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Abstract

We connect variational preferences with the likelihood functions and prior probabilities over

parameters that are building blocks of statistics and econometrics. We use relative entropy and

other statistical divergences as cost functions in the variational preferences of someone who is

ambiguous in the sense of not having a unique prior over a discrete set or manifold of statistical

models (i.e., likelihood functions) and who suspects that each statistical model is misspecified.

We connect variational preferences to theories of robust control and statistical approximation.
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1 Introduction

Practicing econometricians often struggle with uncertainty about their statistical models, but usually with

scant guidance from advances in decision theory made after Wald (1947, 1949, 1950), Savage (1954), and

Ellsberg (1961).1 This might be because much recent formal theory of decision making under uncertainty in

economics is not cast explicitly in terms of the likelihoods and priors that are foundations of statistics and

econometrics. Likelihoods are probability distributions conditioned on parameters while priors describe a

∗We thank Tommaso Denti, Marco Loseto, Luciano Pomatto, Giulio Principi, Doron Ravid, and participants of
the Econometrics Advising Group at the University of Chicago for criticisms of earlier drafts. We are particularly
appreciative of repeated conversations and helpful comments by Simone Cerreia Vioglio, Fabio Angelo Maccheroni,
and Massimo Marinacci that helped us understand recent advances in decision theory that address uncertainty with
an eye towards model building in the presence of statistical challenges. Diana Petrova, Haomin Qin and Samuel Zhao
provided assistance with the preparation of the document. We are thankful for the financial support from the Alfred
P. Sloan Foundation (grant G-2018-11113) toward this research.

†University of Chicago. Email: lhansen@uchicago.edu
‡New York University. Email: thomas.sargent@nyu.edu
1Examples of econometricians who explicitly confronted model uncertainty include Onatski and Stock (2002),

Brock et al. (2003), Stock and Watson (2006), Brock et al. (2007), Del Negro and Schorfheide (2009), Christensen
(2018), Christensen and Connault (2019), Christensen et al. (2020), Andrews and Shapiro (2021), and Bonhomme
and Weidner (2021). Chamberlain (2000, 2001) used a post Wald-Savage decision theory of Gilboa and Schmeidler
(1989) to confront model uncertainty in his econometric work.
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decision maker’s subjective belief about parameters.2 By distinguishing roles played by likelihood functions

and subjective priors over parameters, this paper aims to bring decision theory, post Wald and Savage, into

closer contact with statistics and econometrics in ways that can address practical econometric concerns about

model misspecifications and selection of prior probabilities.

Although they proceeded differently than we do, Chamberlain (2020), Cerreia-Vioglio et al. (2013), and

Denti and Pomatto (2022) studied related issues. Chamberlain (2020) emphasized that likelihoods and priors

are both vulnerable to uncertainties. Cerreia-Vioglio et al. (2013) and Denti and Pomatto (2022) focused on

uncertainty about predictive distributions that they constructed by integrating likelihoods with respect to

priors. Since a likelihood describes probabilities over events that are of direct interest to a decision maker

conditioned on parameters, alternative priors over parameters induce ambiguity about probabilities over such

events, a focus for both of these papers.3 But neither of those papers sharply distinguishes prior uncertainty

from concerns about possible model misspecifications, which is something that we want to do. We formulate

concerns about model misspecification as uncertainty about likelihoods.

Our approach assembles concepts and practical ways of modeling risks and concerns about model mis-

specifications from statistics, robust control theory, economics, and decision theory. We align definitions of

statistical models, uncertainty, and ambiguity with concepts from decision theories that build on Anscombe

and Aumann (1963)’s way of representing subjective and objective uncertainties. We connect our analysis to

econometrics and robust control theory by using Anscombe and Aumann states as alternative parameterized

statistical models of random variables that affect outcomes that a decision maker cares about. We do this

differently than Gilboa et al. (2010), Cerreia-Vioglio et al. (2013), and Denti and Pomatto (2022) in ways

that influence the concerns about robustness and ambiguity that we are able to represent with variational

preferences.

Some “behavioral” models in economics and finance assume expected utility preferences in which an

agent’s subjective probability differs systematically from probabilities assumed to govern the data.4 This

literature also contains discussions of differences in agents’ ‘confidences’ in their views of the world. As

we open the door to alternative notions of uncertainty, lack of confidence can take different forms. Prefer-

ence structures that we describe in this paper allow us to formalize different degrees of “confidence” both

about details of specifications of particular statistical models and about subjective probabilities attached

to alternative statistical models. Our representations of preferences provide ways to characterize degrees of

confidence in terms of perceived statistical plausibilities.5

2The term likelihood can have multiple meanings. We shall use it to represent a probability density of prize-
relevant shocks conditioned on parameters. Distinguishing likelihood functions from subjective priors is fundamental
to Bayesian formulations of statistical learning. See de Finetti (1937), who recommended exchangeability as a more
suitable assumption than iid (independent and identically distributed) to model situations in which a decision maker
wants to learn. Putting subjective probabilities over parameters that index likelihood functions for iid sequences of
random vectors generates exchangeable sequences of random variables.

3Among other contributions, Cerreia-Vioglio et al. (2013) (section 4.2) provide a rationalization of the smooth
ambiguity preferences proposed by Klibanoff et al. (2005) based on likelihood-prior distinctions. Denti and Pomatto
(2022) extend this approach by using an axiomatic revealed preference approach to deduce an implied parameterization
of a likelihood function.

4We put “behavioral” in quotes to emphasize that most economic models are about agents’ behaviors, including
models that impose the rational expectations and common knowledge assumptions that “behavioral” economists want
to drop. “Behavioral” economics sometimes means work that is linked more or less informally to psychology.

5Although we provide no formal links to psychology here, we think that a promising research plan would explore
connections between so-called behavior distortions and the inferential challenges that economic decision makers
confront. As is often assumed in behavioral models, degrees of confidence could differ across economic agents.
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Objects and Interpretations

Our decision maker knows what statisticians call a parameterized family of probability distributions dτpw|θq,

where w P W is a realization of a “shock” that he cares about and θ P Θ is a vector of parameters. The

decision maker evaluates alternative prize rules, each of which we represent as a function γ : W Ñ X, where

x P X is a “prize” that he cares about. In our featured examples, the outcome γpwq determines the decision

maker’s exposure to an uncertain random vector that has realization, w PW. A set of γ’s describes the prize

rules under consideration by the decision maker. (In section 2, we will provide a more detailed description of

a function γ as the outcome from a more fully articulated decision process.) The parameter space Θ can be

finite or infinite dimensional; dτpw|θq is a member of a family of distributions indexed by θ P Θ. When Θ is

infinite dimensional, we say that dτpw|θq for θ P Θ is a “nonparametric” family of probability distributions.

The “non-informativeness” of a decision maker’s set of possible “prior” probability distributions over Θ plays

an important role in justifying alternative approaches to “robustness” that we describe in section 4.

We use three key components from decision theory: i) states, ii) acts, and iii) prizes, but we use them

differently than many other authors do. We follow Anscombe and Aumann (1963) by defining consequences

as lotteries over prizes. An act maps states into consequences. A decision maker’s preferences are defined

over acts. In the static setup of this paper, we take a state to be a parameter of a statistical model.

That distinguishes our formulation from many other applications of Anscombe and Aumann (1963). For

example, decision theorists who connect their work to revealed preference theory typically want states that

are “verifiable”. But we are interested in situations, typical in econometrics, where parameters of statistical

models are hidden and can be ferreted out eventually, if ever, only by invoking limits associated with the

Law of Large Numbers. Because parameter uncertainty is central for us, it is important that the parameter

θ be included as at least a component of the state.6

Gilboa et al. (2010) and Cerreia-Vioglio et al. (2013) introduced parameterized models as a family of

primitive probabilities that a decision maker cares about. In effect, Cerreia-Vioglio et al. (2013) considered

an expanded state space pw, θq that includes both shocks with realization w and parameters θ and then take

a model to be a conditional distribution over pW,Wq given θ.7 Consistent with the framework of Gilboa

et al. (2010), Cerreia-Vioglio et al. showed that a family of models induces a partial ordering according to

which one act is preferred to another if it is preferred under all models in the family.

In contrast to Cerreia-Vioglio et al. and many other applications of the Anscombe and Aumann (1963)

framework, we use lotteries in a more essential way. Anscombe and Aumann (1963) motivate lotteries as

“roulette wheels” with known (objective) probabilities, in contrast to “horse races” with unknown (subjec-

tive) probabilities. Much previous research used an Anscombe and Aumann (1963) setup as a mathematical

vehicle to extend Von Neumann and Morgenstern (1944) preferences defined over lotteries to more general

settings that could include subjective uncertainty. In our formulation, the random vector W induces a

probability distribution that according to a particular act implies a particular lottery that can depend on

a parameter of a statistical model. This formulation imagines someone who represents a family of models

6Stephen Stigler showed us a short working paper by Savage (1952) entitled “An Axiomatic Theory of Reasonable
Behavior in the Face of Uncertainty,” a prolegomenon to the axiomatic structure presented in Savage (1954). Savage
(1952) wrote this: “The set S represents the conceivable states, or descriptions of the world, or milieu, with which
the person is concerned . . . ” We think of parameter values or model selection indicators as presenting a “description
of the world.”

7Cerreia-Vioglio et al. (2013) deploy a “Dynkin space” and an associated sigma algebra of events. Their condi-
tioning on those events is a counterpart to our conditioning on a model. As an alternative, Denti and Pomatto (2022)
used an axiomatic approach to define a parameterized set of models. While both of those approaches are interesting,
we suppose that models can have epistemological origins. In this, we follow Hansen and Sargent (2022) who refer to
such models as “structured models.”
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as a manifold of probability distributions indexed by an unknown parameter vector. Parameter vectors can

reside in a finite set or on a manifold of possible values. This way of using the Anscombe and Aumann

(1963) framework lets us distinguish robustness to misspecification of each member of a collection of sub-

stantively motivated “structured” statistical models from robustness to the choice of a prior distribution

over alternative models. We formulate preferences that express and distinguish concerns about both types

of robustness.

Maccheroni et al. (2006a) and Strzalecki (2011) used Hansen and Sargent’s (2001) stochastic formulation

of a robust control problem as a way to motivate their axioms. We apply our Anscombe and Aumann

formulation to describe how those axioms actually express prior uncertainty rather than the model misspec-

ification concerns that originally motivated Hansen and Sargent (2001). But we also show how, by using an

appropriate ambiguity index or “cost” function, we can use the variational preferences of Maccheroni et al.

(2006a) to express concerns about robustness both to statistical model misspecification and to prior choice,

including priors meant to support “nonparametric Bayesian” methods.

Section 2 sets the stage by reviewing axioms that support Anscombe and Aumann’s subjective expected

utility representation. Section 3 tells how Maccheroni et al. (2006a) relaxed the Gilboa and Schmeidler

(1989) and Anscombe and Aumann axioms to arrive at variational preferences. Section 4 describes a class

of variational preferences that use statistical divergences as Maccheroni et al. cost functions. Section 5

describes and applies our formulations of variational preferences, with subsections defining cost functions that

distinguish concerns about robustness of likelihoods from concerns about robustness of priors. A subsection

5.1 decision maker has a unique baseline model that he distrusts and seeks robustness with respect to

statistically nearby models. A subsection 5.2 decision maker knows a set of models but seeks robustness

with respect to a set of alternative priors to put over those models. After comparing and contrasting these

two decision makers in subsection 5.3, subsection 5.4 modifies the robust prior analysis to be consistent

with the axioms posed by Gilboa and Schmeidler (1989) and subsection 5.5 provides an example of these

alternative types of robustness. Section 6 describes a candidate for a cost function to use for a variational

preferences representation of a decision maker who is concerned about both types of robustness. Section

8 briefly steps outside the decision theory to discuss how an outside analyst might want to assess “cost”

parameters that characterize a decision maker’s variational preferences. Section 9 concludes.

2 Preliminaries

Following Gilboa and Schmeidler (1989) and Maccheroni et al. (2006a), we adopt a version of the framework

of Anscombe and Aumann (1963) described by Fishburn (1970): pΘ,Gq is a measurable space of potential

states, pX,Xq is a measurable space of potential prizes, Π is a set of probability measures over states, and

Λ is a set of probability measures over prizes.8 For each π P Π, pΘ,G, πq is a probability space and for each

λ P Λ, pX,X, λq is a probability space. Let X denote an event in X and G denote an event in G.

Definition 2.1. An act is a G measurable function f : Θ Ñ Λ.

For a given θ, fpθq P Λ is a lottery over possible prizes x P X.9 We let dfpx | θq denote integration with

respect to probabilities described by that lottery. For a given probability measure π P Π,
ş

Θ
fpdx | θqπpdθq

8For a discussion of the Anscombe-Aumann setup, see Kreps (1988), especially chapters 5 and 7.
9The basic setup used here borrows from Marinacci and Cerreia-Vioglio (2021). Following the leads of de Finetti

and Savage, formulations of max-min expected utility and variational preferences initially worked within a tradition in
decision theory under uncertainty that restricted probabilities to be finitely additive. However, countable additivity
simplifies the presentation and is routinely imposed in much of probability theory.
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is a two-stage lottery over prizes, with one lottery over states θ being described by π and another lottery

over prizes x P X being described by dfpx | θq that depends on the outcome θ from the other lottery. We

shall introduce uncertainty about π, the probabilities assigned to the θ events.

As mentioned in section 1, we shall interpret objects in the Anscombe and Aumann formulation in ways

that relate to our work as statisticians/econometricians. We interpret a state θ as pinning down one among

a set Θ of probability models that a decision maker regards as possible. A decision maker takes an action

(i.e., “chooses an Anscombe and Aumann act”) that leads to a probability distribution over outcomes that

he/she cares about, i.e., over Anscombe and Aumann prizes x P X.

We use “prize rules” to represent alternative acts. A prize rule is a function γ : W Ñ X, where x P X. A

prize rule thus determines how a prize depends on underlying shocks W . Conditioned on parameter θ, the

function γ in conjunction with the family of distributions dτpw | θq implies a lottery over prizes in X. Thus,

for events X P X and a prize rule γ, we induce a lottery fpx | θq by using dτpw | θq to assign conditional

probabilities to events W of the form

W “ tw : γpwq P X u.

In our setting, alternative prize rules γ imply alternative Anscombe and Aumann acts. This is convenient for

us as applied statisticians because a parameterized family of distributions dτpw | θq can be used to construct

a manifold of likelihoods indexed by unknown parameter vector θ P Θ. We refer to the resulting collection

of acts as a set of acts induced by prize rules. A particular decision problem will circumscribe a family of

prize rules and hence a family of Anscombe and Aumann acts.

Remark 2.2. For some of our purposes, it helps to represent a function γ as

γpwq “ Γpd,wq (1)

for a decision d P D and another function Γ. Thus, γ depends implicitly on d, so we sweep out a family

of prize rules as we select different possible “decisions” d P D. As an example of such a formulation, d

could be a particular investment vehicle whose random return is exposed to shock W in a particular way. In

this stylized setting, we shall interpret dτpw|θq as a “statistical model” and the pair pΓ, τq as a “substantive

model”. We can expand the collection of acts by randomizing the decisions. Given two decisions d1 and d2,

a randomized rule makes decision d1 with probability α and d2 with probability 1 ´ α. Since each decision

induces an Anscombe and Aumann act, the randomized decision implies a convex combination of the two

induced acts.10

In what follows, a decision maker’s prior over possible statistical models indexed by θ is a probability

measure π P Π.

Remark 2.3. The collection of Anscombe and Aumann acts is typically much larger than ones that can

be induced by an available set of prize rules γ. We know that the axioms invoked in this paper apply to

preferences over the full collection of Anscombe and Aumann acts. While the randomization of decisions

described in remark 2.2 enlarges the set of Anscombe and Aumann acts by including the convex hull of the

set of acts induced by prize rules, in general that device will not construct the full set of Anscombe and

Aumann acts. We recognize that judging the plausibility or “self-evident quality” of the axioms that we

impose generally requires extending the set of the acts to be studied beyond the set of “induced-by-prize rules”

or even their convex hull that we focus on in this paper.

10In some special cases, the set of acts induced by decisions may itself be convex. In this case, the randomization
of decisions merely replicates the collection of induced acts.
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Remark 2.4. To build another bridge across literatures, we briefly revisit language from mathematical

statistics that Ferguson (1967) used to describe a statistical decision problem. Start by positing a distribution

dτpw | θq for W, where θ is a “true state of nature” (an object that we instead call a parameter). Represent

the outcome of what Ferguson calls a statistical experiment as a realization y “ βpwq of a random variable

that contains information about W . Let a decision dpyq depend on the observed value y of Y. We constrain

what we call a prize rule γ to satisfy:

γpwq “ Γrdpyq, ws “ Γrd ˝ βpwq, ws

for a pre-specified Γ and a measurable function d that maps observations y from the statistical experiment

into a set of what Ferguson calls actions.11 Thus, Ferguson allows for an action to depend on a realization

y of Y .12 Ferguson’s actions are distinct from Anscombe and Aumann (1963) acts. For us, each prize rule

γ implies a probability distribution for a prize conditioned on θ that is induced by dτpw | θq. We take this to

be an Anscombe and Aumann (1963) act. Our decision problem imposes restrictions on admissible choices

of γ. We allow different restrictions than those imposed by Ferguson.13 By design, our formulation opens up

dynamic extensions that we explore in a companion paper.

Let A be the set of all acts. Two collections of acts will interest us, a set Ao that lets us represent

objective uncertainty and another set As that Anscombe and Aumann (1963) used to express subjective

uncertainty. Formally, let Ao Ă A denote the collection of all constant acts where a constant act maps all

θ P Θ into a unique lottery over prizes x P X. Constant acts express objective uncertainty because they

do not depend on the parameter θ. Given this lack of dependence, the probability distribution π P Π over

states plays no role in shaping an ultimate probability distribution over prizes. A constant act constructed

from a prize rule, γ, could emerge as follows. Suppose that some component of W has a known distribution

independent of θ and that γ depends only on this component. Such limited dependence implies an act that

is independent of θ. The collection As consists of acts, each of which delivers a unique prize for each θ. We

let spθq P X denote an act in As.
14 We use a probability distribution π P Π over states in conjunction with

As to express subjective uncertainty.

Remark 2.5. Anscombe and Aumann (1963) distinguished “horse race lotteries,” represented by acts in

As, from “roulette lotteries,” represented by acts in Ao.
15

Remark 2.6. While Savage (1954) did not include “objective” lotteries when he rationalized subjective

expected utility, his framework allows flexibility in defining both a state and an act. Gilboa et al. (2020)

exhibit the flexibility of a Savage-style state space with a variety of applications and discuss the benefits

and challenges that this flexibility brings.16 There is also flexibility in constructing an act. Exploiting this

11For Ferguson (1967), d as a function of y is a decision rule distinct from our prize rule.
12Ferguson’s formulation of the problem introduces a loss function that for us would be the negative of the

expectation of a utility function conditioned on pY, θq under the distribution implied by dτpw | θq and β.
13Although he posed it as a static problem, Ferguson (1967)’s formulation can be reinterpreted as a multi-stage

or multi-period decision problem in which a decision rule chosen at the outset depends on information that will be
revealed in a second stage that in turn influences an uncertain outcome to be realized in a subsequent third stage.
We want to explore robustness to prior selection. What is pertinent in the second stage is a posterior conditioned on
the outcome of a statistical experiment. In a dynamic setting, the distinction between priors and posteriors becomes
obscured as today’s posterior becomes tomorrow’s prior. Since a recursive formulation of a dynamic decision problem
essentially reduces a multi-period problem to a two-period problem, the prior/posterior robustness sensitivity could
occur in a counterpart to the intermediate stage envisioned by Ferguson (1967).

14Technically, an act in As is a degenerate Dirac lottery with a mass point at spθq that is assigned probability one.
15See Kreps (1988, ch. 5) for more about the distinction.
16They did not specifically discuss the statistical linkages that we explore here.
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flexibility, Cerreia-Vioglio et al. (2012) produce a preference representation for Anscombe and Aumann acts

under Savage (1954) axioms augmented with risk independence. This representation coincides with the

familiar Savage representation for acts in As with unique prizes for each state.17

We shall often construct a new act from initial acts f and g by using: an α P p0, 1q to form a mixture

rαf ` p1´ αqgs pθq “ αfpθq ` p1´ αqgpθq P Λ @θ P Θ.

We shall use instances of our Anscombe and Aumann framework to describe a) a Bayesian decision maker

with a unique prior over a set Θ of statistical models, b) a decision maker who knows a set Θ of statistical

models and who copes with ambiguity about those models by considering prospective outcomes under a set

of priors Π over those statistical models, c) a decision maker with concerns that a single known statistical

model θ is misspecified by using a statistical discrepancy measure to discipline the exploration of the unknown

models surrounding that known model, and d) a decision maker with ambiguity and concerns about model

misspecifications.

2.1 Preferences

To represent a decision maker’s preferences over acts, we use „ to mean indifference, Á a weak preference,

and ą a strict preference. Throughout, we assume that preferences are non-degenerate (there is a strict

ranking between two acts), complete (we can compare any pair of acts), and transitive (f Á g and g Á h

imply f Á h). We also impose an Archimedean axiom that provides a form of continuity.18 A finite signed

measure on the measurable space pX,Xq is a finite linear combination of probability measures that resides

in a linear space pΛ that contains Λ.

2.2 Objective probability

By analyzing preferences over the constant acts Ao, we temporarily put aside attitudes about ambiguity

and model misspecification and focus on objective uncertainty (sometimes called “risk”). There is a unique

probability λ P Λ associated with every act f P Ao and a unique act in Ao associated with every λ P Λ. We

define a restriction ąΛ of the preference order ą to the space of constant acts f P Ao by

λ ąΛ κ ðñ f ą g

where λ is the probability generated by act f P Ao and κ is the probability distribution generated by act

g P Ao.

To represent preferences ąΛ, we follow Von Neumann and Morgenstern (1944) who imposed the following

restriction:19

Axiom 2.7. (Independence) If f, g, h P Ao and α P p0, 1q, then

f Á g ñ αf ` p1´ αqh Á αg ` p1´ αqh.

17More generally, their representation includes an additional curvature adjustment much like the smooth ambiguity
model. See Proposition 3 in their appendix

18The Archimedean axiom states: let f, g, h be acts in A with f ą g ą h. Then there are 0 ă α ă 1 and 0 ă β ă 1
such that αf `p1´αqh ą g ą βf `p1´βqh. See Herstein and Milnor (1953, Axiom 2) for an alternative formulation
of a continuity axiom.

19Completeness, transitivity and the Archimedean axiom carry over directly from ą to ąΛ, but not necessarily
non-degeneracy. Our presentation below presumes non-degeneracy of ąΛ.
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The Von Neumann and Morgenstern approach delivers an expected utility representation of preferences over

constant acts: there exists a utility function u : X Ñ R such that for f, g P Ao

f Á g ðñ Upfq ě Upgq (2)

where

Upfq “

ż

X

upxqdλpxq (3)

and λ P Λ is the probability distribution generated by constant act f . Representation (3) can be extended

to a space pΛ of finite signed measures to produce a linear functional on this space. The structure of

the space of finite signed measures brings interesting properties to representation (3). Thus, although

u is in general a nonlinear function of prizes, U is a linear functional of finite signed measures λ P pΛ.

Consequently, a representation theorem for linear functionals of finite signed measures justifies (3). According

to representation (2), for any real number r0 and strictly positive real number r1, utility functions r1u ` r0

and u provide identical preference orderings.

2.3 Subjective probability

To construct subjective expected utility preferences, we extend an expected utility representation of ąΛ on

the set of constant acts to a representation of preferences ą on the set A of all acts. To do this we impose

restrictions on ą in the form of two axioms. The first extends the independence axiom to the set of all acts:

Axiom 2.8. (Independence) If f, g, h P A and α P p0, 1q , then

f Á g ñ αf ` p1´ αqh Á αg ` p1´ αqh.

The second is:

Axiom 2.9. (Monotonicity) For any f, g P A such that fpθq ÁΛ gpθq for each θ P Θ, f Á g.

We first use a Von Neumann and Morgenstern expected utility representation to represent preferences

conditioned on each θ. From this conditional representation, we compute

ż

X

upxqdfpx | θq “ F pθq

for any act f. A set of acts implies an associated collection B of functions F . From monotonicity axiom 2.9

we know that if f and f̃ imply the same F , then f „ f̃ . Consequently, the preference relation ą induces a

unique preference relation ąΘ for which

F ąΘ G ðñ f ą g

for acts f and g that satisfy

ż

X

upxqdfpx | θq “ F pθq

ż

X

upxqdgpx | θq “ Gpθq
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A mixture of two acts f and g has expected utility:

ż

X

upxqrαdfpx | θq ` p1´ αqdgpx | θqs “ αF pθq ` p1´ αqGpθq.

If the set of acts A is convex, then so is the set B of functions of θ. Furthermore, if F „Θ G, the independence

axiom guarantees that for any α the associated convex combinations of F and G are also in the same

indifference set of acts. From one indifference set, we build other indifference sets by taking an act h and

forming convex combinations with members of the initial indifference set. These observations lead us to seek

a utility function that is a linear functional L on B.

Suppose that F ě G on Θ. The monotonicity axiom implies that LpF ´ Gq ě 0, so L is a positive

linear functional. Under general conditions, a positive linear functional can be represented as an integral

with respect to a finite measure.20 Positive multiples of this linear functional imply the same preference

ordering. Since the preference ordering is not degenerate, the measure must not be degenerate. This means

that we can make it into a probability measure that we denote πpdθq. We thereby arrive at the following

representation of preferences over acts f P A

f Á g ðñ

ż

Θ

„
ż

X

upxqdfpx | θq



dπpθq ě

ż

Θ

„
ż

X

upxqdgpx | θq



dπpθq, (4)

where the probability measure π describes subjective probabilities.

Representation (4) lets us interpret the expected utility of an act f with a two-stage lottery. First, draw

a θ̃ from π and then draw a prize x P X from probability distribution dfpx | θ̃q. By changing the order of

integration, we can write

ż

Θ

„
ż

X

upxqdfpx | θq



dπpθq “

ż

X

upxq

„
ż

Θ

dfpx|θqdπpθq



or equivalently
ż

Θ

„
ż

X

upxqdfpx | θq



dπpθq “

ż

X

upxqdλpxq, (5)

where

dλpxq “

ż

Θ

dfpx | θqdπpθq. (6)

Equation (6) constructs a single lottery λ over x from the compound lottery generated by pdπpθq, dfpx | θqq.21

For a statistician, λ is a “predictive distribution” constructed by integrating over unknown parameter θ. Let

fc be the constant act with lottery λ defined by the left side of (6) for all θ P Θ. Equations (5) and (6)

assert that a person with expected utility preferences is indifferent between fc and f .22

20The Riesz-Markov-Kakutani Representation Theorem provides such a representation on the space of continuous
functions with compact support on a locally compact Hausdorff space.

21Equation (6) thus expresses the “reduction of compound lotteries” described by Luce and Raiffa (1957, p. 26)
and analyzed further by Segal (1990).

22The statistical decision problem specified by Ferguson (1967) can be solved by computing

max
a

ż

Θ

Γpa,wq`pw | θqdπ̄pθ | wq

where dπ̄pθ | wq is the posterior of θ given Y “ y. Notice that a will depend implicitly on y which implies the decision
rule dpyq.
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2.4 Max-min Expected Utility

To construct a decision maker who has max-min expected utility preferences, Gilboa and Schmeidler (1989)

replaced Axiom 2.8 with the following two axioms:

Axiom 2.10. (Certainty Independence) If f, g P A, h P Ao, and α P p0, 1q, then

f Á g ðñ αf ` p1´ αqh Á αg ` p1´ αqh.

Axiom 2.11. (Uncertainty Aversion) If f, g P A and α P p0, 1q, then

f „ g ñ αf ` p1´ αqg Á f.

An essential ingredient of this axiom is that mixing weight α is known, an assumption that can be interpreted

as describing a form of objective uncertainty. Axiom 2.11 asserts a weak preference for mixing with known

weights α and 1´ α.

Example 2.12. Suppose that Θ “ tθ1, θ2u and consider lotteries λ1 and λ2. Let act f be lottery λ1 if θ “ θ1

and lottery λ2 if θ “ θ2. Let act g be lottery λ2 if θ “ θ1 and lottery λ1 if θ “ θ2. Suppose that f „ g. Axiom

2.11 allows a preference for mixing the two acts. If, for instance, α “ 1
2 , the mixture is a constant act with

a lottery 1
2λ1 `

1
2λ2 that is independent of θ. We think of mixing as reducing the exposure to θ uncertainty.

In the extreme case, setting α “ 1
2 , for example, completely eliminates effects of exposure to θ uncertainty.

By replacing Axiom 2.8 with Axioms 2.10 and 2.11, Gilboa and Schmeidler obtained preferences described

by

f Á g ðñ min
πPΠc

ż

Θ

„
ż

X

upxqdfpx | θq



dπpθq ě min
πPΠc

ż

Θ

„
ż

X

upxqdgpx | θq



dπpθq (7)

for a convex set Πc Ă Π of probability measures. An act fpθq is still a lottery over prizes x P X and, as

in representation (2), for each θ,
ş

X
upxqdfpx | θq is an expected utility over prizes x. Evidently, expected

utility preferences (4) are a special case of max-min expected utility preferences (7) in which Πc is a set with

a single member.

3 Variational preferences

Maccheroni et al. (2006a) relaxed certainty independence Axiom 2.10 of Gilboa and Schmeidler (1989) to

obtain preferences with a yet more general representation that they called variational preferences. Maccheroni

et al. replaced Axiom 2.10 with the weaker

Axiom 3.1. (Weak Certainty Independence) If f, g P A, h, k P Ao, and α P p0, 1q, then

αf ` p1´ αqh Á αg ` p1´ αqhñ αf ` p1´ αqk Á αg ` p1´ αqk

Axiom 3.1 considers only acts that are mixtures of constant acts that can be represented with a single lottery.

The axiom states that altering the constant act from h to k does not reverse the decision maker’s preferences.

The same α appears in all three acts being compared. This axiom imparts to preferences a smooth tradeoff

between separate contributions that come from an expected utility, on the one hand, and from statistical

uncertainty, on the other hand. Mixing with pure lotteries continues to support linearity in evaluations of

risks conditioned on states.
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To place Axiom 3.1 within the Remark 2.2 setting, use a substantive model pΓ, τq to represent the

probabilistic outcomes of alternative decisions. Recall that for a given Γ, prize rule γpwq is described by (1)

for some decision d and some parameterized shock distribution dτpw | θq. Let’s compare the uncertainty

consequences of decisions d1 and d2 that give rise to prize rules γ1 and γ2 via

γ1pwq “ Γpd1, wq

γ2pwq “ Γpd2, wq

for d1, d2 P D. Each of these prize rules specifies how a prize depends on a realization w of the shock. Let

γ1 induce act f and γ2 induce act g.

Now consider two other decisions d3 and d4 and use them to construct prize rules

γ3 “ Γpd3, wq

γ4 “ Γpd4, wq.

Suppose that there exist prize rules γ3 and γ4 both of which induce distributions of the prize x P X that do

not depend on θ; decisions d3 and d4 both serve to target risk components of x P X that are not exposed

to parameter uncertainty. Denote the constant acts induced by γ3 and γ4, respectively, as h and k. For

instance, consider an investment problem for which some of the available investments (indexed by a subset

of the decisions d P D) yield returns that depend only on a component of the shock vector that has a

known distribution. Two such investments can be used to construct γ3 and γ4. Axiom 3.1 requires that if

randomizing d1 with respect to d3 is preferred to randomizing d2 with respect to d3, the preference order

will be preserved if d3 is replaced by d4 holding fixed the randomization probabilities pα, 1´ αq.23

The substantive model Γ may not include the possibility described in the previous paragraph. But the

axioms refer to hypothetical comparisons. To explore Axiom 3.1, we now extend the substantive model Γ

to rΓ where the arguments of rΓ are a realization of an augmented shock vector pw, w̃q and the decision d

is in a larger set rD that contains D. Suppose that the w̃ component of the augmented shock vector has a

known distribution that does not depend on θ. “Prizes” that depend only on this second component induce

constant acts. To confirm that the Γ̃ substantive model is an extension of the original Γ model, we require

that
rΓpd,w, w̃q “ Γpd,wq for d P D,w P D.

We then suppose that

γ3pw̃q “ rΓpd3, w, w̃q

γ4pw̃q “ rΓpd4, w, w̃q

where d3, d4 P rD but not necessarily in D. Decisions d3 and d4 confine exposure of the resulting prize to w̃

and not to w. As indicated in the previous paragraph, γ3 and γ4 induce constant acts. For our investment

example, construction of the extended substantive model rΓ could conceivably introduce new opportunities

that are not exposed to parameter uncertainty. This opens the door to comparisons entertained by Axiom

3.1.

Maccheroni et al. showed that preferences that satisfy the weaker Axiom 3.1 instead of Axiom 2.10 are

23We thank Fabio Maccheroni and Massimo Marinacci for suggesting this formulation.
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described by

f Á g ðñ min
πPΠ

ż

Θ

„
ż

X

upxqdfpx | θq



dπpθq ` cpπq ě min
πPΠ

ż

Θ

„
ż

X

upxqdgpx | θq



dπpθq ` cpπq (8)

where, as in representation (2), u is uniquely determined up to a linear translation and c is a convex function

that satisfies infπPΠ cpπq “ 0. Smaller convex c functions express more aversion to uncertainty. The convex

function c in variational preferences representation (8) replaces the restricted set of probabilities Πc that

appears in the max-min expected utility representation (7). In the special case that the convex function c

takes on values 0 and `8 only, Maccheroni et al. show that variational preferences are max-min expected

utility preferences.

4 Scaled statistical divergences as c functions

Scaled statistical divergences give rise to convex c functions that especially interest us. We use such diver-

gences in two ways, one for distributions over pW,Wq, another for distributions over pΠ,Gq. Our ways of

constructing statistical divergences for these two situations are very similar.

We first consider shock distributions over pW,Wq. For a baseline probability τo, a statistical divergence

is a convex function Dpτ | τoq of probability measures τ that satisfies

• Dpτ | τoq ě 0

• Dpτ | τoq “ 0 implies τ “ τo

Now let φ be a convex function defined over the nonnegative real numbers for which φp1q “ 0 and impose

φ2p1q “ 1 as a normalization. Examples of such φ functions and the divergences that they lead to are

φpmq “ ´ logpmq Burg entropy

φpmq “ ´4
`?
m´ 1

˘

Hellinger distance

φpmq “ m logpmq relative entropy

φpmq “
1

2

`

m2 ´m
˘

quadratic.

Take a baseline distribution τo over shocks w and represent alternative distributions that are absolutely

continuous with respect to it as

dτpwq “ mpwqdτopwq (9)

for relative densities m PM, where

M .
“

"

m : mpwq ě 0,

ż

W

mpwqdτopwq “ 1

*

. (10)

The set M is convex. To define a scaled statistical divergence, we set

Dpτ | τoq “ ξ

ż

W

φrmpwqsdτopwq,

where ξ ą 0. When ξ “ 1, the divergence is often called a φ or f -divergence. When φpmq “ m logpmq and
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ξ “ 1, we obtain relative entropy

DKLpτ |τoq “

ż

W

mpwq logrmpwqsdτopwq.

If τ is not absolutely continuous with respect to τo, we set Dpτ | τoq to infinity. Relative entropy is commonly

referred to as Kullback-Leibler divergence.

Remark 4.1. Other families of divergences can be use in conjunction with the preference representations

that follow, for instance, Bregman and Wasserstein divergences. The family φ or f divergences featured here

has very nice duality properties. Moreover, the divergence is invariant to one-to-one transformations of the

space over which the probability distributions are defined. Finally, some members of this family have very

close ties to statistical discrimination. Duality allow us to make formal connections to the extensive literature

on smooth ambiguity. The link to likelihood-based statistical discrimination enables statistical constructions

that can help us calibrate concerns about robustness.

5 Basic formulation

We associate a probability measure dτpw|θq parametrized by θ P Θ with a random vector having possible

realizations w in the measurable space pW,Wq. Consider alternative real valued, Borel measurable functions

γ P Ψ that map w P W into an x P X. Think of γ as a prize rule and γpwq as an uncertain scalar prize.

For each prize rule γ, let dλpx | θq be the distribution of the prize x “ γ that is induced by distribution

dτpw|θq and the prize rule γ. The distribution of the prize thus depends both on the prize rule γpwq and

the distribution dτpw|θq.

5.1 Not knowing alternative models

We consider a decision maker who knows a baseline model dτo of W that he suspects is misspecified in ways

that he is unable precisely to describe. But he can say that the alternative models that he is most worried

about are statistically close to his baseline model. The presence of too many statistically nearby models

would prevent a Bayesian from deploying a proper prior over them. Later we will compare our approach here

to a robust Bayesian approach that requires a family of priors that are mutually absolutely continuous.24

To formalize concerns that dτo is misspecified, we begin by letting state θ “ m be a likelihood ratio that

determines an alternative model

dτpwq “ mpwqdτopwq,

where m PM for M given by (10) and

Θ “M.

We represent the decision maker’s ignorance of specific alternative models by proceeding as if there is a

potentially infinite dimensional space M of such models. A decision maker’s expected utility under model

mdτo is
ż

W

urγpwqsmpwqdτopwq. (11)

Notice that (11) evaluates expected utility for a single choice for θ “ m. The following important technical

considerations induce us to proceed in this way.

24For example, see Berger (1984) for a robust Bayesian perspective.

13



To complete a description of preferences, we require a scaled statistical divergence. We consider alterna-

tive probabilities parameterized by entries in M. Under this perspective, a probability model corresponds

to a choice of m PM. The object m is now both a relative density and a state (or parameter value.) Form

a scaled divergence measure:

cpmq “ ξ

ż

W

φrmpwqsdτopwq (12)

where ξ ą 0 is a real number.

We explore potential misspecification by entertaining alternative models in the set M. Consider first

a starting point in which tθi : i “ 1, 2, . . . , Iu, where mi “ θi is a “state” that represents a particular

alternative model of W via dτpwq “ mipwqdτopwq. Here I is either a positive integer or infinite. Form

Θ “

#

m : m “

I
ÿ

i“1

$imi, where $i ě 0 and
I
ÿ

i“1

$i “ 1

+

Since Θ is convex, any subjective probability distribution applied to Θ can be represented as:

I
ÿ

i“1

$imi

for some vector of $i’s.
25 We use the convex cost function

c̃ p$1, $2, ...$Iq “ c

˜

I
ÿ

i“1

$imipwq

¸

“ ξ

ż

W

φ

«

I
ÿ

i“1

$imipwq

ff

dτopwq. (13)

Example 5.1. Suppose that the probability measure τ0 is discrete, with I points of support and with support

point i having probability $o
i ą 0. Let

mipwq “

#

1
$oi

: w “ support point i

0 : w ‰ support point i,

so that mi assigns probability one to support point i. Then a probability measure associated with
řI
i“1$imi

assigns probability $i to support point i and Θ consists of all probability models that concentrate probability

on all I of the support points for τo. Here M “ Θ consists of all possible probabilities over the support set

of τo. Cost (13) becomes small when m is close to one on this same set.

Consider extending this example to study a decision maker who wants to explore possible misspecifi-

cations of his baseline model τo. The decision maker considers a vast set of possible alternatives to the

baseline model dτo that are in the set Θ “M of likelihood ratios. We use cost c from (12) to specify costs

for deviating from baseline model τo. When we use (12) to construct preferences, we need not distinguish a

probability model as a (relative) density in M from a “predictive density” formed from a prior over M.26

25Although the distinction between a model expressed as a parameterized family
řI

i“1 $imi and a subjective
mixture of models formed with a prior probability πi “ $i is inconsequential when defining static preferences, a
model builder with repeated observations will distinguish the two objects. For instance, Bayesian updating rules
differ. In dynamic settings posed in Hansen and Sargent (2019, 2021), possible misspecifications are allowed to vary
over time in general ways that render Bayesian learning impossible.

26While distinguishing between a model and a predictive density is not essential to define static preferences, a
model builder with repeated observations will want to distinguish between them. When confronted with a single
model that generates the data, Bayesian learning is degenerate. In contrast, when there is a prior over a family of
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The implied m is what matters and not how m might have been formed as a convex combination of some

primitive m’s in M.

Remark 5.2. Maccheroni et al. (2006a) define the domain of their cost function to be probabilities π over

the state space, in this case M. To map into their framework, consider any probability measure π over M
and compute

mπ “

ż

M
mdπpmq.

Then define the cost

ĉpπq “ cpmπq “ ξ

ż

W

φrmπpwqsdτopwq.

Notice that ĉpπq “ 0 for

1 “

ż

M
mdπpmq,

which is trivially true when π assigns probability one to m “ 1 but will also be true for other choices of π.

Variational preferences that use (11) as expected utility over lotteries and (12) as scaled statistical

divergence are ordered by

min
mPM

ˆ
ż

W

urγpwqsmpwqdτopwq ` ξ

ż

W

φrmpwqsdτopwq

˙

. (14)

This formulation lets a decision maker evaluate alternative prize rules γpwq while guarding against a con-

cern that his baseline model τo is misspecified without having in mind specific alternative models τ . Key

ingredients are the single baseline probability τo and a statistical divergence over probability distributions

mpwqdτopwq.

Remark 5.3. It is convenient to solve the minimization problem on the right side of (14) by using duality

properties of convex functions. Because the objective is separable in w, we can first compute

φ˚pu | ξq “ min
mě0

um` ξφpmq (15)

where u “ urγpwqs ` η, m is a nonnegative number, and η is a nonnegative real-valued Lagrange multiplier

that we attach to the constraint
ş

mpwqdτopwq “ 1; φ˚pu | ξq is a concave function of u.27 The minimizing

value of m satisfies

m˚ “ φ1´1

ˆ

´
u

ξ

˙

.

The dual problem to the minimization problem on the right side of (14) is

max
η

ż

W

φ˚purγpwqs ` η | ξqdτopwq ´ η. (16)

Remark 5.4. We posed minimum problem (14) in terms of a set of probability measures on the measurable

space pW,Wq with baseline probability dτopwq. Since the integrand in the dual problem (16) depends on w only

through the control law γ, we could instead have used the same convex function φ to pose a minimization in

models, each of which could generate the data, there is scope to use Bayes’ Law to update weights over alternative
models. In dynamic settings studied by Hansen and Sargent (2019, 2021), possible misspecifications vary over time
in a vast number of ways that render Bayesian learning impossible.

27The function ´φ˚
p´u | ξq is the Legendre transform of ξφpmq.
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terms of a set of probability distributions dλpxq with the baseline being the probability distribution over prizes

induced x “ γpwq with distribution dλopxq. Doing that would lead to equivalent outcomes. Representations

in sections 2 and 3 are all cast in terms of induced distributions over prizes. Because control problems entail

searching over alternative γ’s, it is more convenient to formulate them in terms of a baseline model dτopwq,

as we originally did in subsection 5.1.

Remark 5.5. If we use relative entropy as a statistical divergence, then

φ˚pu | ξq “ ´ξ exp

ˆ

´
u` η

ξ
´ 1 | ξ

˙

and dual problem (16) becomes28

max
η
´ξ

ż

exp

„

´
urγpwqs ` η

ξ
´ 1



dτopwq ´ η “ ´ξ log

ˆ
ż

exp

„

´
urγpwqs

ξ



dτopwq

˙

. (17)

The minimizing m in problem (14) is

m˚pwq “
exp

”

´
urγpwqs

ξ

ı

ş

exp
”

´
urγpwqs

ξ

ı

dτopwq
. (18)

The worst-case likelihood ratio m˚ exponentially tilts a lottery toward low-utility outcomes. Bucklew (2004)

calls this adverse tilting a statistical version of Murphy’s law:

“The probability of anything happening is in inverse proportion to its desirability.”

Preferences associated with a relative entropy divergence are often referred to as “multiplier preferences.”

The preceding construction of multiplier preferences is distinct from constructions provided by Maccheroni

et al. (2006a) and Strzalecki (2011) because of the different way we apply the language of decision theory.

Nevertheless, the Maccheroni et al. axiomatic formulation of variational preferences includes our formulation

as a special case.

Remark 5.6. (risk-sensitive preferences) The right side of equation (17), namely,

´ξ log

„
ż

W

exp

ˆ

´
urγpwqs

ξ

˙

dτopwq



, (19)

defines what are known as “risk-sensitive” preferences over control laws γ. Since a logarithm is a monotone

function, these are evidently equivalent to Von Neumann and Morgenstern expected utility preferences with

utility function

´ exp

„

´
up¨q

ξ



in conjunction with the baseline distribution τo over shocks. Risk-sensitive preferences are widely used in

robust control theory (for example, see Jacobson (1973), Whittle (1990, 1996), and Petersen et al. (2000)).

28See Dupuis and Ellis (1997, sec. 1.4) for a closely related connection between relative entropy and a variational
formula that occurs in large deviation theory.
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5.2 Not knowing a prior, I

Unlike subsection 5.1, we now adopt a setting in which a decision maker has a parameterized family of

models and a baseline prior distribution over those models. Like the decision maker of Gilboa et al. (2010)

and Cerreia-Vioglio et al. (2013), our decision maker has multiple prior distributions because he does not

trust the baseline prior.29 Following Gilboa et al., Cerreia-Vioglio et al. and others, we label such distrust of

a single prior “model ambiguity.” (We use “fear of misspecificatons” to refer to other concerns analyzed in

subsection 5.1.) Here we describe a static version of what Hansen and Sargent (2021, 2022) call structured

uncertainty. “Structured” refers to the particular way that we reduce the dimension of a set of alternative

models relative to the much larger set considered by a subsection 5.1 decision maker. The distribution of

the prize again depends both on a prize rule γpwq and on a shock vector distribution dτpw|θq. Let Θ be a

parameter space, and let πo be a baseline prior probability measure over models θ. The baseline πo anchors

a set of priors π over which a decision maker wishes to be robust. We describe the set of priors by

πpdθq “ npθqπopdθq,

where n is in the set N defined by:

N .
“

"

n ě 0 : npθq ě 0,

ż

Θ

npθqdπopθq “ 1

*

. (20)

This specification includes a form of “structured” uncertainty in which all models have the same parametric

“structure” but in which each is associated with a different vector of parameter values.30 The decision maker

is certain about each of the specific models m “ θ in the set but is uncertain about a prior to put over them.

To capture a form of ambiguity aversion, the decision maker uses scaled statistical divergence

cpπq “ ξ

ż

Θ

φ rnpθqs dπopθq (21)

and has variational preferences ordered by31

min
nPN

ż

Θ

ˆ
ż

W

urγpwqsdτpw | θq

˙

npθqdπopθq ` ξ

ż

Θ

φrnpθqsdπopθq. (22)

Remark 5.7. From an appropriate counterpart to dual formulation (16), we can represent variational

preferences ordered by (22) as

max
η

ż

Θ

φ˚
ˆ
ż

W

urγpwqsdτpw | θq ` η | ξ

˙

dπopθq ´ η.

Remark 5.8. (Smooth ambiguity preferences) When statistical divergence is scaled relative entropy, prefer-

29By applying a Gilboa and Schmeidler (1989) representation of ambiguity aversion to a decision maker who has
multiple predictive distributions, Cerreia-Vioglio et al. (2013) forge a link between ambiguity aversion as studied in
decision theory and the robust approach to statistics. They also cast corresponding links in terms of variational
preferences.

30See Hansen and Sargent (2022).
31See Theorem 4 of Cerreia-Vioglio et al. (2013) for their counterpart to this representation.
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ences over γpwq are ordered by

´ξ log

„
ż

exp

ˆ

´

ş

W
urγpwqsdτpw | θq

ξ

˙

dπopθq



, (23)

a static version of preferences that Hansen and Sargent (2007) used to frame a robust dynamic filtering

problem. These preferences are also a special case of the smooth ambiguity preferences that Klibanoff et al.

(2005) justified with a set of axioms different from the ones we have used here. Furthermore, Maccheroni

et al. (2006a) and Strzalecki (2011) use this formulation to justify “multiplier preferences” rather than the

approach taken here.32 We emphasize that the robustness being discussed in this subsection is with respect

to a baseline prior over known models and not with respect to possible misspecifications of those models.

Remark 5.9. If we formulate the set of priors as we have in order to obtain criterion (23), we cannot

interpret them as expected utility preferences, unlike the situation described in remark 5.6.

5.3 Robustness

It is useful to compare two approaches to robustness that we have taken. The section 5.1 decision maker

explores potential model misspecifications by searching over the entire space M, subject to a penalty on

statistical divergence from a baseline model. The section 5.2 decision maker starts with a baseline prior over

parameter vectors and considers consequences of misspecifying that prior. In this subsection, we impose

additional structure that allows us to sharpen the comparisons and opens the door to hybrid approaches

that we will describe later.

As an application of our section 5.2 approach, we represent the parameterized family of models with

`pw | θq and

dτpw | θq “ `pw | θqdτopwq.

We restrict `p¨ | θq P M for each θ P Θ, where dτopwq is a baseline distribution. Even though we do not

require that `p¨ | θq “ 1 identically for some θ P Θ, each of the parameterized distributions is absolutely

continuous with respect to dτopwq, as required to apply likelihood-based methods.

This setup allows the parameter space to be infinite dimensional. Consider a prior πo that is consistent

with a Bayesian approach to “nonparametric” estimation and inference, in particular, one that induces a

prior over M. For each parameter θ P Θ, a specification of `p¨ | θq determines an element of M. Given this

mapping from Θ into M, a prior distribution πo over Θ implies a corresponding distribution over M. This

procedure necessarily assigns prior probability zero to a substantial portion of the space M. Specifying a

prior over the infinite dimensional space M brings challenges associated with all nonparametric methods,

including “nonparametric Bayesian” methods that must assign probability one to what is called a “meager

set.” A meager set is defined topologically as a countable union of nowhere dense sets and is arguably small

within an infinite-dimensional space.33 This conclusion carries over to situations with families of priors that

are absolutely continuous with respect to a baseline prior, as we have here. To us, prior robustness of this

form is interesting, although it is distinct from robustness to potential model misspecifications. Indeed,

32Strzalecki (2011) showed that when Savage’s Sure Thing Principle augments axioms imposed by Maccheroni
et al. (2006a), the cost functions capable of representing variational preferences are proportional to scalar multiples
of entropy divergence relative to a unique baseline prior. The Sure Thing Principle also plays a significant role in
Denti and Pomatto (2022)’s axiomatic construction of a parameterized likelihood to be used in Klibanoff et al. (2005)
preferences.

33Sims (2010) critically surveys an extensive statistical literature on this issue. Foundational papers are Freedman
(1963), Sims (1971), and Diaconis and Freedman (1986).
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the section 5.1 decision maker who is concerned about model misspecification does not restrict himself to

priors that are absolutely continuous with respect to a baseline prior because doing so would exclude many

probability distributions he is concerned about.

The distinct ways in which the section 5.1 and 5.2 formulations use statistical discrepancies lead to

substantial differences in the resulting variational preferences, namely, representation (14) for the section 5.1

way of not knowing the distribution dτpwq and (22) for the section 5.2 way of not knowing a prior.

5.4 Not knowing a prior, II

We modify preferences by using a statistical divergence to constrain a set of prior probabilities. The resulting

preferences satisfy the axioms of Gilboa and Schmeidler (1989). Consider:

Π “ tπ : dπpθq “ npθqdπopθq, n P N ,

ż

Θ

φrnpθqsdπopθq ď κu (24)

where κ ą 0 pins down the size of the set of priors. Preferences over γpwq are ordered by

min
πPΠ

ż

Θ

ˆ
ż

W

urγpwqsdτpw | θq

˙

dπpθq. (25)

Remark 5.10. The minimized objective for problem (25) can again be evaluated using convex duality theory

via

max
η,ξě0

ż

Θ

φ˚
„
ż

W

urγpwqsdτpw | θq ` η | ξ



dπopθq ´ η ´ ξκ.

Maximization over ξ ě 0 enforces a constraint on the set of admissible priors.

5.5 An Example

It is instructive to apply the distinct approaches of subsections 5.1 and 5.2 to a simple example. To apply

the subsection 5.1 approach, we take the following constituents:

• Baseline model dτopwq „ N pµo, σ2
oq

• Prize cpwq “ γpwq

• Utility function urcpwqs “ logrcpwqs, where cpwq is consumption

• Prize rule γpwq “ exppγ0 ` γ1wq

When we use relative entropy as statistical divergence, variational preferences for a subsection 5.1 decision

maker are ordered by

γ0 ` γ1µ0 ´
1

2ξ
pσ0γ1q

2

Larger values of the positive scalar ξ call for smaller adjustments ´ 1
2ξ pσ0γ1q

2 of expected utility γ0 ` γ1µ0

for concerns about misspecification of dτo.

To study a subsection 5.2 decision maker, we add the following constituents to the example:

• Alternative structured models „ N pµi, σ2
i q, i “ 1, . . . , `, where potential parameter values (states) are

θi “ pµi, σiq and parameter space Θ “ tθi : i “ 1, 2, . . . , ku

• Baseline prior over structured models is a uniform distribution πopθiq “
1
k , i “ 1, . . . , `
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To obtain an alternative prior πi for i “ 1, . . . , `, we set ni “ kπi so that the product of ni times the

baseline prior is:
ni
k
“ πi.

Expected utility conditioned on parameter vector θi is

ż

u rexppγ0 ` γ1wqs dτpw | θq “ γ0 ` γ1µi

and a statistical divergence is

1

k

k
ÿ

i“1

φ pkπiq .

A subsection 5.2 decision maker with variational preferences orders prize rules γpwq “ exppγ0`γ1wq according

to

min
πiě0,

řk
i“1 πi

γ0 ` γ1

k
ÿ

i“1

πiµi `
ξ

k

k
ÿ

i“1

φ pkπiq .

For a relative entropy divergence, prize rules are ordered by

´ξ log
k
ÿ

i“1

ˆ

1

k

˙

exp

„

´
1

ξ
pγ0 ` γ1µiq



“ γ0 ´ ξ log
k
ÿ

i“1

ˆ

1

k

˙

exp

ˆ

´
γ1µi
ξ

˙

and the associated minimizing πi is

exp
´

´
γ1µi
ξ

¯

řk
i“1 exp

´

´
γ1µi
ξ

¯

6 Hybrid models

We now use components described above as inputs into a representation of preferences that includes uncer-

tainty about a prior to put over structured models as well as concerns about possible misspecifications of

those structured models. We use probability perturbations in the form of alternative relative densities in

M to capture uncertainty about models and probability perturbations in the form of alternative relative

densities N to capture uncertainty about a prior over models.

To represent a family of structured models for W , it is helpful to write a parameterized family of relative

densities as we did in section 5.3 where we form

`pw | θq PM @θ P Θ.

We represent a family of structured models as

dτpw | θq “ `pw | θqdτopwq

where τopwq is now used to represent the family of structured models. The probability measure dτo does not

itself have to be a structured model.34

34The counterpart to dτopwq in likelihood theory is a measure, but not necessarily a probability measure. However,
a parameterized family can typically also be represented with a baseline probability measure.
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Let πopθq is a baseline prior over θ. To conduct a prior robustness analysis, consider alternative priors

dπpθq “ npθqdπopθq

for n P N .

Consider relative densities m̂ that for each θ have been rescaled so that

ż

m̂pw | θq`pw|θqdτopwq “ 1.

To acknowledge misspecification of a model implied by parameter θ, let m̂pw|θq to represent an “unstruc-

tured” perturbation of that model. With this in mind, let xM be the space of admissible relative densities

m̂pw|θq associated with model θ for each θ P Θ. We then consider a composite parameter pm̂, θq for m̂ P xM
and θ P Θ. The composite parameter pm̂, θq implies a distribution m̂pw | θq`pw | θqdτopwq over W conditioned

on θ.

To measure a statistical discrepancy that comes from applying m̂ to the density ` of w conditioned on θ

and by applying n to the baseline prior over θ, we first acknowledge possible misspecification of each of the

θ models by computing:

T1rγspθq “ min
m̂P xM

ż

W

purγpwqsm̂pw | θq ` ξ1φ1 rm̂pw | θqsq `pw | θqdτopwq

The T1 operator maps prize rules γ into functions of θ. We use this for both hybrid approaches.

6.1 First hybrid model

We can rank alternative prize rules γ by including the following adjustment for possible misspecification of

the baseline prior πo:

T2 ˝ T1rγs “ min
nPN

ż

Θ

pT1rγspθqnpθq ` ξ2φ2rnpθqsq dπopθq.

Here φ1 and φ2 are possibly distinct convex functions with properties like the ones that we imposed on φ in

section 4.

Such a two-step adjustment for possible misspecification leads to an implied one-step variational repre-

sentation with a composite divergence that we can define in the following way. For m̂ P xM and n P N , form

a composite scaled statistical discrepancy

dpm̂, nq “ξ1

ż

Θ

ˆ
ż

W

φ1 rm̂pw | θqs d`pw | θq

˙

npθqdπopθq ` ξ2

ż

Θ

φ2 rnpθqs dπopθq (26)

for ξ1 ą 0, ξ2 ą 0. Then variational preferences are ordered by

min
m̂P xM,nPN

ż

Θ

ˆ
ż

W

urγpwqsm̂pw | θq`pw | θqdτopwq

˙

npθqdπopθq ` dpm̂, nq

In Appendix A we establish that divergence (26) is convex over the family of probability measures that

concerns the decision maker.

Remark 6.1. As noted earlier, Cerreia-Vioglio et al. (2013) posit a state space that includes parameters

but also can include what we call shocks. Thus, think of the state as the pair pw, θq. In this setting, one

could apply a statistical divergence to a joint distribution over possible realizations of pw, θq. Since the joint
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distribution can be factored into the product of a distribution over W conditioned on θ and a marginal

distribution over Θ, such an approach can capture robustness in the specification of both ` and πo, albeit

in a very specific way. For instance, for the relative entropy divergence, this results in the joint divergence

measure:

dpm̂, nq “ξ1

ż

Θ

„
ż

W

m̂pw | θq log m̂pw | θqd`pw | θq



npθqdπopθq ` ξ2

ż

Θ

npθq log npθqdπopθq

for ξ1 “ ξ2.

In earlier work, we have demonstrated important limits to such an approach in dynamic settings.35 As

we have shown here, we find both robustness to model misspecification and robustness to prior specification

to be interesting in their own rights and see little reason to group them into a single φ divergence.

6.2 Second hybrid model

As an alternative to the section 6.1 approach, we could instead constrain the set of priors to satisfy:

ż

Θ

φ2rnpθqsdπopθq ď κ (27)

so that a decision maker’s preferences over prize rules γ would be ordered by:

min
nPN ,

ż

Θ

T1 rγs pθqnpθqdπopθq, (28)

where minimization is subject to (27).

As in Cerreia-Vioglio et al. (2022), preferences ordered by (28) subject to constraint (27) can be thought

of as using a divergence between a potentially misspecified probability distribution and a set of predictive

distributions that have been constructed from priors over a parameterized family of probability densities

within the constrained set Θ.36 Notice how the first term in discrepancy measure (26) uses a prior ndπo to

construct a weighted averaged over θ P Θ of the following conditioned-on-θ misspecification measure

ξ1

ˆ
ż

W

φ1 rm̂pw | θqs d`pw | θq

˙

.

The objective in problem (28) is to make the divergence between a given distribution and each of the

parameterized probability models small on average by minimizing over how to weight divergence measures

indexed by θ subject to the constraint that π P Π.37 Equivalently, in place of (26), this approach uses cost

function

dpm̂, nq “ ξ1 min
nPN

ż
ˆ
ż

W

φ1 rm̂pw | θqs d`pw | θq

˙

npθqdπopθq.

Remark 6.2. It is possible to simplify computations by using dual versions of the hybrid approaches de-

lineated in subsections 6.1 and 6.2. Such formulations closely parallel those described in our discussions of

robust prior analysis and potential model misspecification in remarks 5.3, 5.4, and 5.5.

35See Hansen and Sargent (2007), Hansen and Sargent (2011), and Hansen and Miao (2018).
36Cerreia-Vioglio et al. (2022) provide an axiomatic justification of set-based divergences as a way to capture

model misspecification within a Gilboa et al. (2010) setup with multiple models.
37By emphasizing a family of structured models, this set-divergence concept differs from an alternative that could

be constructed in terms of an implied family of predictive distributions.
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7 Dynamic extension

Although a complete treatment of dynamics deserves its own paper, here we describe briefly how to extend

the familiar recursive utility specification of Kreps and Porteus (1978) and Epstein and Zin (1989) to ac-

commodate our two types of robustness concern to an intertemporal environment. We accomplish this by

using conditional counterparts to the preceding analysis to explore consequences of mis-specifying Markov

transition dynamics and prior distributions over unknown parameters. The resulting preferences have a nice

recursive structure. Here we do not discuss a tension between dynamic consistency and statistical consistency

inherent in these preferences.38

7.1 A deterministic warm up

We represent preferences using recursions that apply to continuation values. Abstracting from uncertainty,

a commonly used intertemporal preference specification is captured by:

Vt “
”

p1´ βq pCtq
1´ρ

` β pVt`1q
1´ρ

ı
1

1´ρ

for 0 ă β ă 1 and ρ ą 0. Vt is the date t continuation value and Ct is date t consumption. The parameter

β governs discounting and the parameter ρ is the reciprocal of the intertemporal elasticity of substitution.

Applied over an infinite horizon, express equivalently the continuation value as:

Vt “

«

p1´ βq
8
ÿ

j“0

βj pCt`jq
1´ρ

ff
1

1´ρ

In what follows we use the logarithm of continuation value, denoted pVt, to represent preferences. Since

the logarithmic transformation is increasing the following recursion gives an equivalent way to represent

preferences:

pVt “
1

1´ ρ
log

”

p1´ βq exp
”

p1´ ρq pCt

ı

` β exp
”

p1´ ρqpVt`1

ıı

where pCt is the logarithm of consumption.

7.2 Introducing uncertainty

Let At denote a sigma algebra capturing information available to the decision maker at date t. Think of

the shock Wt`1as generating new information pertinent for the construction of At`1 along with At. Think

of the continuation value, pVt`1 as the counterpart to a prize that can depend on a shock vector Wt`1.

The continuation value pVt`1 is constrained to be measurable with respect to At`1 and analogously for pVt.

We explore model misspecification by using nonnegative random variables Mt`1 that are At`1 measurable

and satisfy: E pMt`1 | At, θq “ 1, and we explore prior/posterior misspecification using nonnegative random

variables Nt that are measurable with respect At augmented by knowledge of θ and satisfy E pNt | Atq “ 1.

To accomodate robustness concerns in decision making, define preferences with three recursions for

38Hansen and Sargent (2022) discuss that tension.
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updating the continuation value

pVt “
1

1´ ρ
log

”

p1´ βq exp
”

p1´ ρq pCt

ı

` β exp
“

p1´ ρqRt
‰

ı

pRt “ min
Mt`1ě0,EpMt`1|At,θq“1

E
”

Mt`1
pVt`1 ` ξ1φm pMt`1q | At, θ

ı

Rt “ min
Ntě0,EpNt|Atq“1

E
”

Nt pRt ` ξ2φn pNtq | At

ı

(29)

where pRt adjusts next-period’s continuation value for potential model misspecification captured by condi-

tioning the unknown parameter θ, and Rt adjusts for “prior robustness.” Date t “priors” actually condition

on At. The three recursions contribute to the decision in alternative ways:

• the first one adjusts for discounting and intertemporal substitution;

• the second one adjusts for model misspecification:

• the third one adjusts for prior misspecification.

The second and third recursions give a dynamic counterpart to the approach in section 6.1. Replacing the

third recursion in (29) with a constrained counterpart gives a a dynamic counterpart to the approach in

section 6.2.39

7.3 Shadow valuation

Following Hansen and Richard (1987) and others, we represent he one-period value of assets with uncer-

tain payoffs using stochastic discount factors. We deduce shadow values by computing the one-period

intertemporal marginal rate of substitution. Of particular interest to us are contributions that our model-

misspecification operator pRt and our prior-robustness operator Rt make to this shadow value.

A contribution to the shadow value that comes from the first recursion in (29) looks at marginal contri-

butions in adjacent time periods. The date t contribution the marginal contributions of Ct and Rt to the

current period continuation value are:

MCt “ p1´ βq exp
”

pρ´ 1qpVt

ı

pCtq
´ρ

MRt “ β exp
”

pρ´ 1qpVt

ı

exp
“

p1´ ρqRt
‰

.

Given our aim to infer the one-period intertemporal marginal rate of substitution, we look across adjacent

time periods using consumption in each date as the numeraire:

MCt`1MRt
MCt

“ β

ˆ

Ct`1

Ct

˙´ρ

exp
”

pρ´ 1q
´

pVt`1 ´Rt

¯ı

.

This would give the deterministic intertemporal marginal rate of substitution if we substitute pVt`1 for Rt in

this expression.

For two uncertainty adjustments, we apply the Envelope Theorem to the second and third recursions in

(29). We deduce the marginal contributions by applying the Envelope Theorem to minimization problem

for each of the recursions:

39See Hansen and Sargent (2021, 2022) for a development and application of this alternative approach.
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• M pVt`1 “M˚
t`1

• M pRt “ N˚t

Thus, the minimized solutions for the change in probabilities contribute directly to the shadow valuation.

The resulting increment to a stochastic discount factor process is:

St`1

St
“ β

ˆ

Ct`1

Ct

˙´ρ

exp
”

pρ´ 1q
´

pVt`1 ´Rt

¯ı

M˚
t`1N

˚
t

where

• M˚
t`1 adjusts for potential model misspecification

• N˚t adjusts for potential prior misspecification

8 An approach to uncertainty quantification

Subsection 6 posed a minimum problem that comes from variational preferences with a two-parameter cost

function that we constructed from two statistical divergences. Along with a robust prize rule, the minimum

problem produces a worst-case probability distribution that rationalizes that prize rule. Strictly speaking,

the decision theory tells us that particular values of cost function parameters pξ1, ξ2q reflect a decision

maker’s concerns about uncertainty, broadly conceived. In the spirit of Good (1952), it can be enlightening

to study how worst-case distributions depend on pξ1, ξ2q. The concluding paragraph of Chamberlain (2020)

recommends exploring sensitivities with respect to a likelihood and with respect to a prior. Sensitivity of

worst-case distributions to pξ1, ξ2q provides evidence about the forms of subjective uncertainty and potential

model misspecification that should be of most concern. That can provide both decision makers and outside

analysts better understandings of the consequences of uncertainty aversion.

Motivated partly by a robust Bayesian approach, we have used decision theory to suggest a new approach

to uncertainty quantification. By varying the aversion parameters pξ1, ξ2q, we can trace out two-dimensional

representations of prize rules and worst-case probabilities. A representation of worst-case probabilities in-

cludes both worst-case priors and a worst-case alteration to each member of a parametric family of models. A

decision maker can explore alternative choices and associated expected utilities by studying how pξ1, ξ2q trace

out a two-dimensional set of worst-case probabilities. In this way, we reduce potentially high-dimensional

subjective uncertainties to a two-dimensional collection of alternative probability specifications that should

most concern a decision maker along with accompanying robust prize rules for responding to those uncer-

tainties.

9 Concluding remarks

Except for our brief excursion in section 7, we have confined ourselves to a “static” setting and so have

worked within the framework created by Maccheroni et al. (2006a). We intend this as a prolegomenon to

another paper that will analyze related issues in dynamic contexts in which our starting point will instead be

the dynamic variational preferences of Maccheroni et al. (2006b) together with a link to a dynamic measure

of statistical divergence based on relative entropy and the recursive preferences of Kreps and Porteus (1978)

and Epstein and Zin (1989). While many issues studied here will recur in that framework, additional issues

such as dynamic consistency and choice of appropriate state variables for recursive formulations of preferences

will also appear.
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A Convexity of composite divergence

To verify convexity of (26), consider two joint probability measures on W ˆΘ:

m̂0pw | θq`pw | θqdτopwqn0pθqdπopθq

m̂1pw | θq`pw | θqdτopwqn1pθqdπopθq.

A convex combination of these two probability measures is itself a probability measure. Use weights 1 ´ α

and α to construct a convex combination and then factor it in the following way. First, compute the marginal

probability distribution for θ expressed as nαpθqdπopθq:

nαpθq “ p1´ αqn0pθq ` αn1pθq.

By the convexity of φ2, it follows that

φ2rnαpθqs ď p1´ αqφ2rn0pθqs ` αφ2rn1pθqs. (30)

Next note that

m̂αpw | θq “

„

p1´ αqn0pθq

p1´ αqn0pθq ` αn1pθq



m̂0pw | θq

`

„

αn1pθq

p1´ αqn0pθq ` αn1pθq



m̂1pw | θq.

By the convexity of φ1

φ1rm̂αpw | θqs ď

„

p1´ αqn0pθq

p1´ αqn0pθq ` αn1pθq



φ1rm̂0pw | θqs

`

„

αn1pθq

p1´ αqn0pθq ` αn1pθq



φ1rm̂1pw | θqs.

Thus,

φ1rm̂αpw | θqsnαpθq ď p1´ αqn0pθqφ1rm̂0pw | θqs ` αn1pθqφ1rm̂1pw | θqs. (31)

Multiply (31) by ξ1 and (30) by ξ2, add the resulting two terms, and integrate with respect to `pw |

θqdτopwqdπopθq to verify that divergence (26) is indeed convex in probability measures that concern the

decision maker.
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