiman (1968).
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The remainder of this chapter is devoted to studying Laws of Large
Numbers. What is perhaps the most familiar Law of Large Numbers pre-
sumes that the stochastic process {Xt : t = 0, 1, ...} is independent and
identically distributed (iid). Then

1

N

N∑
t=1

ϕ(Xt)→ Eϕ(X0)

for any (Borel measurable) function ϕ for which the expectation is well
defined. Convergence holds in several senses that we state later. Notice that
as we vary the function ϕ we can infer the (induced) probability distribution
for X0. In this sense, the outcome of the Law of Large Numbers under an
iid sequence determines what we will call a statistical model.

For our purposes, an iid version of the Law of Large Numbers is too
restrictive. First, we are interested in economic dynamics in which model
outcomes are temporally dependent. Second, we want to put ourselves in
the situation of a statistician who does not know a priori what the under-
lying data generating process is and therefore entertains multiple models.
We will present a Law of Large Numbers that covers both settings.

1.3 Constructing a Stochastic Process

We now generalize the canonical construction 1.2.3 of a stochastic process
in a way that facilitates stating the Law of Large Numbers that interests
us.

We use two objects.2 The first is a (measurable) transformation S :
Ω → Ω that describes the evolution of a sample point ω. See figure 1.1.
Transformation S has the property that for any event Λ ∈ F,

S−1(Λ) = {ω ∈ Ω : S(ω) ∈ Λ}

is an event in F, as depicted in figure 1.2. The second object is an n-
dimensional vector X(ω) that describes how observations depend on sample
point ω. We construct a stochastic process {Xt : t = 0, 1, ...} via the
formula:

Xt(ω) = X[St(ω)]

2Breiman (1968) is a good reference for these.
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ω

S(ω)

S2(ω)
S3(ω)

Ω

Figure 1.1: The evolution of a sample point ω induced by successive appli-
cations of the transformation S. The oval shaped region is the collection Ω
of all sample points.

S(ω)
ω

Ω

Λ

S−1(Λ)

Figure 1.2: An inverse image S−1(Λ) of an event Λ is itself an event; ω ∈
S−1(Λ) implies that S(ω) ∈ Λ.

or

Xt = X ◦ St,

where we interpret S0 as the identity mapping asserting that ω0 = ω.

Because a known function S maps a sample point ω ∈ Ω today into a
sample point S(ω) ∈ Ω tomorrow, the evolution of sample points is deter-
ministic: ωt+j for all j > 1 can be predicted perfectly if we know S and ωt.
But we do not observe ωt at any t. Instead, we observe an (n × 1) vector
X(ω) that contains incomplete information about ω. We assign proba-
bilities Pr to collections of sample points ω called events, then use the
functions S and X to induce a joint probability distribution over sequences
of X’s. The resulting stochastic process {Xt : 0 = 1, 2, ...} is a sequence of
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n-dimensional random vectors.
This way of constructing a stochastic process might seem restrictive;

but actually, it is more general than the canonical construction presented
above.

Example 1.3.1. Consider again our canonical construction 1.2.3. Recall
that the set of sample points Ω is the collection of infinite sequences of
elements of rt ∈ Rn so that ω = (r0, r1, ...). For this example, S(ω) =
(r1, r2, ...). This choice of S is called the shift transformation. Notice that
the time t iterate is

St(ω) = (rt, rt+1, ...)

Let the measurement function be: X(ω) = r0 so that

Xt(ω) = X
[
St(ω)

]
= rt

as posited in construction 1.2.3.

1.4 Stationary Stochastic Processes

We start with a probabilistic notion of invariance. We call a stochastic
process stationary if any finite integer `, the joint probability distribution
induced by the composite random vector [Xt

′, Xt+1
′, ..., Xt+`

′]
′

is the same
for all t ≥ 0.3 This notion of stationarity can be thought of as a stochastic
version of a steady state of a dynamical system.

We now use the objects (S, X) to build a stationary stochastic process
by restricting construction 1.2.3. Consider the set {ω ∈ Ω : X(ω) ∈ b} .= Λ
and its successors

{ω ∈ Ω : X1(ω) ∈ b} = {ω ∈ Ω : X [S(ω)] ∈ b} = S−1(Λ)

{ω ∈ Ω : Xt(ω) ∈ b} = {ω ∈ Ω : X
[
St(ω)

]
∈ b} = S−t(Λ).

Evidently, if Pr(Λ) = Pr[S−1(Λ)] for all Λ ∈ F, then the probability dis-
tribution induced by Xt equals the probability distribution of X for all t.
This fact motivates the following definition and proposition.

3Sometimes this property is called ‘strict stationarity’ to distinguish it from weaker
notions that require only that some moments of joint distributions be independent of
time. What is variously called wide-sense or second-order or covariance stationarity
requires only that first and second moments of joint distributions are independent of
calendar time.
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Definition 1.4.1. The pair (S, P r) is said to be measure-preserving if

Pr(Λ) = Pr{S−1(Λ)}

for all Λ ∈ F.

Proposition 1.4.2. When (S, P r) is measure-preserving, probability dis-
tributions induced by the random vectors Xt are identical for all t ≥ 0.

The measure preserving property restricts the probability measure Pr
for a given transformation S. Some probability measures Pr used in con-
junction with S will be measure preserving and others not, a fact that will
play an important role at several places below.

Suppose that (S, P r) is measure preserving relative to probability mea-
sure Pr. Given X and an integer ` > 1, form a vector

X [`](ω)
.
=


X0(ω)
X1(ω)
...

X`(ω)

 .
We can apply Proposition 1.4.2 to X [`] to conclude that the joint distri-
bution function of (Xt, Xt+1, ..., Xt+`) is independent of t for t = 0, 1, . . ..
That this property holds for any choice of ` implying that the stochastic
process {Xt : t = 1, 2, ...} is stationary. Moreover, f

(
X`
)

where f is a

Borel measurable function from Rn(`+1) into R is also a valid measurement
function. Such f ’s include indicator functions of interesting events defined
in terms of X`.

For a given S, we now present examples that illustrate how to construct a
probability measure Pr that makes S measure preserving and thereby brings
stationarity. In example 1.4.3, only one Pr makes S measure preserving,
while in example 1.4.4 there are many.

Example 1.4.3. Suppose that Ω contains two points, Ω = {ω1, ω2}. Con-
sider a transformation S that maps ω1 into ω2 and ω2 into ω1: S(ω1) = ω2

and S(ω2) = ω1. Since S−1({ω2}) = {ω1} and S−1({ω1}) = {ω2}, for S to
be measure preserving, we must have Pr({ω1}) = Pr({ω2}) = 1/2.

Example 1.4.4. Suppose that Ω contains two points, Ω = {ω1, ω2} and
that S(ω1) = ω1 and S(ω2) = ω2. Since S−1({ω2}) = {ω2} and S−1({ω1}) =
{ω1}, S is measure preserving for any Pr that satisfies Pr({ω1}) > 0 and
Pr({ω2}) = 1− Pr({ω1}).
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The next example illustrates how to represent an i.i.d. sequence of zeros
and ones in terms of an Ω, P r and an S.

Example 1.4.5. Suppose that Ω = [0, 1) and that Pr is the uniform mea-
sure on [0, 1). Let

S(ω) =

{
2ω if ω ∈ [0, 1/2)

2ω − 1 if ω ∈ [1/2, 1),

X(ω) =

{
1 if ω ∈ [0, 1/2)
0 if ω ∈ [1/2, 1).

Calculate Pr {X1 = 1|X0 = 1} = Pr {X1 = 1|X0 = 0} = Pr {X1 = 1} =
1/2 and Pr {X1 = 0|X0 = 1} = Pr {X1 = 0|X0 = 0} = Pr {X1 = 0} =
1/2. So X1 is statistically independent of X0. By extending these calcula-
tions, it can be verified that {Xt : t = 0, 1, ...} is a sequence of independent
random variables.4 We can alter Pr to obtain other stationary distribu-
tions. For instance, suppose that Pr{1

3
} = Pr{2

3
} = .5. Then the process

{Xt : t = 0, 1, ...} alternates in a deterministic fashion between zero and
one. This provides a version of Example 1.4.3 in which ω1 = 1

3
and ω2 = 2

3
.

1.5 Invariant Events and Conditional

Expectations

In this section, we present a Law of Large Numbers that asserts that time
series averages converge when S is measure-preserving relative to Pr.

Invariant events

We use the concept of an invariant event to understand how limit points of
time series averages relate to a conditional mathematical expectation.

Definition 1.5.1. An event Λ is invariant if Λ = S−1(Λ).

Figure 1.3 illustrates two invariant events in a space Ω. Notice that if Λ is
an invariant event and ω ∈ Λ, then St(ω) ∈ Λ for t = 0, 1, ...,∞.

Let I denote the collection of invariant events. The entire space Ω and
the null set ∅ are both invariant events. Like F, the collection of invariant
events I is a sigma algebra.

4This example is from Breiman (1968, p. 108).
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Ω

Λ2 = S−1(Λ2)

Λ1 = S−1(Λ1)
Λ3

Figure 1.3: Two invariant events Λ1 and Λ2 and an event Λ3 that is not
invariant.

Conditional expectation

We want to construct a random vector E(X|I) called the “mathematical
expectation of X conditional on the collection J of invariant events”. We
begin with a situation in which a conditional expectation is a discrete ran-
dom vector as occurs when invariant events are unions of sets Λj belonging
to a countable partition of Ω (together with the empty set). Later we’ll
extend the definition beyond this special setting.

A countable partition consists of a countable collection of nonempty
events Λj such that Λj ∩Λk = ∅ for j 6= k and such that the union of all Λj

is Ω. Assume that each set Λj in the partition is itself an invariant event.
Define the mathematical expectation conditioned on event Λj as∫

Λj
XdPr

Pr(Λj)

when ω ∈ Λj. To extend the definition of conditional expectation to all of
I, take

E(X|I)(ω) =

∫
Λj
XdPr

Pr(Λj)
if ω ∈ Λj.

Thus, the conditional expectation E(X|I) is constant for ω ∈ Λj but varies
across Λj’s. Figure 1.4 illustrates this characterization for a finite partition.
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Ω

Λ1

∫
Λ1
X dPr

Pr(Λ1)

Λ2

∫
Λ2
X dPr

Pr(Λ2)

Λ3

∫
Λ3
X dPr

Pr(Λ3)

Figure 1.4: A conditional expectation E(X|I) is constant for ω ∈ Λj =
S−1(Λj)

Least Squares

Now let X be a random vector with finite second moments EXX ′ =∫
X(ω)X(ω)′dPr(ω). When a random vector X has finite second mo-

ments, a conditional expectation is a least squares projection. Let Z be
an n-dimensional measurement function that is time-invariant and so sat-
isfies

Zt(ω) = Z[St(ω)] = Z(ω).

Let Z denote the collection of all such time-invariant random vectors. In
the special case in which the invariant events can be constructed from a
finite partition, Z can vary across sets Λj but must remain constant within
Λj.

5 Consider the least squares problem

min
Z∈Z

E
[
|X − Z|2

]
. (1.2)

Denote the minimizer in problem 1.2 by X̃ = E(X|I). Necessary conditions

for the least squares minimizer X̃ ∈ Z imply that

E
[(
X − X̃

)
Z ′
]

= 0

for Z in Z so that each entry of the vector X − X̃ of regression errors is
orthogonal to every vector Z in Z.

5More generally, Z must be measurable with respect to I.
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A measure-theoretic approach constructs a conditional expectation by
extending the orthogonality property of least squares. Provided thatE|X| <
∞, E(X|I)(ω) is the essentially unique random vector that, for any invari-
ant event Λ, satisfies

E ([X − E(X|I)]1Λ) = 0,

where 1Λ is the indicator function that is equal to one on the set Λ and
zero otherwise.

1.6 Law of Large Numbers

An elementary Law of Large Numbers asserts that the limit of an average
over time of a sequence of independent and identically distributed random
vectors equals the unconditional expectation of the random vector. We
want a more general Law of Large Numbers that applies to averages over
time of sequences of observations that are intertemporally dependent. To
do this, we use a notion of probabilistic invariance that is expressed in terms
of the measure-preserving restriction and that implies a Law of Large Num-
bers applicable to stochastic processes. The following theorem asserts two
senses in which averages of intertemporally dependent processes converge
to mathematical expectations conditioned on invariant events.

Theorem 1.6.1. (Birkhoff) Suppose that S is measure preserving relative
to the probability space (Ω,F, P r).6

i) For any X such that E|X| <∞,

1

N

N∑
t=1

Xt(ω)→ E(X|I)(ω)

with probability one;

ii) For any X(ω) such that E|X(ω)|2 <∞,

E

∣∣∣∣∣ 1

N

N∑
t=1

Xt − E(X|I)

∣∣∣∣∣
2
→ 0.

6See Breiman (1968) chapter 6 for extended discussions and proofs.
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Part i) asserts almost-sure convergence; part ii) asserts mean-square con-
vergence.

We have ample flexibility to specify a measurement function ϕ
(
X`
)
,

where ϕ is a Borel measurable function from Rn(`+1) into R. In particular,
an indicator functions for event Λ = {X` ∈ b} can be used as a measurement
function where:

1Λ(ω) =

{
1 if ω ∈ Λ
0 if ω /∈ Λ.

The Law of Large Numbers applies to limits of

1

N

N∑
t=1

ϕ
[
X`
t

]
for alternative ϕ’s, so choosing ϕ’s to be indicator functions shows how the
Law of Large Numbers uncovers event probabilities of interest.

Definition 1.6.2. A transformation S that is measure-preserving relative
to Pr is said to be ergodic under probability measure Pr if all invariant
events have probability zero or one.

Thus, when a transformation S is ergodic under measure Pr, the invari-
ant events have either the same probability measure as the entire sample
space Ω (whose probability measure is one), or the same probability mea-
sure as the empty set ∅ (whose probability measure is zero).

Proposition 1.6.3. Suppose that the measure preserving transformation S
is ergodic under measure Pr. Then E(X|I) = E(X).

Theorem 1.6.1 describes conditions for convergence in the general case
that S is measure preserving under Pr but in which S is not necessarily
ergodic under Pr. Proposition 1.6.3 describes a situation in which prob-
abilities assigned to invariant events are degenerate in the sense that all
invariant events have the same probability as either Ω (probability one) or
the null set (probability zero). When S is ergodic under measure Pr, limit
points of time series averages equal corresponding unconditional expecta-
tions, an outcome we can call a standard Law of Large Numbers. When S is
not ergodic under Pr, limit points of time series averages equal expectations
conditioned on invariant events.

The following examples remind us how ergodicity restricts S and Pr.
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Example 1.6.4. Consider example 1.4.3 again. Ω contains two points and
S maps ω1 into ω2 and ω2 into ω1: S(ω1) = ω2 and S(ω2) = ω1. Suppose
that the measurement vector is

X(ω) =

{
1 if ω = ω1

0 if ω = ω2.

Then it follows directly from the specification of S that

1

N

N∑
t=1

Xt(ω)→ 1

2

for both values of ω. The limit point is the average across sample points.

Example 1.6.5. Return to example 1.4.4. Ω contains two points, Ω =
{ω1, ω2} and that S(ω1) = ω1 and S(ω2) = ω2. Xt(ω) = X(ω) so that the
sequence is time invariant and equal to its time-series average. A time-
series average of Xt(ω) equals the average across sample points only when
Pr assigns probability 1 to either ω1 or ω2.

1.7 Limiting Empirical Measures

Given a triple (Ω,F, P r) and a measure-preserving transformation S, we
can use Theorem 1.6.1 to construct limiting empirical measures on F. To
start, we will analyze a setting with a countable partition of Ω consisting
of invariant events {Λj : j = 1, 2, ...}, each of which has strictly positive
probability under Pr. We consider a more general setting later. Given
an event Λ in F and for almost all ω ∈ Λj, define the limiting empirical
measure Qrj as

Qrj(Λ)(ω) = lim
N→∞

1

N

N∑
t=1

1Λ

[
St(ω)

]
=
Pr(Λ ∩ Λj)

Pr(Λj)
. (1.3)

Thus, when ω ∈ Λj, Qrj(Λ) is the fraction of time St(ω) ∈ Λ in very long
samples. If we hold Λj fixed and let Λ be an arbitrary event in F, we
can treat Qrj as a probability measure on (Ω,F). By doing this for each
Λj, j = 1, 2, . . ., we can construct a countable set of probability measures
{Qrj}∞j=1. These comprise the set of all measures that can be recovered
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by applying the Law of Large Numbers. If nature draws an ω ∈ Λj, then
measure Qrj describes outcomes.

So far, we started with a probability measure Pr and then constructed
the set of possible limiting empirical measures Qrj’s. We now reverse the
direction of the logic by starting with probability measures Qrj and then
finding measures Pr that are consistent with them. We do this because
Qrj’s are the only measures that long time series can disclose through the
Law of Large Numbers: each Qrj defined by (1.3) uses the Law of Large
Numbers to assign probabilities to events Λ ∈ F. However, because

Qrj(Λ) = Pr(Λ | Λj) =
Pr(Λ ∩ Λj)

Pr(Λj)
for j = 1, 2, . . . ,

are conditional probabilities, such Qrj’s are silent about the probabilities
Pr(Λj) of the underlying invariant events Λj. There are multiple ways to
assign probabilities Pr that imply identical probabilities conditioned on
invariant events.

Because Qrj is all that can ever be learned by “letting the data speak”,
we regard each probability measure Qrj as a statistical model.7

Definition 1.7.1. A statistical model is a probability measure that a Law
of Large Numbers can disclose.

Probability measure Qrj describes a statistical model associated with in-
variant set Λj.

Remark 1.7.2. For each j, S is measure-preserving and ergodic on (Ω,F, Qrj).
The second equality of definition (1.3) assures ergodicity by assigning prob-
ability one to the event Λj.

Relation (1.3) implies that probability Pr connects to probabilities Qrj
by

Pr(Λ) =
∑
j

Qrj(Λ)Pr(Λj). (1.4)

7Marschak (1953), Hurwicz (1962), Lucas (1976), and Sargent (1981) distinguished
between structural econometric models and what we call statistical models. Structural
econometric models are designed to forecast outcomes of hypothetical experiments that
freeze some components of an economic environment and change others. A structural
model accepts experiments that alter statistical models.
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While decomposition (1.4) follows from definitions of the elementary objects
that comprise a stochastic process and is “just mathematics”, it is inter-
esting because it tells how to construct alternative probability measures
Pr for which S is measure preserving. Because long data series disclose
probabilities conditioned on invariant events to be Qrj, to respect evidence
from long time series we must hold the Qrj’s fixed, but we can freely assign
probabilities Pr to invariant events Λj. In this way, we can create a family
of probability measures for which S is measure preserving.

1.8 Ergodic Decomposition

Up to now, we have represented invariant events with a countable parti-
tion. Dynkin (1978) deduced a more general version of decomposition (1.4)
without assuming a countable partition. Thus, start with a pair (Ω,F).
Also, assume that there is a metric on Ω and that Ω is separable. We also
assume that F is the collection of Borel sets (the smallest sigma algebra con-
taining the open sets). Given (Ω,F), take a (measurable) transformation S
and consider the set P of probability measures Pr for which S is measure-
preserving. For some of these probability measures, S is ergodic, but for
others, it is not. Let Q denote the set of probability measures for which
S is ergodic. Under a nondegenerate convex combination of two probabil-
ity measures in Q, S is measure-preserving but not ergodic. Dynkin (1978)
constructed limiting empirical measures Qr on Q and justified the following
representation of the set P of probability measures Pr.

Proposition 1.8.1. For each probability measure P̃ r in P there is a unique
probability measure π over Q such that

P̃ r(Λ) =

∫
Q
Qr(Λ)π(dQr) (1.5)

for all Λ ∈ F.8

8Krylov and Bogolioubov (1937) provide an early statement of this result. Dynkin
(1978) provides a more general formulation that nests this and other closely related
results. His analysis includes a formalization of integration over the probability measures
in Q. Dynkin (1978) uses the resulting representation to draw connections between
collections of invariant events and sets of sufficient statistics.
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Proposition 1.8.1 generalizes representation (1.4). It asserts a sense in which
the set P of probabilities for which S is measure-preserving is convex. Ex-
tremal points of this set are in the smaller set Q of probability measures
for which the transformation S is ergodic. Representation (1.5) shows that
by forming “mixtures” (i.e., weighted averages or convex combinations) of
probability measures under which S is ergodic, we can represent all proba-
bility specifications for which S is measure-preserving.

To add another perspective, a collection of invariant events I is asso-
ciated with a transformation S. There exists a common conditional ex-
pectation operator J ≡ E(·|I) that assigns mathematical expectations to
bounded measurable functions (mapping Ω into R) conditioned on the set
of invariant events I. The conditional expectation operator J characterizes
limit points of time series averages of indicator functions of events of inter-
est as well as other random vectors. Alternative probability measures Pr
assign different probabilities to the invariant events.

1.9 Risk and uncertainty

An applied researcher typically does not know which statistical model gen-
erated the data. This situation leads us to specifications of S that are
consistent with a family P of probability models under which S is measure
preserving and a stochastic process is stationary. Representation (1.5) de-
scribes uncertainty about statistical models with a probability distribution
π over the set of statistical models Q.

For a Bayesian, π is a subjective prior probability distribution that pins
down a convex combination of “statistical models.”9 A Bayesian expresses
trust in that convex combination of statistical models used to construct a
complete probability measure over outcomes and uses it to compute ex-
pected utility.10 A Bayesian decision theory axiomatized by Savage makes
no distinction between how decision makers respond to the probabilities
described by the component statistical models and the π probabilities that
he uses to mix them. All that matters to a Bayesian decision maker is the

9This subsection is motivated in part by the intriguing discussions of von Plato (1982)
and Cerreia-Vioglio et al. (2013).

10Here ‘complete’ can be taken to be synonymous with ‘not conditioning on invariant
events’.
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complete probability distribution over outcomes, not how it is attained as
a π-mixture of component statistical models.

Some decision and control theorists challenge the complete confidence
in a single prior probability assumed in a Bayesian approach.11 They want
to distinguish ‘ambiguity’, meaning not being able confidently to assign
π, from ‘risk’, meaning prospective outcomes with probabilities reliably
described by a statistical model. They imagine decision makers who want
to evaluate decisions under alternative π’s.12 We explore these ideas in later
chapters.

An important implication of the Law of Large Numbers is that for a
given initial π, using Bayes’ rule to update the π probabilities as data
arrive will eventually concentrate posterior probability on the statistical
model that generates the data. Even when a decision maker entertains a
family of π’s, the updated probabilities conditioned on the data may still
concentrate on the statistical model that generates the data.

1.10 Inventing an Infinite Past

When Pr is measure preserving and the process {Xt : t = 0, 1, ...} is sta-
tionary, it can be useful to invent an infinite past. To accomplish this, we
reason in terms of the (measurable) transformation S : Ω → Ω that de-
scribes the evolution of a sample point ω. Until now we have assumed that
S has the property that for any event Λ ∈ F,

S−1(Λ) = {ω ∈ Ω : S(ω) ∈ Λ}

is an event in F. In chapter 2, we want more. To prepare the way for that
chapter, in this section we shall also assume that S is one-to-one and has
the property that for any event Λ ∈ F,

S(Λ) = {ω ∈ Ω : S−1(ω) ∈ Λ} ∈ F. (1.6)

Because

Xt(ω) = X[St(ω)] = Xt = X ◦ St

11For example, see Hansen and Sargent (2008).
12This gives one way to formalize ideas of Knight (1921), who sought to distinguish

risk from broader notions of uncertainty.
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is well defined for negative values of t, restrictions 1.6 allow us to construct
a “two-sided” process that has both an infinite past and an infinite future.

Let A be a subsigma algebra of F, and let

At =
{

Λt ∈ F : Λt = {ω ∈ Ω : St(ω) ∈ Λ} for some Λ ∈ F
}
. (1.7)

We assume that {At : −∞ < t < +∞} is a nondecreasing filtration.
If the original measurement function X is A-measurable, then Xt is At-
measurable. Furthermore, Xt−j is in At for all j ≥ 0. The set At depicts
information available at date t, including past information. Invariant events
in I are contained in At for all t.

We construct the following moving-average representation of a scalar
process {Xt} in terms of an infinite history of shocks.

Example 1.10.1. (Moving average) Suppose that {Wt : −∞ < t < ∞} is
a vector stationary process for which13

E (Wt+1|At) = 0

and that E (WtWt
′|I) = I for all −∞ < t < +∞. Use a sequence of vectors

{αj}∞j=0 to construct

Xt =
∞∑
j=0

αj ·Wt−j (1.8)

where
∞∑
j=0

|αj|2 <∞. (1.9)

Restriction (1.9) implies that Xt is well defined as a mean square limit. Xt

is constructed from the infinite past {Wt−j : 0 6 j < ∞}. The process
{Xt : −∞ < t < ∞} is stationary and is often called an infinite-order
moving average process. The sequence {αj : j = 0, 1, ...} can depend on the
invariant events.

Remark 1.10.2. Almost a century ago, both Slutsky (1927) and Yule (1927)
used probability models to analyze economic time series. Their models im-
plied moving-average representations like the one in Example 1.10.1. Their
idea was to see economic time series as responding linearly to current and

13An i.i.d. sequence is just one example of such a {Wt : −∞ < t <∞} process.
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past independent and identically distributed impulses or shocks. In distinct
contributions, they showed how such models generate recurrent but aperi-
odic fluctuations that resemble business cycles and longer-term cycles as
well. Yule and Slutsky came from different backgrounds and brought differ-
ent perspectives. Yule was an eminent statistician who, among other impor-
tant contributions, managed “effectively to invent modern time series anal-
ysis” in the words of Stigler (1986). Yule constructed and estimated what
we would now call a second-order autoregression and applied it to study
sunspots. Yule’s estimates implied αj coefficients showed damped oscilla-
tions at the same periodicity as sunspots. In Russia in the 1920s, Slutsky
wrote a seminal paper in Russian motivated by his interest in business cy-
cles. Only later was an English version of his paper published Econometrica.
Even before that, it was already on the radar screen of economists including
Ragnar Frisch. Indeed, Frisch was keenly aware of both Slutsky (1927) and
Yule (1927) and generously acknowledged both of them in his seminal paper
Frisch (1933) on the impulse and propagation problem. Building on insights
of Slutsky and Yule, Frisch pioneered impulse response functions. His am-
bition was to provide explicit economic interpretations for how shocks alter
economic time series both now and later.14

1.11 Summary

For a fixed S there are often many possible probabilities Pr that are mea-
sure preserving. A subset of these are ergodic. These ergodic probabilities
can serve as building blocks for the other measure preserving probabilities.
Thus, each measure preserving Pr can be expressed as a weighted average of
the ergodic probabilities. We call the ergodic probabilities statistical mod-
els. The Law of Large of Numbers applies to each of the ergodic building
blocks with limit points that are unconditional expectations. As embod-
ied in (1.4) and its generalization (1.5), this decomposition interests both
frequentist and Bayesian statisticians.

14Sims (1980) and others advanced this idea by developing tractable multivariate time
series methods and striving to isolate interpretable shocks in multivariate settings.





Chapter 2

Stationary Increments

Logarithms of many economic time series that appear to display stochastic
growth can be modeled as having stationary increments. Multivariate ver-
sions of these models possess stochastic process versions of balanced growth
paths. Applied econometricians seek permanent shocks that contribute to
such growth. Furthermore, we shall see that it is convenient to pose central
limit theory in terms of processes with stationary increments. The mathe-
matical formulation in this chapter opens door to studying these topics.

2.1 Basic setup

We adopt assumptions from section 1.10 that allow an infinite past and
again let A be a subsigma algebra of F and

At =
{

Λt ∈ F : Λt = {ω ∈ Ω : St(ω) ∈ Λ} for some Λ ∈ F
}
.

Let X be a scalar measurement function. Assume that Y0 is A0 measurable
and consider a scalar process {Yt : t = 0, 1, ...} with stationary increments
{Xt}:

Yt+1 − Yt = Xt+1 (2.1)

for t = 0, 1, . . .. Let

Ut+1 = Xt+1 − E (Xt+1|At)

ν = E (Xt+1|I)

Vt = E (Xt+1|At)− ν.

21
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Evidently
Xt+1 = Ut+1 + Vt + ν.

We can interpret the above equation as providing an interesting decompo-
sition of the {Yt : t ≥ 0} process. Thus, component Ut+1 is unpredictable
and represents new information about Yt+1 that arrives at date t+ 1. Com-
ponent Vt is the date t+ 1 contribution to Yt+1 that can be predicted from
time t information net of trend growth. Component ν is the trend rate of
growth or decay in {Yt : t ≥ 0} conditioned on the invariant events. In
the following sections, we present an alternative decomposition that will be
useful both in connecting to sources of permanent versus transitory shocks
and to central limit theorems.

2.2 A martingale decomposition

A special class of stationary increment processes called additive martingales
interests us.

Definition 2.2.1. The process {Y m
t : t = 0, 1, ....} is said to be an additive

martingale relative to {At : t = 1, 2, ...} if for t = 0, 1, ...

• Y m
t is At measurable, and

• E
(
Y m
t+1|At

)
= Y m

t .

Notice that by the Law of Iterated Expectations, for a martingale {Y m
t :

t ≥ 0}, best forecasts satisfy:

E
(
Y m
t+j | At

)
= Y m

t

for j ≥ 1. Under suitable additional restrictions on the increment process
{Xt : t ≥ 0}, we can deploy a construction of Gordin (1969) to show that the
{Vt} process contributes a martingale component to the {Y m

t : t = 0, 1, ...}
process.1 Let H denote the set of all scalar random variables X such that
E(X2) <∞ and such that2

Ht =
∞∑
j=0

E
(
Xt+j − ν|At

)
1Also see Hall and Heyde (1980).
2The random variable Ht somewhat resembles an “undiscounted” version of the

resolvent operator that plays an important role in the analysis of Markov processes in
chapter 3.
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is well defined as a mean-square convergent series. Convergence of the
infinite sum on the right side limits temporal dependence of the process
{Xt}. For example, it can exclude so-called long memory processes.3

Construct the one-period ahead forecast of Ht+1:

H+
t = E (Ht+1 | At)

Notice that
Xt − ν = Ht −H+

t = Gt +
(
H+
t−1 −H+

t

)
where

Gt = Ht −H+
t−1 = Ht − E (Ht | At−1) . (2.2)

Since Gt is a forecast error,

E (Gt+1|At) = 0.

Assembling these parts, we have

Yt+1 − Yt = Xt+1 = ν +Gt+1 +H+
t −H+

t+1. (2.3)

Let

Y m
t =

t∑
j=1

Gj.

Since Y m
t is At measurable, the equality

E

(
t+1∑
j=1

Gj | At

)
=

t∑
j=1

Gj

implies that the process {Y m
t : t ≥ 0} is an additive martingale.

For a given stationary increment process, {Yt : t ≥ 0}, express the
martingale increment as

Gt =
∞∑
j=0

[E (Xt+j | At)− E (Xt+j | At−1)]

= lim
j→∞

[E (Yt+j|At)− E (Yt+j|At−1)] . (2.4)

So the increment to the martingale component of {Yt : t ≥ 0} is new
information about the limiting optimal forecast of Yt+j as j → +∞.

By accumulating equation (2.3) forward, we arrive at:
3See, for instance, Granger and Joyeux (1980), Geweke and Porter-Hudak (1983)

and Robinson (1994).
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Proposition 2.2.2. If X is in H, the stationary increments process {Yt :
t = 0, 1, ...} satisfies the additive decomposition

Yt = tν︸︷︷︸ + Y m
t − H+

t︸︷︷︸ + Y0 +H+
0︸ ︷︷ ︸ .

trend martingale stationary invariant

The martingale component {Y m
t : t ≥ 0} , Y m

0 = 0, and the component
{H+

t } is stationary.

We can use the Proposition 2.2.2 decomposition to determine a time
trend, a “permanent shock”, and a transitory component of a stationary-
increments process like (2.1). The permanent shock is the increment to the
martingale. There are multiple ways to construct a transitory component,
some of which yield transitory shocks that are correlated with permanent
shocks.

Example 2.2.3. (Moving-average increment process) Consider again the
Example 1.10.1 moving-average process:

Xt =
∞∑
j=0

αj ·Wt−j. (2.5)

Use this {Xt} process as the increment for {Yt : t ≥ 0} in formula (2.1).
New information about the unpredictable component of Xt+j for j ≥ 0 that
arrives at date t is

E (Xt+j | At)− E (Xt+j | At−1) = αj ·Wt

Summing these terms over j gives

Gt = α(1) ·Wt

where

α(1) =
∞∑
j=0

αj

provided that the coefficient sequence {αj : j ≥ 0} is summable, a condition
that restricts temporal dependence of the increment process {Xt}. Indeed it
is possible for α(1) =∞ or for it not to be well defined while

∞∑
j=0

|αj|2 <∞
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ensuring that Xt is well defined. This possibility opened the door to the
literature on long-memory processes that allow for α(1) to be infinite as
discussed in Granger and Joyeux (1980) and elsewhere.

In what follows, we presume that α(1) is finite. This sum of the coef-
ficients {αj : j ≥ 0} in moving-average representation (2.5) for the first
difference Yt+1 − Yt = Xt+1 of {Yt : t = 0, 1, ....} tells the permanent ef-
fect of Wt+1 on current and future values of the level of Y , i.e., the effect
on limj→+∞ Yt+j. Models of Blanchard and Quah (1989) and Shapiro and
Watson (1988) build on this property. The variance of the random variable
α(1) ·Wt+1 conditioned on the invariant events in I is |α(1)|2. The overall
variance of Xt is given by

∞∑
j=0

|αj|2 6= |α(1)|2.

2.3 Central limit approximation

Example 2.2.3 starts from a moving average of martingale differences that is
used as an increment {Xt} to a {Yt : t ≥ 0} process, after which it constructs
a process of innovations to the martingale component of the {Yt : t ≥ 0}
process. That analysis illustrates the workings of an operator D that maps
an admissible increment process in H into the innovation in a martingale
component. To construct D, let G be the set of all random variables G with
finite second moments that satisfy the conditions that G is A measurable
and that E(G1|A) = 0 where G1 = G ◦ S. Define D : H → G via

D(X) = G.

Both G and H are linear spaces of random variables and D is a linear
transformation. The operator D plays a prominent role in a central limit
approximation.

To form a central limit approximation, construct the following scaled
partial sum that nets out trend growth

1√
t
(Yt − νt) =

1√
t
Y m
t −

1√
t
H+
t +

1√
t
(H+

0 + Y0)
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where

Y m
t =

t∑
j=1

Gj

From Billingsley (1961)’s central limit theorem for martingales

1√
t
Y m
t ⇒ N

(
0, E

[
D(X)2|I

])
where ⇒ denotes weak convergence, meaning convergence in distribution.
Clearly, {(1/

√
t)H+

t } and {(1/
√
t)(H+

0 +Y0)} both converge in mean square
to zero. Thus,

Proposition 2.3.1. For all stationary increment processes {Yt : t = 0, 1, 2, ...}
represented by X in H

1√
t
(Yt − νt)⇒ N

(
0, E

[
D(X)2|I

])
.

Furthermore,

E
[
D(X)2|I

]
= lim

t→∞
E

[(
1√
t

(Yt − tν)

)2 ∣∣∣I] .
2.4 Cointegration

Linear combinations of stationary increment processes Y 1
t and Y 2

t have sta-
tionary increments. For real valued scalars r1 and r2, form

Yt = r1Y
1
t + r2Y

2
t

where

Y 1
t+1 − Y 1

t = X1
t+1

Y 2
t+1 − Y 2

t = X2
t+1.

The increment in {Yt : t = 0, 1, . . .} is

Xt+1 = r1X
1
t+1 + r2X

2
t+1
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and
Y0 = r1Y

2
0 + r2Y

2
0 .

The Proposition 2.2.2 martingale component of {Yt : t ≥ 0} is the corre-
sponding linear combination of the martingale components of {Y 1

t : t =
0, 1, ...} and {Y 2

t : t = 0, 1, ...}. The Proposition 2.2.2 trend component
of {Yt : t = 0, 1, . . .} is the corresponding linear combination of the trend
components of {Y 1

t : t = 0, 1, . . .} and {Y 2
t : t = 0, 1, . . .}.

Proposition 2.2.2 sheds light on the cointegration concept of Engle and
Granger (1987) that is associated with linear combinations of stationary
increment processes whose trend and martingale components are both zero.
Engle and Granger call two processes cointegrated if there exists a linear
combination of them that is stationary.4 That situation prevails when there
exist real valued scalars r1 and r2 such that

r1ν1 + r2ν2 = 0
r1D(X1) + r2D(X2) = 0,

where the ν’s correspond to the trend components in Proposition 2.2.2.
These two zero restrictions imply that the time trend and the martingale
component for the linear combination Yt are both zero.5 When r1 = 1 and
r2 = −1, the component stationary increment processes Y 1

t and Y 2
t share a

common growth component.
This notion of cointegration provides one way to formalize balanced

growth paths in stochastic environments through determining linear com-
bination of growing times series for which stochastic growth is absent.

4The Box and Tiao (1977) “canonical correlation” approach to linear time series
analysis anticipated, at least partially, the co-integration restrictions of time series econo-
metricians and macroeconomists.

5The cointegration vector (r1, r2) is determined only up to scale.
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Markov Processes

We call a random vector Xt the state because it completely describes the
position of a dynamic system at time t from the perspective of a model
builder or an econometrician. We construct a consistent sequence of prob-
ability distributions Pr` for a sequence of random vectors

X [`] .=


X0

X1
...
X`


for all nonnegative integers ` by specifying the following two elementary
components of a Markov process: (i) a probability distribution for X0, and
(ii) a time-invariant distribution for Xt+1 conditional on Xt for t > 0. All
other probabilities are functions of these two distributions. By creatively
defining the state vector Xt, a Markov specification includes many models
used in applied research.

3.1 Constituents

Assume a state space X and a transition distribution P (dx∗|x). For exam-
ple, X could be Rn or a subset of Rn. The transition distribution P is a
conditional probability measure for each Xt = x in the state space, so it
satisfies

∫
{x∗∈X} P (dx∗|x) = 1 for every x in the state space. If in addition

we specify a marginal distribution Q0 for the initial state x0 over X , then we

29
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have completely specified all joint distributions for the stochastic process
{Xt, t = 0, 1, . . .}.

The notation P (dx∗|x) denotes a conditional probability measure; inte-
gration is over x∗ and conditioning is captured by x. Thus, x∗ is a possible
realization of next period’s state and x is a realization of this period’s state.
The conditional probability measure P (dx∗|x) assigns conditional probabil-
ities to next period’s state given that this period’s state is x. Often, but
not always, the conditional distributions have densities against a common
distribution λ(dx∗) to be used to integrate over states. That lets us use a
transition density to represent the conditional probability measure.

Example 3.1.1. A first-order vector autoregression is a Markov process.
Here Q0(x) is a normal distribution with mean µ0 and covariance matrix Σ0

and P (dx∗|x) is a normal distribution with mean Ax and covariance matrix
BB′ for a square matrix A and a matrix B with full column rank.1 These
assumptions imply the vector autoregressive (VAR) representation

Xt+1 = AXt +BWt+1,

for t > 0, where Wt+1 is a multivariate standard normally distributed ran-
dom vector that is independent of Xt.

Example 3.1.2. A discrete-state Markov chain consists of a Q0 represented
as a row vector and a transition probability P (dx∗|x) represented as a ma-
trix with one row and one column for each possible value of the state x.
Rows contain vectors of probabilities of next period’s state conditioned on a
realized value of this period’s state.

It is useful to construct an operator by applying a one-step conditional
expectation operator to functions of a Markov state. Let f : X → R. For
bounded f , define:

Tf(x) = E [f(Xt+1)|Xt = x] =

∫
{x∗∈X}

f(x∗)P (dx∗|x). (3.1)

The Law of Iterated Expectations justifies iterating on T to form conditional
expectations of the function f of the Markov state over longer horizons:

Tjf(x) = E [f(Xt+j)|Xt = x] .
1When BB′ is singular, a density may not exist with respect to Lebesgue measure.

The covariance matrix BB′ is typically singular for a first-order vector autoregression
constructed by rewriting a higher-order vector autoregression.
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We can use the operator T to characterize a Markov process. Indeed,
by applying T to a suitable range of test functions f , we can construct a
conditional probability measure.

Fact 3.1.3. Start with a conditional expectation operator T that maps a
space of bounded functions into itself. We can use T to construct a condi-
tional probability measure P (dx∗|x) provided that T is (a) well defined on
the space of bounded functions, (b) preserves the bound, (c) maps nonneg-
ative functions into nonnegative functions, and d) maps the unit function
into the unit function.

3.2 Stationarity

We can construct a stationary Markov process by carefully choosing the
distribution of the initial state X0.

Definition 3.2.1. A probability measure Q over a state space X for a
Markov process with transition probability P is a stationary distribution
if it satisfies ∫

{x∈X}
P (dx∗|x)Q(dx) = Q(dx∗).

We will sometimes refer to a stationary density q. A density is always
relative to a measure. With this in mind, let λ be a measure used to
integrate over possible Markov states on the state space X . Then a den-
sity q is a nonnegative (Borel measurable) function of the state for which∫
q(x)λ(dx) = 1.

Definition 3.2.2. A stationary density over a state space X for a
Markov process with transition probability P is a probability density q with
respect to a measure λ over the state space X that satisfies∫

P (dx∗|x)q(x)λ(dx) = q(x∗)λ(dx∗).

Various sufficient conditions imply the existence of a stationary distri-
bution. Given a transition distribution P , one such condition that is widely
used to justify some calculations from numerical simulations is that the
Markov process be time reversible, which means that

P (dx∗|x)Q(dx) = P (dx|x∗)Q(dx∗) (3.2)



32 Chapter 3. Markov Processes

for some probability distribution Q on X . Because a transition distribution
satisfies

∫
{x∈X} P (dx|x∗) = 1,∫
{x∈X}

P (dx∗|x)Q(dx) =

∫
{x∈X}

P (dx|x∗)Q(dx∗) = Q(dx∗),

so Q is a stationary distribution by Definition 3.2.1. Restriction (3.2) im-
plies that the process is time reversible in the sense that forward and back-
ward transition distributions coincide. Time reversibility is special, so later
we will explore other sufficient conditions for the existence of stationary
distributions.2

Remark 3.2.3. When a Markov process starts at a stationary distribution,
we can construct the process {Xt : t = 1, 2, ...} with a measure-preserving
transformation S of the type featured in chapter 1, section 1.3.

3.3 L2 and Eigenfunctions

We connected ergodicity to a statistical notion of invariance in chapter 1.
The word invariance brings to mind a generalization of eigenvectors called
eigenfunctions. Eigenfunctions of a linear mapping characterize an invari-
ant subspace of functions such that the application of a linear mapping to
any element of that space remains in the same subspace. Eigenfunctions
associated with a unit eigenvalue are themselves invariant under the map-
ping. So perhaps it is not surprising that such eigenfunctions of T come in
handy for studying ergodicity of Markov processes.

Given a stationary distribution Q, form the space of functions

L2 = {f : X → R :

∫
f(x)2Q(dx) <∞}.

It can be verified that T : L2 → L2 and that

‖f‖ =

[∫
f(x)2Q(dx)

]1/2

is a well defined norm on L2.
We now study eigenfunctions of the conditional expectation operator T.
2Numerical Bayesian statistical analysis often computes a posterior probability dis-

tribution by iterating to convergence a reversible Markov process whose stationary dis-
tribution is that posterior distribution.
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Definition 3.3.1. A function f̃ ∈ L2 that solves Tf = f is an eigenfunc-
tion of T associated with a unit eigenvalue.

The following proposition asserts that an eigenfunction f̃(Xt) associated
with a unit eigenvalue is constant as Xt moves through time.

Proposition 3.3.2. Suppose that f̃ is an eigenfunction of T associated with
a unit eigenvalue. Then {f̃(Xt) : t = 0, 1, ...} is constant over time with
probability one.

Proof.

E
[
f̃(Xt+1)f̃(Xt)

]
=

∫
(Tf̃)(x)f̃(x)Q(dx) =

∫
f̃(x)2Q(dx) = E

[
f̃(Xt)

2
]

where the first equality follows from the Law of Iterated Expectations. Then
because Q is a stationary distribution,

E
(

[f̃(Xt+1)− f̃(Xt)]
2
)

= E
[
f̃(Xt+1)2

]
+ E

[
f̃(Xt)

2
]

−2E
[
f̃(Xt+1)f̃(Xt)

]
= 0.

3.4 Ergodic Markov Processes

Chapter 1 studied special statistical models that, because they are ergodic,
are affiliated with a Law of Large Numbers in which limit points are constant
across sample points ω ∈ Ω. Section 1.8 described other statistical models
that are not ergodic and that are components of more general probability
specifications that we used to express the idea that a statistical model is
unknown.3 We now explore ergodicity in the context of Markov processes.

From Proposition 3.3.2 we know that time-series averages of an eigen-
function Tf̃ = f̃ are invariant over time, so

1

N

N∑
t=1

f̃(Xt) = f̃(X).

3Unknown parameters manifest themselves as unknown statistical models.
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However, when f̃(x) varies across sets of states x that occur with positive
probability under Q, a time series average 1

N

∑N
t=1 f̃(Xt) can differ from∫

f̃(x)Q(dx). This happens when observations of f̃(Xt) along a sample
path for {Xt} convey an inaccurate impression of how f(X) varies across the
stationary distribution Q(dx). See Example 3.6.4 below. We can exclude
the possibility of such inaccurate impressions by imposing a restriction on
the eigenfunction equation Tf = f .

Proposition 3.4.1. When a unique solution to the equation

Tf = f

is a constant function (with Q measure one), then it is possible to con-
struct {Xt : t = 0, 1, 2, ...} as a stationary and ergodic Markov process with
T as the one-period conditional expectation operator and Q as the initial
distribution for X0.4

Evidently, ergodicity is a property that obtains relative to a stationary
distribution Q of the Markov process. If there are multiple stationary distri-
butions, it is possible that there is a unique constant function f that solves
Tf = f problem for one stationary distribution and that non-constant so-
lutions exist for other stationary distributions.

Invariant events for a Markov process

Consider an eigenfunction f̃ of T associated with a unit eigenvalue. Let
ϕ : R → R be a bounded Borel measurable function. Since {f̃(Xt) : t =

0, 1, 2, ...} is invariant over time, so is
{
ϕ
[
f̃(Xt)

]
: t = 0, 1, 2, . . .

}
and it is

necessarily true that

T(ϕ ◦ f̃) = ϕ ◦ f̃ .

4In particular, the process can be represented using a probability measure Pr defined
over events in F, a transformation S for which(S, P r) is measure preserving, and ergodic

and a measurement function X̃ such that
{
X̃ ◦ St : t = 0, 1, . . .

}
has the same induced

distribution as the process {Xt : t = 0, 1, 2, . . .}.
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Therefore, from an eigenfunction f̃ associated with a unit eigenvalue, we
can construct other eigenfunctions,5 for example

ϕ[f̃(x)] =

{
1 if f̃(x) ∈ b̃

0 if f̃(x) /∈ b̃
(3.3)

for some Borel set b̃ in R. It follows that

Λ = {ω ∈ Ω : f̃ [X0(ω)] ∈ b̃}

is an invariant event in Ω. Note that by constructing the Borel set, b in X

b =
{
x : f̃(x) ∈ b̃

}
we can represent Λ as

Λ = {ω ∈ Ω : X0(ω) ∈ b} . (3.4)

Thus we have shown how to construct many non-degenerate eigenfunctions,
starting from an initial such function.

For Markov processes, all invariant events can be represented as in (3.4),
which is expressed in terms of the initial state X0. See Doob (1953, p. 460,
Theorem 1.1). Thus, associated with an invariant event is a Borel set in X .
Let J denote the collection of Borel subsets of X for which Λ constructed
as in (3.4) is an invariant event. From these invariant events, we can also
construct many non-degenerate eigenfunctions as indicator functions of sets
in J. Formally, if b̃ ∈ J, then the indicator function

f(x) =

{
1 if x ∈ b
0 if x /∈ b

(3.5)

satisfies
Tf = f

with Q probability one. Provided that the probability of Λ is neither zero
nor one, then we have constructed a nonnegative function f that is strictly
positive on a set of positive Q measure and zero on a set with strictly
positive Q measure.

5This construction also works for unbounded functions ϕ provided that ϕ◦f̃ is square
integrable under the Q measure.
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More generally, when a Markov process {Xt : t ≥ 0} is not ergodic, there
exist bounded eigenfunctions with unit eigenvalues that are not constant
with Q measure one. For a non-degenerate eigenfunction f̃ with unit eigen-
value to be constant with Q measure one, it shouldn’t be possible for the
Markov process permanently to get stuck in a subset of the state space
which has probability different from one or zero. Suppose now we consider
any Borel set b of X that has Q measure that is neither zero nor one. Let
f be constructed as in (3.5) without restricting b to be in J. Then Tj
applied to f is the conditional probability of {Xj ∈ b} as of date zero. If
we want time series averages to converge to unconditional expectations, we
must require that the set b be visited eventually with positive probability.
To account properly for all possible future dates we use a mathematically
convenient resolvent operator defined by

Mf(x) = (1− λ)
∞∑
j=0

λjTjf.

for some constant discount factor 0 < λ < 1. Notice that If f̃ is an eigen-
function of T associated with a unit eigenvalue, then the same is true for
Tj and hence for M. We translate the requirement that Xj be eventually
visited to a restriction that applying M the indicator function f yields a
strictly positive function. The following statement extends this restriction
to all nonnegative functions that are distinct from zero.

Proposition 3.4.2. Suppose that for any f ≥ 0 such that
∫
f(x)Q(dx) > 0,

Mf(x) > 0 for all x ∈ X with Q measure one. Then any solution f̃ to
Tf = f is necessarily constant with Q measure one.

Proof. Consider an eigenfunction f̃ associated with a unit eigenvalue. The
function f = ϕ ◦ f̃ necessarily satisfies:

Mf = f

for any ϕ of the form (3.3). If such an f also satisfies
∫
f(x)Q(dx) > 0,

then f(x) = 1 with Q probability one. Since this holds for any Borel set b
in R, f̃ must be constant with Q probability one.

Proposition 3.4.2 supplies a sufficient condition for ergodicity. A more
restrictive sufficient condition is that there exists an integer m > 1 such
that

Tmf(x) > 0
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for any f ≥ 0 such that
∫
f(x)Q(dx) > 0 on a set with Q measure one.

Remark 3.4.3. The sufficient conditions imposed in Proposition 3.4.2 im-
ply a property called irreducibility relative to the probability measure Q.
While this proposition presumes that Q is a stationary distribution, irre-
ducibility allows for a more general specification of Q.

Proposition 3.4.2 provides a way to verify ergodicity. As discussed in
Chapter 1, ergodicity is a property of a statistical model. As statisticians or
econometricians we often entertain a set of Markov models, each of which is
ergodic. For each model we can build a probability Pr using the canonical
construction given at the outset of Chapter 1. Convex combinations of these
probabilities are measure-preserving but not necessarily ergodic when used
in conjunction with the shift transformation S. We can take the ergodic
Markov models to be the building blocks for a specification to to be used in
a statistical investigation. There can be a finite number of these building
blocks or even a continuum of them represented in terms of an unknown
parameter vector.

3.5 Periodicity

Next we study a notion of periodicity of a stationary and ergodic Markov
process.6 To define periodicity of a Markov process, for a given positive
integer p we construct a new Markov process by sampling an original process
every p time periods. This is sometimes called ‘skip-sampling’ at sampling
interval p.7 With a view toward applying Proposition 3.3.2 to Tp, solve

Tpf = f (3.6)

for a function f̃ . We know from Proposition 3.3.2 that for an f̃ that solves
(3.6), {f̃(Xt) : t = 0, p, 2p, . . .} is invariant and so is {f̃(Xt) : t = 1, p +
1, 2p + 1, ...}. The process f̃(Xt) is periodic with period p or np for any
positive integer n.

6Our definition of periodicity is confines to a stationary distribution. Actually, pe-
riodicity can be defined more generally. We limit our treatment of periodicity to spec-
ifications of transition probabilities for which there exist stationary distributions for
convenience here.

7See appendix ?? of chapter 1, Hansen and Sargent (1993) and Hansen and Sargent
(2013, ch. 14).
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Definition 3.5.1. The periodicity of an irreducible Markov process {Xt}
with respect to Q̃ is the smallest positive integer p such that there is a
solution to equation (3.6) that is not constant with Q̃ measure one. When
there is no such integer p, we say that the process is aperiodic.

Result 3.5.2. Consider a counterpart of the resolvent operator M con-
structed by sampling at interval given by positive integer p:

Mpf(x) = (1− λ)
∞∑
j=0

λjTpjf. (3.7)

Provided that Mpf(x) > 0 with Q measure one and all p ≥ 0 for any f ≥ 0
such that

∫
f(x)Q(dx) > 0, the Markov process is aperiodic.

3.6 Finite-State Markov Chains

Suppose that X consists of n possible states. We can label these states in
a variety of ways, but for now we suppose that state xj is the coordinate
vector consisting entirely of zeros except in position j, where there is a one.
Let P be an n by n transition matrix, where entry i, j is the probability of
moving from state i to state j in a single period. Thus, the entries of P are
all nonnegative and

P1n = 1n,

where 1n is an n-dimensional vector of ones.
Let q be an n-dimensional vector of probabilities. Stationarity requires

that
q′P = q′, (3.8)

where q is a row eigenvector (also called a left eigenvector) of P associated
with a unit eigenvalue.

We use a vector f to represent a function from the state space to the
real line. Each coordinate of f gives the value of the function at the corre-
sponding coordinate vector. Then the conditional expectation operator T
can be represented in terms of the transition matrix P:

E (f ·Xt+1|Xt = x) = (Tf) · x = x′Pf.

Now consider column eigenvectors called “right eigenvectors” of P that are
associated with a unit eigenvalue.



3.6. Finite-State Markov Chains 39

Proposition 3.6.1. Suppose that the only solutions to

Tf = f

are of the form f ∝ 1n, where ∝ means ‘proportional to’. Then we can
construct a process that is stationary and ergodic by initializing the process
with density q determined by equation (3.8).

We can weaken the Proposition 3.6.1 sufficient condition for stationarity
and ergodicity to allow nonconstant right eigenvectors. This weakening is
of interest when there are multiple stationary distributions.

Proposition 3.6.2. Assume that there exists a real number r such that the
right eigenvector f and a stationary distribution q satisfy

min
r

n∑
i=1

(fi − r)2qi = 0.

Then the process is stationary and ergodic.

Notice that if qi is zero, the contribution of fi to the least squares objective
can be neglected. This allows for non-constant f’s, albeit in a limited way.

Three examples illustrate ideas in these propositions.

Example 3.6.3. Recast Example 1.4.3 as a Markov chain with transition

matrix P =

[
0 1
1 0

]
. This chain has a unique stationary distribution q =[

.5 .5
]′

and the invariant functions are
[
r r

]′
for any scalar r. Therefore,

the process initiated from the stationary distribution is ergodic. The process
is periodic with period two since the matrix P2 is an identity matrix and all
two dimensional vectors are eigenvectors associated with a unit eigenvalue.

Example 3.6.4. Recast Example 1.4.4 as a Markov chain with transition

matrix P =

[
1 0
0 1

]
. This chain has a continuum of stationary distributions

π

[
1
0

]
+ (1− π)

[
0
1

]
for any π ∈ [0, 1] and invariant functions

[
r1

r2

]
for any

scalars r1, r2. Therefore, when π ∈ (0, 1) the process is not ergodic because
if r1 6= r2 the resulting invariant function fails to be constant across states
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that have positive probability under the stationary distribution associated
with π ∈ (0, 1). When π ∈ (0, 1), nature chooses state i = 1 or i = 2 with
probabilities π, 1− π, respectively, at time 0. Thereafter, the chain remains
stuck in the realized time 0 state. Its failure ever to visit the unrealized state
prevents the sample average from converging to the population mean of an
arbitrary function of the state.

Example 3.6.5. A Markov chain with transition matrix P =

.8 .2 0
.1 .9 0
0 0 1


has a continuum of stationary distributions π

[
1
3

2
3

0
]′

+(1−π)
[
0 0 1

]′
for π ∈ [0, 1] and invariant functions

[
r1 r1 r2

]′
for any scalars r1, r2.

Under any stationary distribution associated with π ∈ (0, 1), the chain is not
ergodic because some invariant functions are not constant with probability
one. But under stationary distributions associated with π = 1 or π = 0, the
chain is ergodic.

3.7 Limited Dependence

Recall the conditional expectations operator T defined in equation (3.1) for
a space L2 of functions f of a Markov process with transition probability
P and stationary distribution Q and for which f(Xt) has a finite second
moment under Q:

Tf(x) = E [f(Xt+1) | Xt = x] =

∫
{x∗∈X}

f(x∗)P (dx∗|x).

We suppose that under the stationary distribution Q, the process is ergodic.
Because it is often useful to work with random variables that have been

‘centered’ by substracting out their means, we define the following subspace
of L2:

N =

{
f ∈ L2 :

∫
f(x)Q(dx) = 0

}
. (3.9)

We use the same norm ‖f‖ =
[∫
f(x)2Q(dx)

]1/2
on both L2 and N too.

Definition 3.7.1. The conditional expectation operator T is said to be a
strong contraction on N if there exists 0 < ρ < 1 such that

‖Tf‖ ≤ ρ‖f‖
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for all f ∈ N .

When Tm is a strong contraction for some positive integer m and some
ρ ∈ (0, 1), the Markov process is said to be ρ-mixing conditioned on the
invariant events.

Remark 3.7.2. T being a strong contraction on N limits intertemporal
dependence of the Markov process {Xt}.

Let I be the identity operator. When the conditional expectation opera-
tor T is a strong contraction, the operator (I−T)−1 is well defined, bounded
on N , and equal to the geometric sum:8

(I− T)−1 f(x) =
∞∑
j=0

Tjf(x) =
∞∑
j=0

E [f(Xt+j)|Xt = x] .

Example 3.7.3. Consider the Markov chain setting of section 3.6 with a
transition matrix P. A stationary density q is a nonnegative vector that
satisfies

q′P = q′

and q · 1n = 1. If the only column eigenvector of T associated with a unit
eigenvalue is constant over states i for which qi > 0, then the process is
ergodic. If in addition the only eigenvector of P that is associated with an
eigenvalue that has a unit norm (the unit eigenvalue might be complex) is
constant over states i for which qi > 0, then Tm is a strong contraction for
some integer m > 1.9 This implies that the process is ergodic. It also rules
out the presence of periodic components that can be forecast perfectly.

8The geometric series after the first equality sign is well defined under the weaker
restriction that Tm is a strong contraction for some integer m > 1.

9This follows from Gelfand’s Theorem, which asserts the following. Let N be the
n − 1 dimensional space of vectors that are orthogonal to q. T maps N into itself.
The spectral radius of T restricted to N is the maximum of the absolute values of the
eigenvalues. Gelfand’s Theorem asserts that the spectral radius governs the behavior
as m gets large of the decay factor of the T transformation applied m times. Provided
that the spectral radius is less than one, the strong contraction property prevails for any
ρ < 1 that is larger than the spectral radius.
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3.8 Limits of Multi-Period Forecasts

When a Markov process is aperiodic, there are interesting situations in
which

lim
j→∞

Tjf(x) = r (3.10)

for some r ∈ R, where convergence is either pointwise in x or in the L2

norm. Limit (3.10) asserts that long-run forecasts do not depend on the
current Markov state. (Meyn and Tweedie (1993) provide a comprehensive
treatment of such convergence.) Let Q be a stationary distribution. Then
it is necessarily true that∫

Tjf(x)Q(dx) =

∫
f(x)Q(dx)

for all j. Thus,

r =

∫
f(x)Q(dx),

so that the limiting forecast is necessarily the mathematical expectation of
f(x) under a stationary distribution. Here we have assumed that the limit
point is a number and not a random variable; we have not assumed that
the stationary distribution is unique.

Notice that if (3.10) is satisfied, then any function f that satisfies

Tf = f

is necessarily constant with probability one. Also, if
∫
f(x)Q(dx) = 0 and

convergence is sufficiently fast, then

lim
N→∞

N∑
j=0

Tjf(x) (3.11)

is a well-defined function of the Markov state. We shall construct the limit
in (3.11) when we extract martingales from additive functionals in chapter
4.

A set of sufficient conditions for the convergence outcome

lim
j→∞

Tjf(x∗)→
∫
f(x)Q(dx) (3.12)
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for each x∗ ∈ X and each bounded f is:10

Condition 3.8.1. A Markov process with stationary distribution Q satis-
fies:

(i) For any f ≥ 0 such that
∫
f(x)Q(dx) > 0, Mpf(x) > 0 for all x ∈ X

with Q measure one and all positive integers p ≥ 0, where the operator
Mp is defined in (3.7).

(ii) T maps bounded continuous functions into bounded continuous func-
tions, i.e., the Markov process is said to satisfy the Feller property.

(iii) The support of Q has a nonempty interior in X .

(iv) TV (x)− V (x) ≤ −1 outside a compact subset of X for some nonneg-
ative function V .

We encountered condition (i) in our section 3.4 discussion of Markov pro-
cesses that are ergodic and aperiodic. Condition ( iv) is a drift condition for
stability that requires that we find a function V that satisfies the requisite
inequality. Heuristically, the drift condition says that outside a compact
subset of the state space, application of the conditional expectation oper-
ator pushes the function inward. The choice of −1 as a comparison point
is made only for convenience, since we can always multiply the function V
by a number greater than one. Thus, −1 could be replaced by any strictly
negative number. In section 3.9, we will apply condition 3.8.1 to verify
ergodicity of a vector autoregression.

3.9 Vector Autoregressions

A square matrix A is said to be stable when all of its eigenvalues have
absolute values that are strictly less than one. For a stable A, suppose that

Xt+1 = AXt + BWt+1,

where {Wt+1 : t = 1, 2, ...} is an i.i.d. sequence of multivariate normally
distributed random vectors with mean vector zero and covariance matrix I

10Restriction 3.12 is stronger than ergodicity. It rules out periodic processes, although
we know that periodic processes can be ergodic.
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and that X0 ∼ N (µ0,Σ0). This specification constitutes a first-order vector
autoregression.

Let µt = EXt. Notice that

µt+1 = Aµt.

The mean µ of a stationary distribution satisfies

µ = Aµ.

Because we have assumed that A is a stable matrix, µ = 0 is the only
solution of (A − I)µ = 0, so the mean of the stationary distribution is
µ = 0.

Let Σt = E(Xt − µt)(Xt − µt)′ be the covariance matrix of Xt. Then

Σt+1 = AΣtA′ + BB′.

For Σt = Σ to be invariant over time, it must satisfy the discrete Lyapunov
equation

Σ = AΣA′ + BB′. (3.13)

When A is a stable matrix, this equation has a unique solution for a positive
semidefinite matrix Σ.

Suppose that Σ0 = 0 (a matrix of zeros) and for t > 1 define the matrix

Σt =
t−1∑
j=0

AjBB′(Aj)′.

The limit of the sequence {Σt}∞t=0 is

Σ =
∞∑
j=0

AjBB′(Aj)′,

which can be verified to satisfy Lyapunov equation (3.13). Thus, Σ equals
the covariance matrix of the stationary distribution.11 Similarly, for all
µ0 = EX0

µt = Atµ0,

11To verify the asserted equality, notice that
∑∞
j=0 AjBB′Aj′ =

A(
∑∞
j=0 AjBB′Aj′)A′ + BB′.
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converges to zero, the mean of the stationary distribution.
The linear structure implies that the stationary distribution is Gaussian

with mean µ and covariance matrix Σ. To verify ergodicity, we suppose
that the covariance matrix Σ of the stationary distribution has full rank
and verify conditions 3.8.1. Restriction (iii) of Condition 3.8.1 is satisfied.
Furthermore, Σt has full rank for some t, which guarantees that the process
is irreducible and aperiodic so that restriction (i) is satisfied. As a candidate
for V (x) in condition (iv), take V (x) = |x|2. Then

TV (x) = x′A′Ax+ trace(B′B)

so
TV (x)− V (x) = x′(A′A− I)x+ trace(B′B).

That A is a stable matrix implies that A′A− I is negative definite, so that
drift restriction (iv) of Condition 3.8.1 is satisfied for |x| sufficiently large.12

Thus, having verified conditions 3.8.1, we have verified the ergodicity of the
VAR.

We can extend this example to allow the mean of the stationary distri-
bution not to be zero. Partition the Markov state as

x =

[
x1

x1

]
where x[2] is a scalar. Similarly, partition the matrices A and B as

A =

[
[A11 A12

0 1

]
B =

[
B1

0

]
where A11 is a stable matrix. Notice that the dynamics imply

X2
t+1 = X2

t = · · · = X2
0

and hence is invariant. Let µ2 denote the mean of X2
t for any t. For a

stationary distribution we require that the mean µ1 of Xt1 satisfy

µ1 = A11µ1 + A12µ2.

12The Feller property (ii) of Condition 3.8.1 can also be verified.
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Hence
µ1 = (I − A11)−1 A12µ2.

Imitating our earlier argument, the covariance matrix, Σ11 of X1
t satisfies

Σ11 =
∞∑
j=0

(A11)j B1(B1)′ (A11
′)
j

+ (I− A11)−1 A12Σ22A12
′ (I− A11

′)
−1

where Σ22 is the variance of X2
t for all t. Stationarity imposes no restriction

on the mean µ2 and variance Σ22.
Since {X2

t : t ≥ 0} is invariant, the process {Xt : t ≥ 0} is ergodic only
when the variance Σ22 is zero. When {Xt : t ≥ 0} is not ergodic, the limit
points in the Law of Large Numbers (Theorem 1.6.1) should be computed
by conditioning on X2

0 .

3.10 Inventing a Past Again

In section 1.10, we invented an infinite past for a stochastic process. Here
we invent an infinite past for a vector autoregression in a way that is equiv-
alent to drawing an initial condition X0 at time t = 0 from the stationary
distribution N (0,Σ∞), where Σ∞ solves the discrete Lyapunov equation
(3.13), namely, Σ∞ = AΣ∞A′ + BB′.

Thus, consider the vector autoregression

Xt+1 = AXt + BWt+1

where A is a stable matrix, {Wt+1}∞t=−∞ is now a two-sided infinite sequence
of i.i.d. N (0, I) random vectors, and t is an integer. We can solve this
difference equation backwards to get the moving average representation

Xt =
∞∑
j=0

AjBWt−j.

Then

E
[
Xt (Xt)

′] =
∞∑
j=0

AjBB′
(
Aj
)′

= Σ∞

where Σ∞ is also the unique positive semidefinite matrix that solves Σ∞ =
AΣ∞A′ + BB′.



Chapter 4

Processes with Markovian
increments

In this chapter, we use a stationary Markov process to construct a pro-
cess that displays stochastic arithmetic growth, then show how to extract a
linear time trend and a martingale. Eventually, we will explore the impli-
cations exponentiating this process to transform an arithmetically growing
processes like those described in this chapter to construct a process that
displays geometric growth.

47



48 Chapter 4. Processes with Markovian increments

4.1 Definition of additive functional

Let {Wt+1 : t ≥ 0} be a k-dimensional stochastic process of unanticipated
economic shocks. Let {Xt : t ≥ 0} be a discrete-time stationary Markov
process that is generated by initial distribution Q for X0 and transition
equation

Xt+1 = ϕ(Xt,Wt+1), (4.1)

where ϕ is a Borel measurable function. Let {At : t = 0, 1, ...} be the filtra-
tion generated by histories of W and X; At serves as the information set
(sigma algebra) generated by X0,W1, . . . ,Wt. We presume that the con-
ditional probability distribution for Wt+1 conditioned on At depends only
on Xt. To assure that the process {Wt+1 : t ≥ 0} represents unanticipated
shocks, we restrict it to satisfy

E (Wt+1|Xt) = 0.

We condition on a statistical model in the sense of section 1.7 and assume
that the stationary Xt process is ergodic.1 The Markov structure of {Xt :
t ≥ 0} makes the distribution of (Xt+1,Wt+1) conditioned on At depend
only on Xt.

2

Definition 4.1.1. A process {Yt} is said to be an additive functional if
it can be represented as

Yt+1 − Yt = κ(Xt,Wt+1) (4.2)

for a (Borel measurable) function κ : Rn × Rk → R, or equivalently

Yt = Y0 +
t∑

j=1

κ(Xj−1,Wj),

where we initialize Y0 at some arbitrary (Borel measurable) function of X0.

When Y0 is a function of X0, we can construct Yt as a function of the
underlying Markov process between dates zero and t.

1If we wanted to include model uncertainty in the spirit of chapter 1, we could con-
struct a set of statistical models like the one described here, each with its own parameter
vector, and then form a weighted average over that set of models.

2Like {Xt}, the pair {(Xt,Wt)} is a first-order Markov process restricted so that the
joint transition distribution depends only on Xt.
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Definition 4.1.2. An additive functional {Yt : t = 0, 1, ...} is said to be an
additive martingale if E [κ(Xt,Wt+1)|Xt] = 0.

Example 4.1.3. (Stochastic Volatility) Suppose that

Yt+1 − Yt = µ(Xt) + σ(Xt)Wt+1

Xt+1 = AXt + BWt+1

where {Wt+1 : t ≥ 0} is an i.i.d. sequence of standardized multivariate
normally distributed random vectors, A is a stable matrix, and B has full
column rank, and the random vector X0 is generated by initial distribution
Q associated with the stationary distribution for the {Xt} process. Here
µ(Xt) is the conditional mean of Yt+1 − Yt and |σ(Xt)|2 is its conditional
variance. This is called a stochastic volatility model because |σ(Xt)|2 is a
stochastic process.

In example (4.1.3), when the conditional mean µ(Xt) = 0 , the process
{Yt} is a martingale. Note that E [κ(Xt,Wt+1)|Xt] = 0 implies the usual
martingale restriction

E (Yt+1|At) = Yt, for t ≥ 0.

4.2 Extracting Martingales

We can decompose an additive functional into a sum of components, one
of which is an additive martingale that encapsulates all long-run stochastic
variation as in Proposition 2.2.2. In this section, we show how to extract the
martingale component. We adopt a construction like that used to establish
Proposition 2.2.2 and proceed in four steps.

i) Construct the trend coefficient is the unconditional expectation:

ν = E [κ(Xt,Wt+1)] .

ii) Form the random variable Ht by computing multiperiod forecasts for
each horizon and summing these forecasts over all horizons. Start by
constructing

κ(x) = E [κ(Xt,Wt+1)− ν | Xt = x] ,
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Thus
E [κ(Xt+j−1,Wt+j)− ν|Xt = x] = Tj−1κ(x).

Summing the terms, construct

Ht =
∞∑
j=0

E ([κ(Xt−1+j,Wt+j − ν] | Xt)

= κ(Xt−1,Wt)− ν +
∞∑
j=0

E [κ(Xt+j) | Xt]

= κh(Xt−1,Wt)

where

κh(Xt−1,Wt) = κ(Xt−1,Wt)− ν +
∞∑
j=0

Tjκ(Xt)

= κ(Xt−1,Wt)− ν + (I− T)−1 κ(Xt)

where T is the operator defined in (3.1). The right side becomes a
function of only (Xt−1,Wt) once we substitute for ϕ(Xt−1,Wt) for Xt

as implied by (4.1).

This construction requires that the infinite sum

∞∑
j=0

Tjκ(x) = (I− T)−1 κ(x)

converges in mean square relative to the stationary distribution for
{Xt : t ≥ 0}. A sufficient condition for this is that Tm is a strong
contraction for some integer m > 1 and κ ∈ N where N is defined in
(3.9).

iii) Compute
H+
t = E (Ht+1 | Xt) = κ+(Xt)

where3

κ+(x)
.
= E [κ(Xt,Wt+1) | Xt = x]− ν + E

[
(I− T)−1 κ(Xt+1) | Xt = x

]
= E [κ(Xt,Wt+1) | Xt = x]− ν + (I− T)−1 Tκ(x).

3Notice that T (I− T)
−1
κ(x) = (I− T)

−1 Tκ(x).
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iv) Build the martingale increment:

Gt = Ht −H+
t−1 = κm(Xt−1,Wt)

where
κm(Xt−1,Wt) = κh(Xt−1,Wt)− κ+(Xt−1).

By construction, the expectation of κm(Xt,Wt+1) conditioned on Xt is
zero.

Armed with these calculations, we now report a Markov counterpart to
Proposition 2.2.2.

Proposition 4.2.1. Suppose that {Yt : t ≥} is an additive functional, that
Tm is a strong contraction on N for some m, and that E[κ(Xt,Wt+1)2] <
∞. Then

Yt = tν︸︷︷︸ +
t∑

j=1

κm(Xj−1,Wj)︸ ︷︷ ︸ − κ+(Xt)︸ ︷︷ ︸ + Y0 + κ+(X0)︸ ︷︷ ︸ .
trend martingale stationary invariant

Notice that the martingale component is itself an additive functional. The
first is a linear time trend, the second an additive martingale, the third a
stationary process with mean zero, and the fourth a time-invariant constant.
If we happen to impose the initialization: Y0 = −κ+(X0), then the fourth
term is zero. We use a Proposition 4.2.1 decomposition as a way to associate
a “permanent shock” with an additive functional. The permanent shock is
the increment to the martingale.

4.3 Applications

We now compute martingale increments for two models of economic time
series.

Application to a VAR

We apply the four-step construction in algorithm 4.2 when the Markov state
{Xt} follows a first-order VAR

Xt+1 = AXt + BWt+1, (4.3)
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where A is a stable matrix and {Wt+1 : t ≥ 0} is a sequence of inde-
pendent and identically normally distributed random variables with mean
vector zero and identity covariance matrix. The one-step ahead conditional
covariance matrix of the time t+ 1 shocks BWt+1 to Xt+1 equals BB′. Let

Yt+1 − Yt = κ(Xt,Wt+1) = DXt + ν + FWt+1, (4.4)

where D and F are row vectors with the same dimensions as Xt and Wt+1,
respectively, and the (·) symbol denotes an inner product. For this example,
the four steps of algorithm 4.2 become:

(i) The trend growth rate is ν as specified.

(ii)

κh(Xt−1,Wt, Xt) = DXt−1 + FWt + D(I− A)−1Xt

(iii)

κ+(x) = Dx+ D(I− A)−1Ax

(iv)

κm(Xt−1,Wt) = FWt + D(I− A)−1(Xt − AXt−1)

=
[
F + D(I− A)−1B

]
Wt

From Example 1.10.1, we expect the coefficient of martingale increment
to be the sum of impulse responses for the increment process {DXt+FWt+1 :
t ≥ 0}. The impulse response function is the sequence of vectors:

F,DB,DAB,DA2B, · · · . (4.5)

Summing these vectors gives

F + D
(
I + A + A2 + · · ·

)
B = F + D(I− A)−1B

as anticipated.
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Growth-Rate Regimes

We construct a Proposition 4.2.1 decomposition for a model with persistent
switches in the conditional mean and volatility of the growth rate Yt+1−Yt.

Suppose that {Xt : t ≥ 0} evolves according to an n-state Markov chain
with transition matrix P. Realized values of Xt are coordinate vectors in Rn.
Suppose that P has only one unit eigenvalue. Let q be the row eigenvector
associated with that unit eigenvalue normalized so that q · 1n = 1 and

q′P = q′.

Consider an additive functional satisfying

Yt+1 − Yt = DXt +Xt
′FW1,t+1,

where {W1,t} is an i.i.d. sequence of multivariate standard normally dis-
tributed random vectors. Evidently, the stationary Markov {Xt : t ≥ 0}
process induces discrete changes in both the conditional mean and the con-
ditional volatility of the growth rate process {Yt+1 − Yt}.

Observe that E(Xt+1|Xt) = PXt and let

W2,t+1 = Xt+1 − E (Xt+1|Xt) . (4.6)

Thus we can represent the evolution of the Markov chain as

Xt+1 = PXt +W2,t+1

{W2,t+1 : t ≥ 0} is an n × 1 discrete-valued vector process that satis-
fies E(W2,t+1|Xt) = 0, which is therefore a martingale increment sequence
adapted to Xt, Xt−1, . . . , X0.

We again apply the four-step construction in algorithm 4.2.4

i)

ν = Dq

ii)

Ht = D(Xt−1 − q) +Xt−1
′FW1,t + D ((I− P)−1Xt

4The operator (I− P)
−1

applied to zero-means processes is well defined.
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iii)
H+
t = E (Ht+1 | Xt) = D (Xt − q) + D (I− P)−1 PXt

which implies that

κ+(x) = D (Xt − q) + D (I− P)−1 Px

iv)
Gt = Ht −H+

t−1 = Xt−1
′FW1,t + D (I− P)−1W2,t

where we have substituted from equation (4.6).

The martingale increment has both continuous and discrete components:

κm(Xt,Wt+1) = Xt
′FW1,t+1︸ ︷︷ ︸ + D (I− P)−1︸ ︷︷ ︸W2,t+1.

continuous discrete



Chapter 5

Hidden Markov Models

5.1 Sufficient Statistics as States

This chapter presents Hidden Markov Models that start from a joint prob-
ability distribution consisting of a Markov process and a vector of noise-
ridden signals about functions of the Markov state. Histories of signals
are observed but the Markov state vector is not. Statistical learning about
the Markov state proceeds by constructing a sequence of probability distri-
butions of the Markov state conditional on histories of signals. Recursive
representations of these conditional distributions form auxiliary Markov
processes that summarize all information about the hidden state vector
contained in histories of signals. A state vector in this auxiliary Markov
process is a set of sufficient statistics for the probability distribution of the
hidden Markov state conditional on the history of signals. We can construct
this auxiliary Markov process of sufficient statistics sequentially.

We present four examples of Hidden Markov Models that are used to
learn about

1. A continuously distributed hidden state vector in a linear state-space
system

2. A discrete hidden state vector

3. Multiple VAR regimes

4. Unknown parameters cast as hidden invariant states

55
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5.2 Kalman Filter and Smoother

We assume that a Markov state vector Xt and a vector Zt+1 of observations
are governed by a linear state space system

Xt+1 = AXt + BWt+1

Zt+1 = H + DXt + FWt+1, (5.1)

where the matrix FF′ is nonsingular, Xt has dimension n, Zt+1 has dimen-
sion m and is a signal observed at t + 1, Wt+1 has dimension k and is a
standard normally distributed random vector that is independent of Xt, of
Zt = [Zt, . . . , Z1], and of X0. The initial state vector X0 ∼ Q0, where Q0 is
a normal distribution with mean X0 and covariance matrix Σ0.1 To include
the ability to represent an unknown fixed parameter as an invariant state
associated with a unit eigenvalue in A, we allow A not to be a stable matrix.

Although {(Xt, Zt), t = 0, 1, 2, . . .} is Markov, {Zt, t = 0, 1, 2, . . .} is
not.2 We want to construct an affiliated Markov process whose date t
state is Qt, defined to be the probability distribution of the time t Markov
state Xt conditional on history Zt = Zt, . . . , Z1 and Q0. The distribution
Qt summarizes information about Xt that is contained in the history Zt

and Q0. We sometimes use Qt to indicate conditioning information that is
“random” in the sense that it is constructed from a history of observable
random vectors. Because the distribution Qt is multivariate normal, it
suffices to keep track only of the mean vector X t and covariance matrix
Σt of Xt conditioned on Q0 and Zt: X t and Σt are sufficient statistics
for the probability distribution of Xt conditional on the history Zt and
Q0. Conditioning on Qt is equivalent to conditioning on these sufficient
statistics.

We can map sufficient statistics (Xj−1,Σj−1) for Qj−1 into sufficient
statistics (Xj,Σj) for Qj by applying formulas for means and covariances
of a conditional distribution associated with a multivariate normal distribu-
tion. This generates a recursion that maps Qj−1 and Zj into Qj. It enables
us to construct {Qt} sequentially. Thus, consider the following three step
process.

1Many expositions of Kalman filtering assume that BF ′ = 0. We shall study some
interesting examples in which BF ′ 6= 0.

2The process {Xt, t = 0, 1, 2, . . .} is also Markov.
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i) Express the joint distribution of Xt+1, Zt+1 conditional on Xt as[
Xt+1

Zt+1

]
∼ N

([
0
H

]
+

[
A
D

]
Xt,

[
B
F

] [
B′ F′

])
.

ii) Suppose that the distribution Qt of Xt conditioned on Zt and Q0 is
normal with mean X t and covariance matrix Σt. Use the identity

Xt = X t + (Xt −X t) to represent

[
Xt+1

Zt+1

]
as

[
Xt+1

Zt+1

]
=

[
0
H

]
+

[
A
D

]
X t +

[
A
D

]
(Xt −X t) +

[
B
F

]
Wt+1,

which is just another way of describing our original state-space system
(5.1). It follows that the joint distribution of Xt+1, Zt+1 conditioned
on Zt and Q0, or equivalently on (X t,Σt), is

[
Xt+1

Zt+1

]
∼ N

([
0
H

]
+

[
A
D

]
X t,

[
A
D

]
Σt

[
A′ D′

]
+

[
B
F

] [
B′ F′

])
.

Evidently the marginal distribution of Zt+1 conditional on (X t,Σt) is

Zt+1 ∼ N (H + DX t,DΣtD′ + FF′).

This is called the predictive conditional density ϕ(z∗|Qt), i.e., the dis-
tribution of Zt+1 conditional on history Zt and the initial distribution
Q0.

iii) Joint normality implies that the distribution for Xt+1 conditional on
Zt+1 and (X t,Σt) is also normal and fully characterized by a conditional
mean vector and a conditional covariance matrix. We can compute
the conditional mean by running a population regression of Xt+1 −
AX t on the surprise in Zt+1 defined as Zt+1 − H − DX t.

3 Having
thus transformed random vectors on both sides of our regression to
be independent of past observable information, as ingredients of the

3This amounts to dividing the joint distribution for (Xt+1, Zt+1) conditioned on Qt
by the marginal density for Zt+1 conditional on Qt.
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pertinent population regression, we have to compute the covariance
matrices

E
[(
Zt+1 −H− DX t

) (
Zt+1 −H− DX t

)′]
= DΣtD′ + FF′ ≡ Ωt

E
[
(Xt+1 − AX t)

(
Zt+1 −H− DX t

)′]
= AΣtD′ + BF′.

These provide what we need to compute the conditional expectation

E[(Xt+1 − AX t) | Zt+1 −H− DX t, Qt] = K(Σt)(Zt+1 −H− DX t),

where the matrix of regression coefficients K(Σt) called the Kalman
gain is

K(Σt) = (AΣtD′ + BF′)(DΣtD′ + FF′)−1. (5.2)

We recognize formula (5.2) as an application of the population least
squares regression formula associated with the multivariate normal dis-
tribution.4 We compute Σt+1 via the recursion

Σt+1 =AΣtA′ + BB′

− (AΣtD′ + BF′)(DΣtD′ + FF′−1
(DΣtA′ + FB′). (5.3)

The right side of recursion (5.3) follows directly from substituting the
appropriate formulas into the right side of Σt+1 ≡ E(Xt+1−X t+1)(Xt+1−
X t+1)′ and computing conditional mathematical expectations. The
matrix Σt+1 obeys the formula from standard regression theory for the
population covariance matrix of the least squares residual Xt+1−AX t.
The matrix AΣtA′ + BB′ is the covariance matrix of the Xt+1 − AX t

and the remaining term describes the reduction in covariance associ-
ated with conditioning on Zt+1.5 Thus, the probability distribution
Qt+1 is

Xt+1 | Zt+1, X t,Σt ∼ N (X t+1,Σt+1).
4Presentations of multivariate regression theory often report the transpose of this

matrix. Those presentations pre-multiply coefficients by regressors whereas as Kalman
filtering representations post-multiply by regressors.

5Let z be an N × 1 random vector with multivariate normal probability den-
sity f(z;µ,Σ) = (2π)−(

N
2 ) det(Σ)−(

1
2 ) exp

(
−.5(z − µ)′Σ−1(z − µ)

)
where µ = Ez ≡∫

zf(z;µ,Σ) dz is the mean of z and Σ = E(z−µ)(z−µ)′ ≡
∫

(z−µ)(z−µ)′f(z;µ,Σ) dz

is the covariance matrix of z. For integer j ∈ [2, . . . , N − 1], partition z as z =

[
z1
z2

]
,

where z1 is an (N−j)×1 vector and z2 is a j×1 vector. Let µ =

[
µ1

µ2

]
,Σ =

[
Σ11 Σ12

Σ21 Σ22

]
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where

X t+1 = AX t +K(Σt)(Zt+1 −H− DX t) (5.4)

Equations (5.2), (5.3), and (5.4) constitute the Kalman filter. They provide
a recursion that describes Qt+1 as an exact function of Zt+1 and Qt.

Remark 5.2.1. (Gram-Schmidt) The key idea underying the Kalman filter
is recursively to transform the space spanned by a sequence of signals into
an a sequence of orthogonal signals. To elaborate, let

Ut+1 = Zt+1 −H− DX t.

After we condition on (X0,Σ0), Ut, Ut−1, ...U1 and Zt, Zt−1, ..., Z1 generate
the same information. The Kalman filter synthesizes Ut+1 from Zt+1 via a
Gram-Schmidt process. Conditional on Zt, Ut+1 ∼ N (0,Ωt), where Ωt =
DΣtD′ + FF′, so U t = Ut, Ut−1, ...U1 is an orthogonal basis for information
contained in Zt. Step (ii) computes the innovation Ut+1 by constructing
the predictive density, while step (iii) computes the Kalman gain K(Σt) by
regressing Xt+1 − AX t on Ut+1.

Innovations Representation

Taken together, steps (ii) and (iii) present the evolution of {Qt+1)} as a
first-order Markov process. This process is the foundation of an innovations
representation and its partner the whitener. The innovations representation
is

X t+1 = AX t +K(Σt)Ut+1

Zt+1 = H + DX t + Ut+1. (5.5)

be corresponding partitions of µ and Σ. The marginal densities of the random vectors
z1 and z2 are f(z1;µ1,Σ11) and f(z2;µ2,Σ22), respectively, where f(zi;µi,Σii) denotes
a multivariate normal density with mean vector µi and covariance matrix Σii. The
conditional density of z1 given z2, denoted f(z1|z2; µ̂1, Σ̂11), is multivariate normal with
mean µ̂1 = µ1+β(z2−µ2) and covariance matrix Σ̂11 = Σ11−Σ12Σ−122 Σ21 = Σ11−βΣ22β

′

where β = Σ12Σ−122 is an (N−j)×j matrix of population regression coefficients of z1−µ1

on z2 − µ2. Here µ̂1 = Ez1|z2 and Σ̂11 = E[(z1 − µ̂1)(z1 − µ̂1)′]|z2.
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The whitener system is

Ut+1 = Zt+1 −H− DX t

X t+1 = [A− DK(Σt)]X t +K(Σt)(Zt+1 −H) (5.6)

The innovations representation (5.5) and the whitener system (5.6) both
take sequences {Σt,K(Σt)}t=0 as inputs. These can be precomputed from
equations (5.2) and (5.3) before observing any Zt+1’s.

Remark 5.2.2. The covariance matrix Ωt is presumed to be nonsingular,
but it is not necessarily diagonal so that components of the innovation vector
Ut+1 are possibly correlated. We can transform the innovation vector Ut+1

to produce a new shock process W t+1 that has the identity as its covariance
matrix. To do so construct a matrix Λt that satisfies

Λt = Ft(Ft)′

and let

W t+1 =
(
Ft
)−1

Ut+1

Then

X t+1 = AX t + BtW t+1

Zt+1 = H + DX t + FtW t+1 (5.7)

where Bt = K(Σt)Ft and A Gram-Schmidt process can be used to construct
W t+1.

Please compare the original state space system (5.1) with the innovation
representations (5.5) and (5.7). Key differences are

1. In the original system (5.1), the shock vector Wt+1 can be of much
larger dimension than the time t+ 1 observation vector Zt+1, while in
the innovation representations (5.5) and (5.7), the dimension of the
shock Ut+1 or W t+1 equals that of the observation vector.

2. The state vector Xt in the original system (5.1) is not observed while
in the innovation representation (5.5) the state vector X t is observed.
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Likelihood process

Equations (5.2) and (5.3) together with an initial distribution Q0 for X0 ∼
N (X0,Σ0) provide components that allow us to construct a recursive rep-
resentation for a likelihood process for {Zt : t = 1, 2, . . .}. Let ψ(z∗|µ,Σ)
denote the density for an m dimensional, normally distributed random vec-
tor with mean µ and covariance matrix Λ. With this notation, the density
of Zt+1 conditional on the on the hidden state Xt is ψ(z∗ | H + DXt,BB′),
where z∗ is an m dimensional vector of real numbers used to represent
potential realizations of Zt+1. The distribution of the hidden state Xt con-
ditioned on history Zt−1 and (X0 and Σ0) is Qt ∼ N (X t,Σt). From these
two components, we construct the predictive density ϕ(z∗|Zt) for Zt+1:

ϕ(z∗ | Zt, X0,Σ0) =

∫
ψ(z∗ | x)Qt(dx). (5.8)

From the Kalman filter, we know that∫
ψ(z∗ | x)Qt(dx) = ψ(z∗ | H + DX t,Ωt)

To compute a likelihood process {Lt : t = 1, 2, ...}, factor the joint density
for Zt into a product of conditional density functions in which a time j
density function conditions on past information and the initial X0,Ω0).
When we evaluate densities at the appropriate random vectors Zj and the
associated histories Zj−1 of which Xj−1,Ωj−1 are functions determined by
the Kalman filter, we obtain the likelihood process:6

Lt =
t∏

j=1

ψ(Zj | H + DXj−1,Ωj−1). (5.9)

Via the Kalman filtering formulas for {Xj,Ωj}∞j=1, this construction in-
dicates how the likelihood process depends on the matrices A,B,H,D,F.
Sometimes we regard some entries of these matrices as “free parameters.”

6The logarithm of time j component of Lt is evidently

logψ(Zj | H +DXj−1) = −.5m log(2π)− .5 log det(Ωj−1)

− .5(Zj −H −DXj−1)′Ω−1j−1(Zj −H −DXj−1).
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Because a likelihood process summarizes information about these parame-
ters, it is the starting point for both frequentist and Bayesian estimation
procedures.

1. For fixed values of the parameters that pin down A,B,H,D,F, {Lt}∞t=1

is a stochastic process with some “interesting properties.”

2. For a fixed t and a sample of observations Zt, Lt becomes a likelihood
function when viewed as a function of the free parameters.

Invariant Kalman gain

If Σ is a positive definite fixed point of recursion (5.3) and Σ0 = Σ, then
Σt = Σ for all t ≥ 0 and

K (Σt) = K
(
Σ
) .

= K
Ωt = DΣtD

′ + FF ′
.
= Ω

for all t > 1 simplifies recursive representation (5.9) by making K(Σt) and
Ωt both becomes time-invariant. Setting Σ0 = Σ to the positive semidefinite
fixed point of iterations on equation (5.3), sometimes called a matrix Riccati
equation, amounts to pretending that at date zero we are conditioning on
an infinite history of Zt’s.

Example 5.2.3. John F. Muth (1960) posed and solved the following in-
verse optimal prediction problem: for what stochastic process {Zt}∞t=0 is the
adaptive expectations scheme of Milton Friedman (1957)

Z∗t = λZt + (1− λ)Z∗t−1 0 < λ < 1 (5.10)

optimal for predicting future Zt+k? And over what horizon k, if any, is Z∗t
a good forecast? Solving difference equation (5.10) backwards indicates how
past data shape Z∗t :

Z∗t = λ
∞∑
j=0

(1− λ)jZt−j.

Although Muth did not use it to solve his problem, we can convey his answers
concisely using the Kalman filter. As described above, inventing an infinite
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past amounts to initializing the Kalman filter at Σ0 = Σ. Set A = D = 1,
B =

[
B1 0

]
, and F =

[
0 F2

]
to attain the original state-space system

Xt+1 = Xt + B1W1,t+1

Zt+1 = Xt + F2W2,t+1.

Notice that the best forecast of Zt+k at time t when the state is observed
is Xt for any k ≥ 1. By the Law of Iterated Expectations, we obtain the
mathematical expectation of Zt+k conditional on Zt by computing X t. A
time-invariant recursive representation of X t+1 is

X t+1 = X t +K(Zt+1 −X t),

where it can be verified that 0 < K < 1. Notice that

X t+1 =
(
1−K

)
X t +KZt+1 (5.11)

Comparing (5.10) to (5.11) shows that “adaptive” expectations become “ra-
tional” by setting

X t = Z∗t

λ = K.

Example 5.2.4. As state variables for the key Bellman equation in his
matching model, Jovanovic (1979) deployed sufficient statistics of condi-
tional distribution Qt for a univariate hidden Markov state equal to an un-
known constant match quality θ drawn from a known initial distribution
N
(
X0,Σ0

)
. The state-space representation for Jovanovic’s model is

Xt+1 = Xt

Zt+1 = Xt + FWt+1

where F and Xt = θ are scalars and Wt+1 is a standardized univariate
normal random variable. We fit this model into (5.1) by setting A = D =
1,B = 0,F > 0, Xt = θ. Evidently, X t+1 = (1−K(Σt))X t +K(Σt)Zt where
Σt+1 = ΣtF2

Σt+F2 and K(Σt) = Σt

Σt+F2 . Thus, 1
Σt+1

= 1
Σt

+ 1
F2 ↓ 0 and K(Σt)→ 0.

Thus, partners to an ongoing match who observe Zt eventually learn its true
quality θ. In Jovanovic’s model, especially when F is large, early on in a
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match, Σt can be large enough to create a situation in which the “he’s just
been having a few bad days” excuse prevails to sustain the match in hopes of
later learning that it is a good one. Jovanovic put this force to work to help
explain why (a) quits and layoffs are negatively correlated with job tenure
and (b) wages rise with job tenure.

Example 5.2.5. Testing random walk theory of asset prices. We illustrate
a classic finding of Working (1934). The price of an asset Xt takes a
random walk Xt+1 = Xt +BWt+1, where Wt+1 is a standardized univariate
normal distribution and successive Wt+j’s are i.i.d. A researcher wants to
test the random walk hypothesis. A data base reports not Xt but a two-
period moving average Zt = .5(Xt + Xt−1), which evidently implies that
Zt+1 = Xt + .5BWt+1. Here A = D = 1, F = .5B. The time-invariant
innovations representation for the measured asset price process {Zt+1 : t =
0, 1, ...} is

X t+1 = X t +KUt+1

Zt+1 = X t + Ut+1 (5.12)

where 0 < K < 1. Compute

Zt+1 − Zt = X t + Ut+1 − Zt = Ut+1 − Ut +X t −X t−1

= Ut+1 −
(
1−K

)
Ut. (5.13)

Thus, the first-difference process is temporally dependent so the measured
stock price Zt+1 does not take a random walk. It is instead a first-order
“moving-average process”. The time averaging induces serial correlation of
a very specific form but alters how an empirical researcher should test the
random walk hypothesis about the Xt process. We can deduce a population
regression of Zt+1 − Zt on Zt by using (5.13) to compute Ut+1

Ut+1 =
∞∑
j=0

(
1−K

)j
(Zt+1−j − Zt−j)

= Zt+1 −K
∞∑
j=0

(
1−K

)j
Zt−j.

Rearranging terms gives us a so-called autoregressive representation:

Zt+1 = K
∞∑
j=0

(
1−K

)j
Zt−j + Ut+1,
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which tells us what coefficients on lagged Zt’s should be if the underlying
stock price does indeed follow a random walk. It is straightforward to verify
that the regression coefficients on the right side of the above equation sum
to one. We also have the following representation for a regression of the
first difference Zt+1 − Zt on Zt

Zt+1 − Zt = Ut+1 + (1−K)[Zt −K
∞∑
j=0

(1−K)jZt−j−1].

Evidently, measured prices changes Zt+1−Zt are forecastable from Zt, which
belies the random walk hypothesis for the {Zt} process.

Example 5.2.6. Skip sampling. What really concerned Working (1934)
were the consequences of taking r-period moving averages and then running
time series regressions on r-period skip-sampled data. The Kalman filter
provides tools for working this out. Let’s do it for r = 2. The construction
works more generally, so we start by iterating once on the original state-
space representation (5.1) to get:

Xt+2 = A2Xt +BWt+2 + ABWt+1

Zt+2 = H +DAXt + FWt+2 +DBWt+1,

Consider sampling at even points in time. That is, let t = 2τ and construct
the skip-sampled processes {Xs

τ : τ = 0, 1, ...} and {Zs
τ : τ = 0, 1, ...} where

Xs
τ = X2τ and Zs

τ = Z2τ . Define a new recursive representation:

Xs
τ+1 = AsX

s
τ +BsW

s
τ+1

Zs
τ+1 = H +DsX

s
τ + FsW

s
τ+1

where

W s
τ+1

.
=

[
W2τ+2

W2τ+1

]
,

As
.
= A2, Ds

.
= DA and

Bs
.
=
[
B AB

]
Fs

.
=
[
F DB

]
We can then construct an innovations representation and associated like-
lihood process for two-period skip-sampled process {Zτ : τ = 1, ...∞}. As
a special case, we could apply this analysis to study a skip-sampled version
of Example 5.2.5 of a process formed as a two-period moving-average of a
stock price that, before the moving average, was taking a random walk.
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Example 5.2.7. Two moving-average representations. A first-order mov-
ing average process {Zt+1} obeys Zt+1 = Wt+1− λWt, where {Wt} is a uni-
variate i.i.d. process of standardized normal random variables and λ > 1.
Use backward recursions on Zt+1 = Wt+1 − λWt to solve for Wt+1 as a
function of {Zt+1} to get

Wt+1 =
∞∑
j=0

λjZt+1−j.

But λj explodes and the sum on the right side is not a (mean-square) con-
vergent series – an indication that the random variable Wt+1 does not belong
to the space spanned by squared summable linear combinations of the history
{Zt+1−j : j = 0, 1, ...}. Although the backward recursion fails to converge,
we can write

Wt =
1

λ
[Wt+1 + Zt+1]

and solve forward to indicate how observation of Wt peeks at future Zs.
We construct an alternative moving-average representation using the

time invariant Kalman filter. A state-space representation for our first-
order moving-average {Zt+1} process is

Xt+1 = Wt+1

Zt+1 = −λXt +Wt+1.

Here A = 0, B = 1, D = −λ, F = 1. An innovations representation for the
{Zt+1} process is

X t = KUt+1

Zt+1 = −λX t + Ut+1.

It can be verified that K = λ−2 so that we have constructed the moving
average representation

Zt+1 = Ut+1 − λ−1Ut.

Solve the implied difference equation Ut+1 = Zt+1 +λ−1Ut in {Ut} backwards
to obtain

Ut+1 =
∞∑
j=0

λ−jZt+1−j,
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which is well defined as a mean-square limit. This verifies that Ut+1 can be
constructed from {Zt+1−j}∞j=0.

We can use the original moving-average to compute second moments
E(Zt+1)2 = (1 + λ2), E(Zt+1Zt) = −λ and our second one to compute
E(Zt+1)2 = E(Ut+1)2(1 + λ−2), E(Zt+1Zt) = −E(Ut+1)2λ−1. These are
consistent because E(Ut+1)2 = λ2. The steady-state value Σ = (1 − λ−2).
Note that E(Ut+1)2 > E(Wt+1)2.

Kalman smoother

The Kalman filter provides recursive formulas for computing the distribu-
tion of a hidden state vector Xt conditional on a signal history {Zτ}tτ=1 and
an initial distribution Q0 for X0. This conditional distribution has the form
Xt ∼ N (X t,Σt); the Kalman filtering equations provide recursive formulas
for the conditional mean X t and the conditional covariance matrix Σt.

Knowing outcomes {Xτ ,Στ}Tτ=1 from the Kalman filter provide the foun-
dation for the Kalman smoother. The Kalman smoother uses past, present,
and future values of Zτ to learn about current values of the state Xτ . The
Kalman smoother is a recursive algorithm that computes sufficient statistics
for the distribution of Xt conditional on the entire sample {Zt}Tt=1, namely,

a mean vector, covariance matrix pair X̂t, Σ̂t. The Kalman smoother takes
outputs {X t,Σt}Tt=0 from the Kalman filter as inputs and then works back-
wards on the following steps starting from t = T .

• Reversed time regression. Write the joint distribution of (Xt, Xt+1, Zt+1)
conditioned on

(
X t,Σt

)
as Xt

Xt+1

Zt+1

 ∼ N
 X t

AX t

H + DX t

 ,
 Σt ΣtA′ ΣtD′
AΣt AΣtA′ + BB′ AΣtD′ + BF′
DΣt DΣtA′ + FB′ DΣtD′ + FF′


From this joint distribution, construct the conditional distribution for
Xt, given Xt+1, Zt+1 and

(
X t,Σt

)
. Compute the conditional mean of

Xt −X t by using the population least squares formula

K̂1

(
Xt+1 − AX t

)
+ K̂2

(
Zt+1 −H− DX t

)
(5.14)
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where the regression coefficient matrix is[
K̂1 K̂2

]
= K̂ .

=
[
ΣtA′ ΣtD′

] [AΣtA′ + BB′ AΣtD′ + BF′
DΣtA′ + FB′ DΣtD′ + FF′

]−1

and the residual covariance matrix equals

Σt −
[
ΣtA′ ΣtD′

] [AΣtA′ + BB′ AΣtD′ + BD′
DΣtA′ + FB′ DΣtF′ + FF′

]−1 [AΣt

DΣt

]
(5.15)

• Iterated expectations. Notice that the above reverse regression in-
cludes Xt+1 − AX t among the regressors. Because Xt+1 is hidden,
that is more information than we have. We can condition down to
information that we actually have by instead using X̂t+1−AX t as the
regressor where X̂t+1 is the conditional expectation of Xt+1 given the
full sample of data {Zt}Tt=1 and Σ̂t+1 is the corresponding conditional

covariance matrix. This gives us a backwards recursion for X̂t:

X̂t −X t = K̂1

(
X̂t+1 − AX t

)
+ K̂2

(
Zt+1 −H− DX t

)
The law of iterated expectations implies that the regression coeffi-
cient matrices K̂1, K̂2 equal the ones we have already computed. But
since we are using less information, the conditional covariance matrix
increases by K̂1Σ̂t+1K̂′1. This implies the backwards recursion:

Σ̂t = Σt −
[
ΣtA′ ΣtD′

] [AΣtA′ + BB′ AΣtD′ + BD′
DΣtA′ + FB′ DΣtD′ + FF′

]−1 [AΣt

DΣt

]
+ K̂1Σ̂t+1K̂′1

• Take Σ̂T = ΣT and X̂T = XT as terminal conditions.

5.3 Recursive Regression

A statistician wants to infer unknown parameters of a linear regression
model. By treating regression coefficients as hidden states that are constant
over time, we can cast this problem in terms of a hidden Markov model.
By assigning a prior probability distribution to statistical models that are
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indexed by parameter values, the statistician can construct a stationary
stochastic process as a mixture of statistical models.7 From increments
to a data history, the statistician learns about parameters sequentially. By
assuming that the statistician adopts a conjugate prior á la Luce and Raiffa
(1957), we can construct explicit updating formulas.

Consider the first-order vector autoregressive model

Xt+1 = AXt +BWt+1

Zt+1 = H +DXt + FWt+1 (5.16)

where Wt+1 is an i.i.d. normal random vector with mean vector 0 and
covariance matrix I, Xt is an observable state vector, and A,B,D, F,H
are matrices containing unknown coefficients. Suppose that Zt+1 and Wt+1

share the same dimensions, that F is nonsingular, and that Xt consists of
Yt − Yt−1 −H and a finite number of lags Yt−j − Yt−j−1 −H, j = 1, . . . , n.

Conjugate prior updating

By following suggested offered by Zellner (1962), Box and Tiao (1992), Sims
and Zha (1999), and especially Zha (1999), we can transform system (5.16)
in a way that justifies estimating the unknown coefficients in the matrices
A,B,D, F,H by applying least squares equation by equation. Factor the
matrix FF ′ = J∆J ′, where J is lower triangular with ones on the diagonal
and ∆ is diagonal.8 Construct

J−1(Yt+1 − Yt) = J−1H + J−1DXt + Ut+1 (5.17)

where

Ut+1 = J−1FWt+1

so that EUt+1U
′
t+1 = ∆. The ith entry of Ut+1 is uncorrelated with, and

consequently statistically independent of, the jth components of Yt+1 − Yt
for j = 1, 2, . . . , i−1. As a consequence, each equation in system (5.17) can
be interpreted as a regression equation in which the left-hand side variable in

7This stochastic process is not ergodic, being a mixture of statistical models like
those described by Proposition 1.8.1. In the present setting, conditioning on invariant
events means knowing parameters, an assumption incompatible with posing a statistical
learning problem.

8This factorization can be implemented as a Cholesky dcomposition.
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equation i is the ith component of Yt+1− Yt. The regressors are a constant,
Xt, and the jth components of Yt+1 − Yt for j = 1, . . . , i − 1. The ith
equation is an unrestricted regression with a disturbance term Ut+1,i that
is uncorrelated with disturbances Ut+1,j to all other equations j 6= i.

The system of equations (5.17) is thus recursive. The first equation
determines the first entry of Yt+1 − Yt, the second equation determines the
second entry of Yt+1 − Yt given the first entry, and so forth.

We can construct estimates of the coefficient matrices A,B,D, F,H and
the covariance matrix ∆ = EUt+1U

′
t+1 from these regression equations,

with the qualification that knowledge of J and ∆ determines FF ′ only up
to a factorization of FF ′ for a nonsingular F . One such factorization is
F = J∆1/2, where a diagonal matrix raised to a one-half power can be
built by taking the square root of each diagonal entry. Because matrices
F not satisfying this formula also satisfy FF ′ = J∆J ′, without additional
restrictions F is not identified.

Consider, in particular, the ith regression formed in this way and express
it as the scalar regression model:

Y
[i]
t+1 − Y

[i]
t = R

[i]
t+1

′
β[i] + U

[i]
t+1

where R
[i]
t+1 is the appropriate vector of regressors in the ith equation of sys-

tem (5.17). To simplify notation, we will omit superscripts and understand
that we are estimating one equation at a time. The disturbance Ut+1 is a
normally distributed random variable with mean zero and variance σ2. Fur-
thermore, Ut+1 is statistically independent of Rt+1. Information observed
as of date t consists of X0 and Y t = [(Yt − Yt−1)′, . . . , (Y1 − Y0)′]′. Suppose
that in addition Yt+1−Yt and Rt+1 are also observed at date t+ 1 but that
β and σ2 are unknown.

Let the distribution of β conditioned on Y t, X0, and σ2 be normal
with mean bt and precision matrix ζΛt where ζ = 1

σ2 . Here the precision
matrix equals the inverse of a conditional covariance matrix of the unknown
parameters. At date t+1, information we add Yt+1−Yt to the conditioning
set. So we want the distribution of β conditioned on Y t+1, X0, and σ2. It
is also normal but now has precision ζΛt+1, where ζ = 1

σ2 and

Λt+1 = Rt+1Rt+1
′ + Λt. (5.18)

Recursion (5.18) implies that Λt+1 − Λt is a positive semidefinite matrix,
which confirms that additional information improves estimation accuracy.



5.3. Recursive Regression 71

Evidently from recursion (5.18), Λt+1 cumulates cross-products of the re-
gressors and adds them to an initial Λ0. The updated conditional mean
bt+1 for the normal distribution of unknown coefficients can be deduced
from Λt+1 via the updating equation:

Λt+1bt+1 = [Λtbt +Rt+1(Yt+1 − Yt)] . (5.19)

Solving difference equation (5.19) backwards shows how Λt+1bt+1 cumulates
cross-products of Rt+1 and Yt+1−Yt adds the outcome to an initial condition
Λ0b0.

So far we pretended that we know σ2 by conditioning on σ2, which is
equivalent to conditioning on its inverse ζ. Assume now that we don’t know
σ but instead summarize our uncertainty about it with a date t gamma
density for ζ conditioned on Y t, X0 so that it is proportional to

(ζ)
ct
2 exp(−dtζ/2),

where the density is expressed as a function of ζ, so that dtζ has a chi-
square density with ct + 1 degrees of freedom. The implied density for ζ
conditioned on time t+1 information is also a gamma density with updated
parameters:

ct+1 = ct + 1

dt+1 = (Yt+1 − Yt)2 − (bt+1)′Λt+1bt+1 + (bt)
′Λtbt + dt.

The distribution of β conditioned on Y t+1, X0, and ζ is normal with
mean bt+1 and precision matrix ζΛt+1. The distribution of ζ conditioned
on Y t+1, X0 has a gamma density, so that it is proportional to9

(ζ)
ct+1

2 exp(−dt+1ζ/2).

Standard least squares regression statistics can be rationalized by posit-
ing a prior that is not informative. This is commonly done by using an
“improper” priors that does not integrate to unity.10 Setting Λ0 = 0 effec-
tively imposes a uniform but improper prior over β. Although Λt’s early in

9A decision-maker who does not know the underlying parameters in the matrices
A,B,D, F,H continues to have a Markov decision problem except that bt, ct, dt must
now be included along with the state vector Xt.

10Such a procedure can result in estimators that are inadmissible.
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the sequence are singular, we can still update Λt+1bt+1 via (5.19); bt+1 are
not be uniquely determined until Λt+1 becomes nonsingular. After enough
observations have been accumulated to make Λt+1 become nonsingular, the
implied normal distributions for the unknown parameters become proper.
When Λ0 = 0, the specification of b0 is inconsequential and bt+1 becomes a
standard least squares estimator. An “improper gamma” prior over σ that
is often associated with an improper normal prior over β sets c0 to minus
two and d0 to zero. This is accomplished by assuming a uniform prior dis-
tribution for the logarithm of the precision ζ or for the logarithm of σ2.
With this combination of priors, dt+1 becomes a sum of squared regression
residuals.11

From the posterior of the coefficients of this transformed system we can
compute posteriors of nonlinear functions of those coefficients. We accom-
plish this by using a random number generator repeatedly to take pseudo
random draws from the posterior probability of the coeffcients, forming
those nonlinear functions, and then using the resulting histograms of those
nonlinear functions to approximate the posterior probability distribution
of those nonlinear functions. For example, many applied macroeconomic
papers report impulse responses as a way to summarize model features.
Impulse responses are nonlinear functions of the (A,B).

VAR example

In Hansen and Sargent (2021), to identify long-term risk in consumption
we imposed cointegration on a VAR. We inferred consequences of this re-
striction by simulating posterior distributions that measure long-run risk.
We turn to that example now.

We adapt the preceding approach along lines suggested by Hansen et al.
(2008). We construct a trivariate VAR system in which (1) the logarithm
of proprietor’s income plus corporate profits, (2) the logarithm of personal
dividend income, and (3) the logarithm of consumption have the same trend
growth rate and martingale increment. The common martingale increment
measures the long-run consumption risk discussed in section 4.4. Figure 5.1
reports log differences in two time series.

11Box and Tiao (1992) discuss improper priors that include the specification for the
regression model here.
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Figure 5.1: Time series for the i) logarithm of proprietor’s income plus
corporate profits relative to consumption (blue) and ii) the logarithm of
personal dividend income relative to consumption (red).

We deployed the following steps.

i) Let

Zt+1 =

 logCt+1 − logCt
logGt+1 − logCt+1

logDt+1 − logCt+1


where Ct is consumption, Gt is business income, and Dt is personal
dividend income. Business income is measured as proprietor’s income
plus corporate profits per capita. Dividends are personal dividend in-
come per capita. The time series are quarterly data from 1948 Q1 to
2018 Q3.12 13

12Our consumption measure is nondurables plus services consumption per capita.
The nominal consumption data come from BEA’s NIPA Table 1.1.5 and their deflators
from BEA’s NIPA Table 1.1.4. The business income data with IVA and CCadj are
from BEA’s NIPA Table 1.12. Personal dividend income data were obtained from from
FRED’s B703RC1Q027SBEA. Population data comes from FRED’s CNP16OV.

13By including proprietors’ income in addition to corporate profits, we used a broader
measure of business income than Hansen et al. (2008) who used only corporate profits.
Hansen et al. (2008) did not include personal dividends in their VAR analysis.
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ii) Let

Xt =


Zt
Zt−1

Zt−2

Zt−3

logGt−4 − logCt−4

logDt−4 − logCt−4

 .

Express a vector autoregression as

Xt+1 = H + AXt + BWt+1

Zt+1 = DXt + FWt+1

where A is a stable matrix (i.e., its eigenvalues are all bounded in
modulus below unity) and BB′ is the innovation covariance matrix.
Let selector matrix J verify Zt+1 = JXt+1. The implied mean µ of the
stationary distribution for X is

µ = (I − A)−1H.

The covariance matrix Σ of the stationary distribution of X solves a
discrete Lyapunov equation

Σ = AΣA′ + BB′.

iii) logCt, logGt, logDt are cointegrated. Each of logCt, logGt, logDt is
an additive functional in the sense of Chapter 4. Each has an additive
decomposition into trend, martingale, and stationary components that
can be constructed using a method described in Chapter 4. Trend and
martingale components of the three series are identical by construction.
The innovation to the martingale process is identified as the only shock
having long-term consequences.

The conjugate prior approach described above does not generate a pos-
terior for which either the prior or the implied posteriors for the matrix
A has stable eigenvalues with probability one. We therefore modify that
approach to impose that A is a stable matrix. We do this by rescaling
the posterior probability so that it integrates to one over the region of the
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parameter space for which A is stable. We in effect condition on A being
stable. This is easy to implement by rejection sampling.14

The standard deviation of the martingale increment is a nonlinear func-
tion of parameters in (A,B). We construct a posterior distribution via
Monte Carlo simulation. We draw from the posterior of the multivariate
regression system and, after conditioning on stability of the A matrix, com-
pute the nonlinear functions of interest. From the simulation, we construct
joint histograms to approximate posterior distributions of functions of in-
terest. 15

In Figure 5.2, we show posterior histograms for the standard devia-
tions of shocks to short-term consumption growth and of the martingale
increment to consumption. The standard deviation of the short-term shock
contribution is about one-half that of the standard deviation of the mar-
tingale increment. Figure 5.2 tells us that short-term risk can be inferred
with much more accuracy than is long-term risk. This evidence says that
while there could be a long-run risk component to consumption, it is poorly
measured. The fat tail in right of the distribution of the long-run standard
deviation is induced by Monte Carlo draws for which some eigenvalues of
A have absolute values very close to unity.16

14Another approach that we don’t use here would be to modify how we construct the
likelihood function. Currently the likelihood function conditions on the initial X0. We
could instead impose that X0 is described by the stationary distribution associated with
a stable A matrix.

15We could also have used change in variables formulas to deduce posterior distribu-
tions of interest, but that would have involved substantial pencil and paper work and
require additional numerical computation.

16Bounding absolute values of these eigenvalues to be less than a pre-specified number
strictly less than one would thin the right tail. Doing that amounts indirectly to imposing
a particular prior on the size of long-run risk.
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((a)) Posterior density for conditional standard
deviation of consumption growth.

((b)) Posterior distribution for the standard de-
viation of the martingale increment.

Figure 5.2: Comparing short-run and long-run volatility estimates.

Remark 5.3.1. Carter and Kohn (1994) proposed an extension of the pre-
ceding method that is applicable to situations in which a state vector Xt is
hidden. A Carter and Kohn approach would iterate on the following steps:

• Conditioned on parameters and a fixed data sample, use inputs into
the Kalman smoother to simulate hidden states.17

17A Kalman smoother works backward to construct a probability distribution for
hidden states Xt for t = 0, 1, ..., T − 1 conditioned on a complete sample of observations
{Zt : t = 1, 2, ...T}.
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– First draw randomly XT given {Zt : t = 1, 2, ...T} from the solu-
tion to the Kalman filtering problem.

– Working backwards, for t = T −1, T −2, ...1, draw Xt given Xt+1

and Zt+1 conditioned on {Zτ : τ = 1, 2, ...t} using the conditional
expectation implied by (5.14) and covariance matrix (5.15).

• Conditioned on data and hidden states, use the conjugate prior ap-
proach described above to simulate unknown parameters.

Successive iterations on this algorithm form a Markov process with a state
vector consisting of the hidden states and the parameters. Under appropri-
ate regularity conditions, the Markov process has a stationary distribution to
which the Markov process formed by the preceding iterations converges. That
stationary distribution is the joint posterior distribution of hidden states and
parameter values. We are interested in the marginal posterior distributions
over parameter values.18

5.4 Mixtures

Suppose now that {Xt} evolves as an n-state Markov process with transition
probability matrix P. A vector of signals Yt+1−Yt has density ψi(y

∗) if state
i is realized, meaning that Xt is the ith coordinate vector. We want to com-
pute the probability that Xt is in state i conditional on the signal history.
The vector of conditional probabilities equals Qt = E [Xt|Y t, Q0], where Q0

is a vector of initial probabilities. We construct {Qt}∞t=1 recursively:

i) Find the joint distribution of (Xt+1, Yt+1−Yt) conditional on Xt. Con-
ditional distributions of Yt+1−Yt and Xt+1 are statistically independent
by assumption. Write the joint density conditioned on Xt as:

(P′Xt) × (Xt)
′vec {ψi(y∗)}

↑ ↑
Xt+1 density Yt+1 − Yt density

(5.20)

where vec(ri) is a column vector with ri in the ith component. We
have expressed conditional independence by forming a joint conditional
distribution as a product of two conditional densities, one for Xt+1 and
one for Yt+1 − Yt.

18A Carter and Kohn simulation approach is an example of a Gibbs sampler.
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ii) Find the joint distribution of Xt+1, Yt+1 − Yt conditioned on Qt. Since
Xt is not observed, we form the appropriate average of (5.20) condi-
tioned on Y t, Q0:

P′diag{Qt} vec {ψi(y∗)} , (5.21)

where diag(Qt) is a diagonal matrix with the entries of Qt on the di-
agonal. Thus, Qt encodes all pertinent information about Xt that
is contained in the history of signals. Conditional on Qt, Xt+1 and
Yt+1 − Yt are not statistically independent.

iii) Find the distribution of Yt+1 − Yt conditional on Qt. Summing (5.21)
over the hidden states gives

(1n)′P′ diag{Qt}vec {ψi(y∗)} = Qt · vec {ψi(y∗)} .

Thus, Qt is a vector of weights used to form a mixture distribution.
Suppose, for instance, that ψi is a normal distribution with mean µi and
covariance matrix Σi. Then the distribution of Yt+1−Yt conditioned on
Qt is a mixture of normals with mixing probabilities given by entries
of Qt.

iv) ObtainQt+1 by dividing the joint density of (Yt+1−Yt, Xt+1) conditional
on Qt by the marginal density for Yt+1−Yt conditioned on Qt and then
evaluating this ratio at Yt+1− Yt. In this way we construct the density
for Xt+1 conditioned (Qt, Yt+1−Yt). It takes the form of a vector Qt+1

of conditional probabilities. Thus, we are led to

Qt+1 =

(
1

Qt · vec {ψi(Yt+1 − Yt)}

)
P′diag(Qt)vec {ψi(Yt+1 − Yt)}

(5.22)

Together, steps (iii) and (iv) define a Markov process for Qt+1. As
indicated in step (iii), Yt+1−Yt is drawn from a (history-dependent) mixture
of densities ψi. As indicated in step (iv), the vector Qt+1 equals the exact
function of Yt+1 − Yt, Qt described in (5.22).

5.5 VAR Regimes

Following Sclove (1983) and Hamilton (1989), suppose that there are mul-
tiple VAR regimes (Ai, Bi, Di, Fi) for i = 1, 2, ..., n, where indices i are
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governed by a Markov process with transition matrix P. In regime i we
have

Xt+1 = AiXt +BiWt+1

Yt+1 − Yt = DiXt + FiWt+1,

where {Wt+1}∞t=0 is an i.i.d. sequence of N (0, I) random vectors conditioned
on X0, and Fi is nonsingular.

We can think ofXt and a regime indicator Zt jointly as forming a Markov
process. When regime i is realized, Zt equals a coordinate vector with one
in the ith coordinate and zeros at other coordinates. We study a situation in
which regime indicator Zt is not observed. Let Qt denote an n-dimensional
vector of probabilities over the hidden states Zt conditioned on Y t, X0,
and Q0, where Q0 is the date zero vector of initial probabilities for Z0.
Equivalently, Qt is E(Zt|Y t, X0, Q0).

The vector of conditional probabilities Qt solves a filtering problem. We
describe the solution of this problem by representing (Xt, Qt) as a Markov
process via the following four steps.

i) Find the joint distribution for (Zt+1, Yt+1−Yt) conditioned on (Zt, Xt).
Conditional distributions of Zt+1 and Yt+1 − Yt are statistically inde-
pendent by assumption. Conditioned on Zt, Xt conveys no information
about Zt+1 and thus the conditional density of Zt+1 is given by entries
of P′Zt. Conditioned on Zt = i, Yt+1 − Yt is normal with mean DiXt

and covariance matrix Fi(Fi)
′. Let ψi(y

∗, Xt) be the normal density
function for Yt+1 − Yt conditioned on Xt when Zt is in regime i. We
can write the joint density conditioned on (Zt, Xt) as:

(P′Zt)︸ ︷︷ ︸ × (Zt)
′vec {ψi(y∗, Xt)}︸ ︷︷ ︸

↑ ↑
Zt+1 density Yt+1 − Yt density

(5.23)

where vec(ri) is a column vector with ri in the ith entry. We have
imposed conditional independence by forming a joint conditional dis-
tribution as a product of two conditional densities, one for Zt+1 and
one for Yt+1 − Yt.

ii) Find the joint distribution of Zt+1, Yt+1 − Yt conditioned on (Xt, Qt).
Since Zt is not observed, we form the appropriate average of (5.23)
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conditioned on the Y t, X0, Q0:

P′diag{Qt} vec {ψi(y∗, Xt)} (5.24)

where diag{Qt} is a diagonal matrix with components of Qt on the
diagonal. Thus, Qt encodes all pertinent information about the time t
regime Zt that is contained in Y t, X0 and Q0. Notice that conditional
on (Xt, Qt), random vectors Yt+1 − Yt and Zt+1 are not statistically
independent.

iii) Find the distribution of Yt+1 − Yt conditioned on (Xt, Qt). Summing
(5.24) over hidden states gives

(1n)′P′ diag{Qt}vec {ψi(y∗, Xt)} = Qt · vec {ψi(y∗, Xt)} .

Thus, the distribution for Yt+1−Yt conditioned on (Xt, Qt) is a mixture
of normals in which, with probability given by the ith entry of Qt,
Yt+1 − Yt, is normal with mean DiXt and covariance matrix FiFi

′.
Similarly, the conditional distribution of Xt+1 is a mixture of normals.

iv) Obtain Qt+1 by dividing the joint density for (Yt+1 − Yt, Zt+1) condi-
tioned on (Xt, Qt) by the marginal density for Yt+1 − Yt conditioned
on (Xt, Qt). Division gives the density for Zt+1 conditioned (Yt+1 −
Yt, Xt, Qt), which in this case is just a vector Qt+1 of conditional prob-
abilities. Thus, we are led to the recursion

Qt+1 =

(
1

Qt · vec {ψi(Yt+1 − Yt, Xt)}

)
P′diag(Qt)vec {ψi(Yt+1 − Yt, Xt)} . (5.25)

Taken together, steps (iii) and (iv) provide the one-step-transition equation
for Markov state (Xt+1, Qt+1). As indicated in step (iii), Yt+1 − Yt is a
mixture of normally distributed random variables. As argued in step (iv)
the vector Qt+1 is an exact function of Yt+1 − Yt, Qt, and Xt that is given
by formula (5.25).



Chapter 6

Likelihoods

This chapter studies likelihood processes and likelihood ratio processes.
Derivatives of log-likelihood processes are additive martingales and like-
lihood ratio processes are multiplicative martingales, assertions that we
verify by applying results from chapter 4. We study properties of likelihood
ratios as sample size T → +∞ and relate them to methods for estimating
parameters that pin down a statistical model from within either a discrete
set or a manifold of models. These include maximum likelihood, Bayesian,
and robust Bayesian methods. A workhorse in this chapter will be the Law
of Large Numbers from Chapter 1 that applies in settings in which there
are multiple statistical models.

In this chapter, we adopt settings in which state vectors can be inferred
perfectly from observations. Chapter 5 studies situations in which some
states are hidden and can be inferred only imperfectly.

6.1 Dependent Processes

Suppose that at date t + 1 we observe a k dimensional random vector
Zt+1. We calculate various objects while conditioning on a given probability
model. We use some of these calculations to explore alternative models.
Each alternative model is presumed to imply a probability measure that
is measure-preserving and ergodic. An event collection At (i.e., a sigma
algebra) is generated by the infinite history of Zt.

We entertain a set of alternative probability models represented with
their one-period transition probabilities. Use represent an alternative model

81



82 Chapter 6. Likelihoods

as a perturbation of a baseline model. To represent a particular alternative
model, we use a nonnegative random variable Nt+1 to perturb a baseline
model’s one step transition probabilities. We can characterize an alternative
model with a set of implied conditional expectations of all bounded random
variable Bt+1 that are measurable with respect to At+1. Such conditional
expectations of Bt+1 under the alternative model can be represented as
conditional expectatons of Nt+1Bt+1 under the baseline model:

E (Nt+1Bt+1 | At) . (6.1)

Thus, mutliplication of Bt+1 serves in effect to change the baseline probabil-
ity from the baseline model to the alternative model. To serve this purpose
the random variable Nt+1 must satisfy:

i) Nt+1 ≥ 0;

ii) E (Nt+1 | At) = 1;

iii) Nt+1 is At+1 measurable.

Property i is satisfied because conditional expectations map positive
random variables Bt+1 into positive random variables that are At measur-
able. Property ii is satisfied because conditional expectations of random
variables Bt+1 that are At measurable should equal Bt+1. Property iii can
be imposed without loss of generality because if it were not satisfied, we
could just replace it with E (Nt+1 | At+1).

This way of representing an alternative probability model is restrictive.
Thus, if a nonnegative random variable has conditional expectation zero
under the baseline probability, it will also have zero conditional expectation
under the alternative probability measure, a version of absolute continuity
here applied to transition probabilities. Violating absolute continuity would
make possible model decision rules that correctly select models with full
confidence from only finite samples.

Example 6.1.1. Consider a baseline Markov process having transition prob-
ability density πo with respect to a measure λ over the state space X

Po(dx
+|x)λ(dx+) = πo(x

+ | x)λ(dx+)
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Let π denote some other transition density that we represent as

π(x+ | x)λ(dx+) =

[
π(x+ | x)

πo(x+ | x)

]
πo(x

+ | x)λ(dx+)

where we assume that πo(x
+ | x) = 0 implies that π(x+ | x) = 0 for all x+

and x in X . Construct the likelihood ratio

Nt+1 =
π(Xt+1 | Xt)

πo(Xt+1 | Xt)
.

Example 6.1.2. Suppose that

Xt+1 = AXt + BWt+1

Zt+1 = DXt + FWt+1,

where A is a stable matrix, {Wt+1}∞t=0 is an i.i.d. sequence of N (0, I) ran-
dom vectors conditioned on X0, and F is a nonsingular square matrix. The
conditional distribution of Zt+1 is normal with mean DXt and nonsingular
covariance matrix FF′. We suppose that A and B can be constructed as
functions of D and F.

Since F is nonsingular, the following recursion connects state and ob-
servation vectors:

Xt+1 =
(
A− BF−1D

)
Xt + BF−1Zt+1

If (A− BF−1D) is a stable matrix, we can construct Xt+1 as a linear functon
of Zt+1−τ for τ = 0, 1, . . ..

Assume a baseline model that has the same functional form with partic-
ular settings of the parameters that appear in the matrices (Ao,Bo,Do,Fo).
Let Nt+1 be the one-period conditional log-likehood ratio

logNt+1 =− 1

2
(Zt+1 − DXt)

′ (FF′)−1
(Zt+1 − DXt)

+
1

2
(Zt+1 − DoXt)

′ (FoFo′)
−1

(Zt+1 − DoXt)

− 1

2
log det (FF′) +

1

2
log det (FoFo′)

Notice how we have subtracted components coming from the baseline model.
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6.2 Likelihood Ratio Processes

The random variable Nt+1 contains the new information in observation Zt+1

that is relevant for comparing an alternative statistical model to a baseline
model. As data arrive, information accumulates in a way that we describe
by compounding the process {Nt+1 : t ≥ 0}:

Lt+1 =
t∏

j=0

Nj+1

so that

logLt+1 =
t∑

j=0

logNj+1

Being functions of a stochastic process of observations {Zt+1 : t ≥ 0},
the likelihood ratio and log-likelihood ratios sequences are both stochastic
processes.

Fact 6.2.1. Since E (Nt+1 | At) = 1, a likelihood ratio process satisfies

E (Lt+1 | At) = Lt.

Therefore, it is a martingale relative to the information sequence {At : t ≥
0}.

Fact 6.2.2. A log-likelihood ratio process {log(Lt+1) : t = 0, 1, . . . , t} is a
stationary increment process with increment

logLt+1 − logLt = logNt+1.

The log likelihood process is additive in how it accumulates stationary in-
crements logNt+1. Consequently, the likelihood ratio process is what we call
a multiplicative process.

Our next fact uses Jensen’s inequality for the concave function log(N)
illustrated in Figure 6.1.
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1 2 3 4 5 6

−6
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−2

2
log(N)

N

logN

Figure 6.1: Jensen’s Inequality. The logarithmic function is the concave func-
tion that equals zero when evaluated at unity. An interior average of the end-
points of the straight line lies below the logarithmic function. Jensen’s Inequality
asserts that the line segment lies below the logarithmic function.

Fact 6.2.3. By Jensen’s inequality,

E (logNt+1 | At) ≤ logE (Nt+1 | At) = 0,

where the mathematical expectation is again under the baseline model pa-
rameterized by θo. Thus

E (logLt+1 | At) ≤ logLt.

This implies that that under the baseline model the log-likelihood ratio pro-
cess is a super martingale relative to the information sequence {At : t ≥ 0}.

Notice that if Nt+1 is not identically one, then

E (logNt+1) < 0.

From the Law of Large Numbers, the population mean is well approxi-
mated by a sample average from a long time series. That opens the door to
discriminating between two models. Under the baseline model, the log like-
lihood ratio process scaled by the inverse of the sample size t+ 1 converges
to a negative number. After changing roles of the baseline and alternative
models, we can do an analogous calculation that entails using 1

Nt+1
instead
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of Nt+1 as an increment. Then the scaled-by-(t + 1)−1 log likelihood ratio
would converge to the expectation of − logNt+1 under the alternative model
that is now in the denominator of the likelihood ratio. This limit would
be positive under the assumption that the alternative model generated the
data. These calculations justify selecting between the two models by cal-
culating logLt+1 and checking if it is positive or negative. This procedure
amounts to a special case of the method of maximum likelihood.

Remark 6.2.4. Suppose that data are not generated by the baseline model.
Instead, suppose that the statistical model implied by the change of measure
Nt+1 governs the stochastic evolution of the observations. Define condi-
tional entropy relative to baseline model θo as the following conditional
expectation:

E (Nt+1 logNt+1 | At) .

Here multiplication of logNt+1 by Nt+1 changes the conditional probability
distribution from the misspecified baseline model to the alternative statistical
model that we assume generates the data. The function n log n is convex
and equal to zero for n = 1. Therefore, Jensen’s inequality implies that
conditional relative entropy is nonnegative and equal to zero when Nt+1 =
1. An unconditional counterpart of relative entropy is the Large of Large
Numbers limit

lim
t→+∞

1

t+ 1

t∑
j=0

logNt+1 = lim
t→+∞

1

t+ 1

t∑
j=0

E (Nt+1 logNt+1 | At) ≥ 0

under the data generating process. Relative entropy is often used to analyze
model misspecifications. It is also a key component for studying the statis-
tical theory of “large deviations” for Markov processes, as we shall discuss
later.

Bayes’ law and likelihood ratio processes

Suppose now that we attach a prior probability πo to the baseline model
with probability 1− πo on the alternative. Then after observing Zj+1 : 0 ≤
j ≤ t, conditional probabilities for the baseline and alternative models are

πo
Lt+1(1− πo) + πo

and
Lt+1(1− πo)

Lt+1(1− πo) + πo
.
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When 1
t+1

logLt+1 converges to a negative number, the first probability

converges to one, and when 1
t+1

logLt+1 converges to a positive number, it
converges to zero.

6.3 Parameterizing Likelihoods

Let Θ be a set of parameter vectors. Each θ ∈ Θ indexes an alternative
transition probability as represented by the Nt+1(θ) that belongs in formula
(6.1). We presume that a particular θ, denoted θo, indexes the transition
probability that generates the data and is used as to calculate the con-
ditional expectation in formula (6.1). Accordingly, Nt+1(θo) = 1. Since
Nt+1(θ) is a likelihood increment, a recursion that defines a likelihood ratio
process for each θ is

Lt+1(θ) = Nt+1(θ)Lt(θ)

Setting L0(θ) = 1 for each θ completes a parameterized family of likelihood
ratios.

But the applied researcher does not know θo. For that reason, it is
convenient now to use a model with some arbitrary known parameter vector
θ̃ ∈ Θ as a baseline model in place of the θo model. We can accomplish this
by defining an increment process Ñt+1(θ) as

Ñt+1(θ) =
Nt+1(θ)

Nt+1(θ̃)
.

Notice that when we use Ñt+1(θ) in formula (6.1), we must also change
the transition probability used to take the expectation in (6.1) to be the

transition probability implied by θ̃. This is evident because Ñt+1(θ̃) = 1.
Our change of baseline model leads us now to construct likelihood ratios
with the recursion:

L̃t+1(θ) = Ñt+1(θ)L̃t(θ),

where we set L̃0(θ) = 1. In this way, we construct parameterized likelihoods
without knowing the θo model that generates the data.

In order to apply the Law of Large Numbers to the logarithm of the
likelihood ratio process divided by t+ 1, namely to

1

t+ 1
log L̃t+1(θ) =

1

t+ 1

t∑
j=0

log Ñj+1(θ)
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for t ≥ 0, we want to compute expectations under the θo model that actually
generates the data. Under the θo model’s expectation operator

ν̃(θ) = E
[
log Ñt+1(θ)

]
= E [logNt+1(θ)]− E

[
logNt+1(θ̃)

]
= ν(θ)− ν(θ̃).

Maximum Likelihood

We want the law of large numbers from Chapter 1 eventually to disclose
the parameter vector θo. The following argument shows that it will. The
law of large numbers leads us to expect that

lim
t→+∞

1

1 + t
log L̃t+1 = ν̃(θ).

Since θo generates the data, the super martingale property of the log like-
lihood ratio process implies that

ν(θ) ≤ ν(θo) = 0.

Therefore
ν̃(θ) = ν(θ)− ν(θ̃) ≤ ν(θo)− ν(θ̃) = ν̃(θo).

This implies that θo is a maximizer of ν̃(θ), and gives a “population counter-
part” to maximum likelihood estimation. By a population counterpart we
imagine a setting in which via the law of large numbers, sample averages
have converged to their population counterparts. Formally, a population
counterpart to maximum likelihood estimation solves:

max
θ∈Θ

ν̃(θ).

We have shown that the set of θ’s that solve maxθ∈Θ ν(θ) includes θo. We say
that the model is identified if θo is the unique maximizer. The maximum
likelihood estimator from a finite data sample uses a sample counterpart of
the above equation, namely,

argmaxθ∈Θ

1

t+ 1
log L̃t+1(θ).

Remark 6.3.1. (Reverse relative entropy) Continuing to index conditional
distributions by parameter vectors θ ∈ Θ, form the ratio

N o
t+1(θ) =

Ñt+1(θo)

Ñt+1(θ)
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Using a version of formula (6.1), we can use this ratio of likelihood incre-
ments to represent the transition distribution for statistical model θo relative
to that for an arbitrary statistical model θ. The ratio of likelihood increments
effectively changes the baseline model from θ̃ to an arbitrary θ. Then the
associated unconditional relative entropy defined in remark 6.2.4 becomes

D(θ) = lim
t→+∞

1

t+ 1

t∑
j=0

logN o
t+1(θ) ≥ 0

where the θo model generates the data. We can then express the population
counterpart to maximum likelihood as the solution to a minimum relative
entropy problem. Thus, since the model indexed by parameter vector θo
generates the data, the population maximum likelihood estimator solves

min
θ∈Θ

D(θ) = 0.

6.4 Score Process

We assume that parameter vector θo in the interior of a parameter space
Θ. Moreover, for each θ ∈ Θ,

E (Nt+1(θ) | At) = 1

where Nt+1(θo) = 1 by construction. Provided that we can differentiate
inside the mathematical expectation:1

E

(
∂Nt+1

∂θ

∣∣∣
θ=θo
| At

)
= 0.

Since expectations are taken under the θo probability

∂Nt+1

∂θ

∣∣∣
θ=θo

=
∂ logNt+1

∂θ

∣∣∣
θ=θo

Since the right side is a logarithmic derivative

∂ logNt+1

∂θ

∣∣∣
θ=θo

=
∂ log Ñt+1

∂θ

∣∣∣
θ=θo

where we used Ñt+1(θ) to build an operational likelihood process for alter-
native θ ∈ Θ.

1Formally, we define the derivative of a family {logNt+1(θ) : θ ∈ Θ} in terms of

mean square limits, and we let ∂Nt+1

∂θ = Nt+1
∂Nt+1

∂θ .
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Definition 6.4.1. The score increment is

St+1 − St =
∂ logNt+1

∂θ

∣∣∣
θ=θo

and the score process is

St+1 =
∂

∂θ
logLt+1

∣∣∣
θ=θo

Fact 6.4.2. The score process {St+1 : t ≥ 0} is a (multivariate) martingale
with stationary increments. Consequently

1√
t
St+1 ⇒ N (0,V)

where V = E
[
(St+1 − St) (St+1 − St)′

]
.

Fact 6.4.2 motivates characterizing the large sample behavior of the
score process by utilizing the martingale central limit theorem stated in
Proposition 2.3.1. In effect, the matrix V measures curvature of the log-
likelihood process in the neighborhood of the “true” parameter value θo.
The more curvature there is – i.e., the “larger” is the variance matrix V
of the score vector – the more information the data contain about θ. The
matrix V is called the Fisher information matrix in honor of R.A. Fisher.

An associated central limit approximation yields a large sample charac-
terization of the maximum likelihood estimator of θ in a Markov setting.
Let θt maximize the log-likelihood function logLt(θ). Under some regularity
conditions √

t(θt − θo)→ N
(
0,V−1

)
.

This limit justifies interpreting the covariance matrix V of the martingale
increment of the score process as quantifying information that data contain
about the parameter vector θo.

6.5 Nuisance parameters

Consider a situation in which to learn about one parameter, we have to
estimate other parameters too. Suppose that θ is a vector and V is a matrix.
We seek a notion of “Fisher information” about a single component of θ that
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interests us – a single parameter θ̄. A natural guess might be simply to take
as our measure the appropriate diagonal entry of V. It turns out that this
measure of our uncertainty is misleading because it ignores the fact that in
order to estimate the parameter of interest to us we have to “spend” some
of the information in the sample to estimate “nuisance parameters” that we
also had to estimate in order make inferences about θ̄. It turns out that a
better way to summarize our uncertainty about the parameter of interest is
to define its “Fisher information” as the reciprocal of an appropriate entry
of V−1.

Thus, partition

θ =

[
θ̄

θ̃

]
where θ̄ is the scalar parameter of interest and θ̃ is an associated unknown
nuisance parameter vector. Write the multivariate score process as{[

St+1

S̃t+1

]
: t = 0, 1, ...

}
Partition the covariance matrix V of the score process increment conformably
with (θ̄′, θ̃′)′: E

(
St+1 − St

)2
E
(
St+1 − St

) (
S̃t+1 − S̃t

)′
E
(
S̃t+1 − S̃t

) (
St+1 − St

)
E
(
S̃t+1 − S̃t

)(
S̃t+1 − S̃t

)′
 ≡ [V11 V12

V21 V22

]
.

We claim that taking E
(
St+1 − St

)2
as a measure of “Fisher information”

about θ̄ would overstate our information. Instead, the appropriate Fisher
information about θ̄ is the inverse of the (1, 1) component of the asymp-
totic covariance matrix V−1. Applying a partitioned inverse formula for a
symmetric matrix to compute that measure of Fisher information yields

Iθ̄ = V11 − V12V−1
22 V′12. (6.2)

An enlightening interpretation of the (1, 1) component Iθ̄ of V−1 comes from
recognizing that it is the residual variance of a population least squares re-
gression of the score vector increment of θ̄ on the score vector increment for
the nuisance parameter vector θ̃. Thus, a population least squares regres-
sion is

St+1 − St = β(S̃t+1 − S̃t) + Ut+1, (6.3)
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where β is a population regression coefficient vector and Ut+1 is a popula-
tion regression residual that by construction is orthogonal to the regressor
(S̃t+1 − S̃t). The least squares regression coefficient vector is

β = V12V−1
22

and the residual variance is

EU2
t+1 = V11 − V12V−1

22 V′12

which equals the Fisher information measure Iθ̄ defined above. From the
orthogonality of least squares residuals to regressors, the variability of the
left side variable St+1 − St in the projection equation (6.3) cannot exceed
that of the least squares residual so that

E(Ut+1)2 ≤ E
(
St+1 − St

)2
,

an inequality that confirms that information about θ̄ is lost by not knowing
the nuisance parameters θ̃.
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GMM estimation

7.1 Formulation

We study a family of GMM estimators of an unknown parameter vector
β constructed from theoretical restrictions on conditional or unconditional
moments of functions ϕ. The functions ϕ depend on an unknown parameter
vector β and on a random vector Xt that is observable to an econometrician
and has expectation zero. This property opens the door to the construction
of estimating equations to be used in constructing an estimator bN of β and
making inferences.

Data generation

For much of the analysis in this chapter implicitly “conditions on a model”
of the data generation. This data generation is presumed to be stationary
and ergodic. We do not presume that this model is known to the investi-
gator, which would make the analysis uninteresting. In many settings that
interest us, the parameter vector β incompletely characterizes that statisti-
cal model. This latter feature is important, as the methods we consider only
presume that the economic model is “partially specified.” This is meant to
apply to situations in which a researcher “wishes to do something without
having to do everything.” In contrast, likelihood and Bayesian methods
require a full specification of the data generating process. Formally, we im-
plement a version of what is known as semi-parametric estimation: while
β is a finite-dimensional parameter vector that we want to estimate, we
acknowledge that, in addition to β, a potentially infinite dimensional nui-
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sance parameter vector might be required to pin down the complete statis-
tical model on which we condition when we apply the law of large numbers
and central limit theorems. For the estimation problems that we consider,
the nuisance parameter vector needed to complete model specification is
left in the background. We will come back to the formal semi-parametric
interpretation later in this chapter when we discuss statistical efficiency.

Restrictions on the data generation

As a starting point, we consider a class of restrictions large enough to
include examples of both the conditional and the unconditional moment
restrictions that interest us. Members of this class take the form

E [At
′ϕ(Xt, b)] = 0 if and only if b = β (7.1)

for all sequences of selection matrices A ∈ A where A = {At : t ≥ 1} and
where

• the vector of functions ϕ is r-dimensional.

• the unknown parameter vector β is k-dimensional, as is b.

• A is a collection of time series of (possibly random) selection matrices
characterizing valid moment restrictions.

• At denotes a time t r × k selection matrix for a subset of the valid
moment restrictions that is used to construct a particular statistical
estimator b of β.

• the mathematical expectation is taken with respect to the statistical
model that generates the X = {Xt : t ≥ 1} process.

Applying a Law of Large Numbers to the population moment condition
(7.1) motivates a “generalized method of moments” bN estimator of the
k × 1 vector β that solves the following k equations:

1

N

N∑
t=1

At
′ϕ(Xt, bN) = 0.
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Different processes of selection matrices {At : t ≥ 1} and {Ãt : t ≥ 1}
typically give rise to different properties for the estimator {bN}, but in
some cases they do not. For instance, suppose that

Ãt = AtK

for some k × k nonsingular matrix K. Although the selection matrices Ãt
and At could be distinct, the set of moment conditions used to identify
and estimate β are effectively the same. Satisfying (7.1) for A is equivalent

satisfying (7.1) for Ã.

Example 7.1.1. Unconditional moment restrictions Suppose that

E [ϕ(Xt, β)] = 0

where r ≥ k. Let A be the set of all constant (time invariant) r×k matrices
A. Rewrite the restrictions as:

A′E [ϕ(Xt, β)] = 0

for all r×k matrices A. Sargan (1958) and Hansen (1982) assumed moment
restrictions like these.

Example 7.1.2. Conditional moment restrictions Assume the conditional
moment restictions

E [ϕ(Yt, β) | Jt−`] = 0

for a particular ` ≥ 1 and Yt = Xt. Let At be the set of all r × k matri-
ces, At, of bounded random variables that are Jt−` measurable. Then the
preceding conditional moment restrictions are mathematically equivalent to
the unconditional moment restrictions

E [At
′ϕ(Yt, β)] = 0

for all random matrices At ∈ At. This formulation is due to Hansen (1985)
and closely related to analysis of Chamberlain (1987).

It is common in practice to use the idea provided in Example 7.1.2 while
substantially restricting the set of moment conditions considered for esti-
mation. Specifically, we take a collection of conditional moment restrictions
and from them create unconditional moment restrictions like those in Ex-
ample of 7.1.1. In this way we can reduce the class of GMM estimators
under consideration.
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Example 7.1.3. Let A1
t , A

2
t , ..., A

m
t be m ad hoc choices of selection matri-

ces. Form

ϕ+(Xt, b) =


A1
t
′

A2
t
′

...
Amt
′

ϕ(Xt, b)

where Xt now includes variables used to construct Ajt and A2
t . We presume

that no linear combination of columns of any Ajt duplicate any columns of
the At’s. Otherwise, we would omit such columns and adjust ϕ+ accordingly.
Let r+ ≥ r denote the remaining non-redundant columns.

A′E
(
ϕ+(Xt, b)

]
= 0

and study an associated family of GMM estimators. This strategy reduces
the moment conditions from an infinite to a finite dimensional collection as
in Example 7.1.1.1

Example 7.1.4. “Moment matching” is another special case of Example
7.1.1. Suppose that

ϕ(Xt, b) = ψ(Xt)− κ(b)

where
E [ψ(Xt)] = κ(β).

Here ψ(Y ) defines moments to be matched and κ(b) gives model-predicted
moments as functionals of a parameter vector b. The function κ is often
computed by simulating the model for alternative values of parameter vector
β. See Lee and Ingram (1991) and Duffie and Singleton (1993).2 In contrast
to other applications of GMM estimation, this one presumes that, given b,
the model completely determines the simulated data. The method is applied
either for reasons computational simplicity or because the research wants to
focus on moments believed to be robust to model misspecification.

Collections A of selection processes for all of these examples satisfy the
following “linearity” restriction.

1More generally, construct ϕ+ using columns from alternative selection matrices.
2Important related approaches use a misspecified maximum likelihood (Smith (1993)

and Gourieroux et al. (1993)) or the score increment of of such a likelihood (Gallant and
Tauchen (1996)) to summarize empirical evidence and use model simulation to account
for the misspecification.
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Restriction 7.1.5. If A1 and A2 are both in A and J1 and J2 are k × k
matrices of real numbers, then A1J1 + A2J2 is in A.

7.2 Central limit approximation

The process {
N∑
t=1

At
′ϕ(Xt, β) : N ≥ 1

}
.

can be verified to have stationary and ergodic increments conditioned on
the statistical model. So there exists a Proposition 2.2.2 decomposition of
the process. Provided that

E [At
′ϕ(Xt, β)] = 0

under the statistical model that generates the data, the trend term in the
decomposition of Proposition 2.2.2 is zero, implying that the martingale
dominates the behavior of sample averages for large N . In particular,
Proposition 2.3.1 gives a central limit approximation for

1√
N

N∑
t=1

At
′ϕ(Xt, β)

provided that we restrict the family of selection matrices.

Restriction 7.2.1. For any A ∈ A,

E

[
∞∑
j=0

At+j
′ϕ(Xt+j, β) | Jt

]
converges in mean square.

Define the one-step-ahead forecast error:

Gt(A) = E

[
∞∑
j=0

At+j
′ϕ(Xt+j, β) | Jt

]
− E

[
∞∑
j=0

At+j
′ϕ(Xt+j, β) | Jt−1

]
Paralleling the construction of the martingale increment in Proposition
2.2.2,

1√
N

N∑
t=1

At
′ϕ(Xt, β) ≈ 1√

N

N∑
t=1

Gt(A)



98 Chapter 7. GMM estimation

where by the approximation sign ≈ we intend to assert that the difference
between the right side and left side converges in mean square to zero as N →
∞. Consequently, the covariance matrix in the central limit approximation
is E [Gt(A)Gt(A)′].

Recall Restriction 7.1.5. For the preceding construction of the martin-
gale increment, it is straightforward to verify that

Gt(A
1J1 + A2J2) = (J1)′Gt(A

1) + (J1)′Gt(A
2)

follows from the linearity of conditional expectations.

Example 7.2.2. Consider again example 7.1.1 in which At = A for all
t ≥ 0 and

Gt(A) = A′Ft

where

Ft = E

[
∞∑
j=0

ϕ(Xt+j, β) | Jt

]
− E

[
∞∑
j=0

ϕ(Xt+j, β) | Jt−1

]
.

Define the covariance matrix

V = E (FtFt
′)

and note that

E [Gt(A)Gt(A)′] = A′VA.

Example 7.2.3. In Example 7.1.2

E [ϕ(Yt, β) | Jt−`] = 0

and hence

E [At
′ϕ(Yt, β) | Jt−`] = 0

whenever entries of At are restricted to be Jt−` measurable. Consequently

E [At+j
′ϕ(Yt+j), β) | Jt] = 0

for j ≥ ` so that the infinite sums used to construct Gt(A) simplify to finite
sums.



7.3. Mean value approximation 99

7.3 Mean value approximation

Write

1√
N

N∑
t=1

At
′ϕ(Xt, bN) ≈ 1√

N

N∑
t=1

At
′ϕ(Xt, β)

+
1

N

N∑
t=1

At
′
[
∂ϕ

∂b′
(Xt, β)

]√
N(bN − β)

≈ 1√
N

N∑
t=1

At
′ϕ(Xt, β) +∇(A)′

√
N(bN − β)

where

∇(A)
.
= E

([
∂ϕ

∂b′
(Xt, β)

]′
At

)
1√
N

N∑
t=1

At
′ϕ(Xt, bN) ≈ 0,

∇(A)′
√
N(bN − β) ≈ − 1√

N

N∑
t=1

At
′ϕ(Xt, β)

So long as ∇(A) is nonsingular,

√
N(bN − β) ≈ − [∇(A)′]

−1 1√
N

N∑
t=1

At
′ϕ(Xt, β).

This approximation underlies an “efficiency bound” for GMM estima-
tion. Notice that the covariance matrix in a central limit approximation
is:

cov(A) = [∇(A)′]
−1
E [Gt(A)Gt(A)′] [∇(A)]−1

We want to know how small we can make this matrix by choosing a selection
process.

Example 7.3.1. Consider again Example of 7.1.1. In this case At = A for
all t ≥ 0 and

∇(A) = D′A
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where

D .
= E

[
∂ϕ

∂b′
(Xt, β)

]
and

cov(A) = (A′D)
−1 A′VA (D′A)

−1

7.4 GMM Efficiency Bound

Recall
cov(A) = [∇(A)′]

−1
E [Gt(A)Gt(A)′] [∇(A)]−1

We seek a greatest lower bound on the covariance matrix on the right.

i) Suppose that [∇(A)′]−1 is nonsingular and impose that

[∇(A)] = I

If not post multiply A by a nonsingular matrix K. That leaves the
GMM estimator unaltered. Thus, we have

cov(A) = E [Gt(A)Gt(A)′]

subject to [∇(A)] = I

ii) Find an Ad such that for all A ∈ A

∇(A) = E
[
Gt(A

d)Gt(A)′
]
.

iii) Form

A∗t = Adt
(
E
[
Gt(A

d)Gt(A
d)′
])−1

for all A ∈ A. These form a set of first-order sufficient conditions for
our constrained minimization problem. Then

Gt(A
∗) =

(
E
[
Gt(A

d)Gt(A
d)′
])−1

Gt(A
d)

and
E [Gt(A

∗)Gt(A)′] =
(
E
[
Gt(A

d)Gt(A
d)′
])−1

provided that [∇(A)] = I.
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iv) Therefore,

0 ≤ E
(
[Gt(A)−Gt(A

∗)] [Gt(A)−Gt(A
∗)]′
)

= cov(A)− cov(A∗)

= cov(A)−
(
E
[
Gt(A

d)Gt(A
d)′
])−1

.

Result 7.4.1. Given a solution to equation (ii)

inf
A∈A

cov(A) =
(
E
[
Gt(A

d)Gt(A
d)′
])−1

(7.2)

Remark 7.4.2. In the result 7.4.1 efficiency bound, we might be tempted
to think that Gt(A

d) plays the same role that the “score vector” increment
does in maximum likelihood estimation. But because there is potentially
a set of infinite dimensional nuisance parameters here, a better analogy
is that Gt(A

d) acts much like the residual vector in a regression of the
score increments for parameters of interest on score increments of nuisance
parameters. By taking conditional or unconditional moment restrictions as
the starting point for estimation of parameter vector β, we have purposefully
pushed all nuisance parameters into the background.

Remark 7.4.3. Consider two GMM estimators, one with a selection pro-
cess A and the other with A∗. Transform A :

Ã = AK

and choose K so that

∇
(
Ã
)

= ∇ (A)K = I. = I

Thus K =
[
∇(A)

.
= E

([
∂ϕ
∂b′

(Xt, β)
]′
At

)]−1

. Since the selection processes

are asymptotically equivalent, we may use Ã to characterize the limiting
distribution of the corresponding GMM estimator. Let {bT : T ≥ 1} denote
the corresponding GMM and let {b∗T : T ≥ 1} be the asymptotically efficient
GMM estimator. Then

√
N (bT − b∗T ) ≈ 1√

T

N∑
t=t

Gt

(
Ã
)
−Gt (A∗)

with a limiting covariance matrix

E
(
[Gt(A)−Gt(A

∗)] [Gt(A)−Gt(A
∗)]′
)

= cov(A)− cov(A∗)
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Example 7.4.4. Consider Example 7.1.1 in which we assumed that At = A.
Then

A′VAd = A′D.

Therefore,
Ad = V−1D

and the GMM efficiency bound is(
D′V−1D

)−1
.

Example 7.4.5. Consider again Example 7.1.2 in the special case in which
` = 1. Let

E [ϕ(Xt, β)ϕ(Xt, β)′ | Jt−1] = Vt−1

wish to solve the following equation for Adt

E
(
Adt
′
Vt−1At

)
= ∇(A) = E

([
∂ϕ

∂b′
(Xt, β)

]′
At

)
. (7.3)

Given the flexibility in the choice of the random At with entries that are
At−1 measurable, this equation is equivalent to

Vt−1A
d
t = E

([
∂ϕ

∂b′
(Xt, β)

]
| Jt−1

)
where we have taken transposes of the expressions in (7.3). Thus

Adt = (Vt−1)−1E

([
∂ϕ

∂b′
(Xt, β)

]
| Jt−1

)
and the efficiency bound is:[

E

([
∂ϕ

∂b′
(Xt, β)

]′
| Jt−1

)
(Vt−1)−1E

([
∂ϕ

∂b′
(Xt, β)

]
| Jt−1

)]−1

.

Example 7.4.6. Two-stage least squares. Add the following special
restrictions to example 7.4.5. Suppose that r = 1 and that Vt−1 = v > 0
where v is constant. Further suppose that

ϕ(Xt, b) = Y 1
t − Y 2

t · b
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Finally, suppose that

E
(
Y 2
t | Jt−1

)
= ΠZt−1

where Zt−1 has more entries than Y 2
t . Notice that Π can be computed as a

least squares regression. Then

Adt =

(
1

v

)
Zt−1

′Π′

The scaling by 1
v

is inconsequential to the construction of a selection process.
The matrix of regression coefficients can be replaced by the finite sample least
squares regression coefficients without altering the statistical efficiency.

Example 7.4.6 has a special structure that does not prevail in some
important applications. For instance, suppose that Vt−1 depends on condi-
tioning information so that a form conditional heteroskedasticity is present.
That dependence shows up in essential ways in how Adt should be con-
structed. Further, suppose that the expectation E (X2

t | Jt−1) potentially
depends nonlinearly on Zt−1. In that case, to attain or to approximate the
efficiency bound, a least squares regression should account for potential non-
linearity. Finally, suppose that ` > 1. Then even if the covariance structure
is homoskedastic and conditional expectations are linear, the two-squares
least square approach will no longer be statistically efficient. We again have
to deploy an appropriate martingale central limit approximation. In these
circumstances, simply by mapping into the framework of Example 7.1.1, we
can improve efficiency relative to least squares or two-stage least squares,
for instance, by letting

ϕ(Xt, b) = Zt−`

[
Y 1
t −

(
Y 2
t

)′
b
]

Hansen and Singleton (1996) construct the efficiency bound in Example
7.1.2 for a linear data generating process.

Remark 7.4.7. Consider again Example 7.1.1. Instead of “solving a sys-
tem of equations,” form estimators by optimiziation:

min
b∈Π

[
1

N

N∑
t=1

ϕ(Xt, b)

]′
W

[
1

N

N∑
t=1

ϕ(Xt, b)

]′
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where β is an interior point of Π and W is a positive definite weighting
matrix. The first-order conditions for this minimization problem are:

1

N

[
N∑
t=1

∂ϕ

∂b′
(Xt, bN)

]′
W

[
1

N

N∑
t=1

ϕ(Xt, bN)

]
= 0

where bN is the minimizer. The efficiency bound is attained by replacing W
with V−1 or a consistent estimator of this V−1.

7.5 Statistical tests

For purposes of devising a test of the “over-identifying restrictions,” let
B = {Bt : t ≥ 0} be an r × k̃ matrix process constructed to verify

E [Bt
′ϕ(Xt, β)] = 0.

Suppose that

E

[
∞∑
j=0

Bt+j
′ϕ(Xt+j, β) | Jt

]
converges in mean square so that we can apply a central limit approxima-
tion. Construct

∇̃(B)
.
= E

([
∂ϕ

∂b′
(Xt, β)

]′
Bt

)
.

By imitating the earlier argument

1√
N

N∑
t=1

Bt
′ϕ(Xt, bN) ≈ 1√

N

N∑
t=1

Bt
′ϕ(Xt, β) + ∇̃(B)′

√
N(bN − β)

≈ 1√
N

N∑
t=1

Bt
′ϕ(Xt, β)

− ∇̃(B)′∇(A)−1 1√
N

N∑
t=1

At
′ϕ(Xt, β)

≈ 1√
N

N∑
t=1

[
Bt
′ − ∇̃(B)′ [∇(A)′]

−1
At
′
]
ϕ(Xt, β)
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Notice that if At = Bt, then the right side is zero and the limiting distri-
bution is degenerate. This approximation is used to construct tests that
account for having used GMM to estimate a parameter vector β.

Example 7.5.1. Consider again unconditional moment restrictions speci-
fied in Example 7.1.1. Let the selection process for testing be constant over
time so that Bt = B. Then

1√
N

N∑
t=1

Bt
′ϕ(Xt, bN) ≈ 1√

N

N∑
t=1

[
B′ − B′D (A′D)

−1 A′
]
ϕ(Xt, β).

Testing with a statistically efficient estimator

First suppose that we have statistically efficient selection process. Recall
the approximation

1√
N

N∑
t=1

Bt
′ϕ(Xt, bN) ≈ 1√

N

N∑
t=1

[
Bt
′ − ∇̃(B)′

[
∇(Ad)′

]−1
Adt
′
]
ϕ(Xt, β).

Let G̃t(B) denote the increment in the martingale approximation for

N∑
t=1

Bt
′ϕ(Xt, β).

From the restrictions that we have imposed on the process B used for
constructing tests

∇̃(B) = E
[
Gt(A

d)Gt(B)′
]
.

Using both of these representations:

1√
N

N∑
t=1

Bt
′ϕ(Xt, bN) ≈ 1√

N

N∑
t=1

Ĝt(B) (7.4)

where

Ĝt(B)
.
= G̃t(B)− E

[
G̃t(B)Gt(A

d)′
] (
E
[
Gt(A

d)Gt(A
d)′
])−1

Gt(A
d)

The term, Ĝt(B), that appears inside the sum on the right side of (7.4) is

the population least squares residual from regressing G̃t(B) onto Gt(A
d).
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This regression residual can also be interpreted as a martingale increment
for a stationary increments process.

Suppose that Ĝt(B) has a nonsingular covariance matrix. Consider the
quadratic form used for building a test:

1

N

[
N∑
t=1

ϕ(Xt, bN)′Bt

](
E
[
Ĝt(B)Ĝt(B)′

])−1
[

N∑
t=1

Bt
′ϕ(Xt, bN)

]
⇒ χ2(k̃).

This test can be implemented in practice by replacing E
[
Ĝt(B)Ĝt(B)′

]
with a statistically consistent estimator of it. There is an equivalent way
to represent this quadratic form:

1

N

N∑
t=1

ϕ(Xt, bN)′
[
Bt Adt

] [
E

([
G̃t(B)
Gt(A

d)

] [
G̃t(B)′ Gt(A

d)′
])]−1

[
N∑
t=1

[
Bt
′

Adt
′

]
ϕ(Xt, bN)

]
This equivalence follows because the inverse of the covariance matrix for
the regression error Ĝt(B) is the upper diagonal block of the inverse of the
covariance matrix:

E

([
G̃t(B)
Gt(A

d)

] [
G̃t(B)′ Gt(A

d)′
])

Example 7.5.2. Consider Example 7.1.1 again. We have already shown
that

Ad = V−1D.
Suppose that we choose B with dimension r × (r − k) so that[

Ad B
]

has full rank. Then

1

N

N∑
t=1

ϕ(Xt, bN)′V−1

N∑
t=1

ϕ(Xt, bN)′ ⇒ χ2(r − k).

If we replace bN with β on the left side of the above limit we find

1

N

N∑
t=1

ϕ(Xt, β)′V−1

N∑
t=1

ϕ(Xt, β)′ ⇒ χ2(r)
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The difference in the resulting χ2 distribution emerges because estimating
k free parameters reduces degrees of freedom by k. It is straightforward to
show that

1

N

N∑
t=1

ϕ(Xt, β)′V−1

N∑
t=1

ϕ(Xt, β)′− 1

N

N∑
t=1

ϕ(Xt, bN)′V−1

N∑
t=1

ϕ(Xt, bN)′ ⇒ χ2(k),

an approximation that is useful for constructing confidence sets for GMM
estimates of parameter vector β.
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