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A Model Specification

In the body of the paper, we specified the model with adjustment costs in the investment

equation. Alternatively, we could posit the adjustment costs in the output constraint. This

model is sufficiently streamlined so that the solution allows for both interpretations.1 The

choice of interpretation affects how we relate this model to actual investment data when

calibrating the model.

For the modified adjustment cost formulation, define an alternative investment/capital

ratio equal to
rIt
Kt

“ φ0 log

ˆ

1` φ1
It
Kt

˙

.

Substituting into the capital evolution give us

dKt “ KtζKpZtqdt` rItdt`KtσK ¨ dWt.

Inverting this relationship we have that

It
Kt

“

exp
´

rIt
φ0Kt

¯

´ 1

φ1

.

Now the output equation can be written with convex adjustment costs as

Ct `Kt

»

–

exp
´

rIt
φ0Kt

¯

´ 1

φ1

fi

fl` Jt “ αKt.

This change impacts how to construct a measurement counterpart for investment in

this model.

1This argument was pointed out to us by Paymon Khorrami and Fabrice Tourre.
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B Social Cost of Carbon

As in the body of the paper, consider impulse response functions for the logarithm of

damages in the future induced by a marginal change in emissions today. The responses are

necessarily nonlinear impulse responses and hence will be state-dependent. The marginal

emissions change induces an impact on logDt`u given by2

˜

r∇ΓspβFtqβ ` ζDpZtq ¨

«

1

0

ff¸

`

ż u

0

r∇2ΓspβFt`τ qβ
2Et`τdτ.

The first contribution occurs on impact, and the second one accumulates through the effect

of current emissions on the state variable f .

Consider the specification where damages enter the utility function discounted and

multiplied by δp1 ´ κq. Recall that by doing some simple accounting and exploiting the

exponential discounting used for the discounted marginal damage response, we ecombine

all the date τ contributions for u ě τ to obtain

expp´δτqp1´ κqr∇2ΓspβFt`τ qβ
2Et`τ ,

along with the initial term

expp´δτqδp1´ κq

˜

r∇ΓspβFtqβ ` ζDpZtq ¨

«

1

0

ff¸

.

The external part to the social cost of carbon is the expected exponentially discounted

future impulse responses. In the absence of ambiguity and robustness concerns it is given

by

δp1´ κq

˜

r∇ΓspβFtqβ ` ζDpZtq ¨

«

1

0

ff¸

ż 8

0

expp´δτqdτ

` E

„
ż 8

0

expp´δτqp1´ κqr∇2ΓspβFt`τ qβ
2Et`τdτ | Xt “ x



(B.1)

divided by the date t marginal utility of consumption.

By integrating the exponential function in the first expression, the δ drops out resulting

2Following our earlier notational convention, r∇2Γs denotes the second derivative of Γ.
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in

p1´ κq

˜

r∇ΓspβFtqβ ` ζDpZtq ¨

«

1

0

ff¸

,

which is one of the two terms in formula (B.1) for ecc.

Since the second term is a discounted expected value, it solves a so-called “Feynman-

Kac (FK) equation.” Formally, we are interested in the solution Φ to the forward-looking

equation

ΦpXtq “ E
„
ż 8

0

expp´δτqΨpXt`τ qdτ | Xt



“ exppδtq

ż 8

t

expp´δτqE rΨpXτ q | Xts dτ (B.2)

for a pre-specified Ψ. Specifically, let

Ψpxq “ p1´ κqr∇2Γspβfqβ2e˚pxq expprq.

To provide a heuristic reminder of form and rationale for the FK equation, we obtain the

drift of the process tΦpXtq : t ě 0u of the left-hand hand side of (B.2) via Ito’s formula for

Xt “ x as
BΦ

Bx
pxq ¨ µXrx, a

˚
pxqs `

1

2
trace

„

σXpxq
1 B

2Φ

BxBx1
pxqσXpxq



,

where a˚ is the maximizing decision rule. Differentiating the right-hand side of (B.2) with

respect to t gives an alternative formula for this drift:

δΦpxq ´Ψpxq.

By equating these, we obtain the FK or (more generally) resolvent equation:

´δΦpxq `
BΦ

Bx
pxq ¨ µXrx, a

˚
pxqs `

1

2
trace

„

σXpxq
1 B

2Φ

BxBx1
pxqσXpxq



`Ψpxq “ 0. (B.3)

By differentiating the HJB equation with respect to f and applying the “Envelope

Theorem,” it can be shown that the solution Φ to the FK equation satisfies

Φpxq “ ´Vf pxq.
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The analogous arguments apply in the presence of ambiguity and robustness concerns

except that we use the altered probability distribution when computing expectations.

C Numerical Method

To solve the nonlinear partial differential equations that characterize the HJB equations for

the planner’s problems from our model, we use a so-called implicit, finite-difference scheme

and a conjugate gradient method.3 We briefly outline the steps to this numerical solution

method below.

Recall that the HJB equation of interest for the consumption damages model includes

both minimization and maximization:

0 “ max
aPA

min
qą0,

ş

qP pdθq“1
min
gPRm

´ δV pxq ` δp1´ κq rlog pα ´ i´ jq ` k ´ ds ` δκ plog e` rq

`
BV

Bx
pxq ¨

„
ż

Θ

µXpx, a | θqqpθqP pdθq ` σXpxqg



`
1

2
trace

„

σXpxq
1 B

2V

BxBx1
pxqσXpxq



`
ξm
2
g1g ` ξp

ż

Θ

rlog qpθqsqpθqP pdθq.

We proceed recursively as follows:

i) start with a value function guess rV pxq and a decision function rapxq;

ii) given prV ,raq, solve the minimization problem embedded in the HJB equation and pro-

duce an exponentially-tilted density pq and drift distortion pg conditioned on x and using

the approach described in Section D;

iii) compute the implied relative entropy from the change in prior:

pIpxq “
ż

Θ

rlog pqpθqspqpθqP pdθq;

3Consultations with Joseph Huang, Paymon Khorrami and Fabrice Tourre played an important role in
the software implementation.
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iv) solve the following maximization problem by choice of a “ pi, j, eq:

δp1´ κq log pα ´ i´ jq ` δκ log e

`
BV

Bx
pxq ¨

ż

Θ

µX px, a | θq pqpθ | xqP pdθq;

a) Compute î and ĵ by solving the two first-order conditions for i and j with cobweb-

style iterations. Cobweb iterations converge or diverge depending the relative slopes

of supply and demand functions. By shrinking the step size, these slopes can be

altered. Expand the two equation system by adding a third equation that defines

a common “price” p,

p “
δp1´ κq

α ´ i´ j
“ gpi` jq.

Write the two first-order conditions as

p “
φ0φ1Vkpxq

1` φ1i
“ f1piq

p “ Vrpxq pψ0ψ1q j
ψ1´1 exp rψ1pk ´ rqs “ f2pjq.

Given p and for step size ε̃, compute

• i˚ “ pf1q
´1ppq

• j˚ “ pf2q
´1ppq

• p˚ “ ε̃gpi˚ ` j˚q ` p1´ ε̃q p

• set p “ p˚.

Iterate to convergence.

b) Compute ê by solving the first-order conditions

δκ

e
`

d

de

„

Vxpxq ¨

ż

Θ

µX px, i, j, a | θq pqpθ | xqP pdθq



“ 0.

These first-order conditions turn out not to depend on pi, jq.

v) use the minimization output from step (ii) and maximization output from step (iv)

and construct an adjusted drift using the following formula, which is the analog to

formula (20):

pµpxq “

ż

Θ

µX px,pa | θq pqpθ | xqP pdθq ` σXpxqpgpxq;
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vi) construct the linear equation system for a new value function V “ pV :

0 “´ δV pxq ` δp1´ κq
´

log
”

α ´pipxq ´ pjpxq
ı

` k ´ d
¯

` δκ rlog pepxq ` rs

`
BV

Bx
pxq ¨ pµpxq `

1

2
trace

„

σXpxq
1 B

2V

BxBx1
pxqσXpxq



`
ξm
2
pgpxq ¨ pgpxq ` ξppIpxq;

vii) modify this equation by adding a so-called “false transient” to the left-hand side:

V pxq ´ rV pxq

ε
“´ δV pxq ` δp1´ κq

´

log
”

α ´pipxq ´ pjpxq
ı

` k ´ d
¯

` δκ rlog pepxq ` rs

`
BV

Bx
pxq ¨ pµpxq `

1

2
trace

„

σXpxq
1 B

2V

BxBx1
pxqσXpxq



`
ξm
2
pgpxq ¨ pgpxq ` ξppIpxq;

(C.1)

viii) solve linear system (C.1) for V “ pV using a conjugate-gradient method;

ix) set rV “ pV and ra “ pa and repeat steps (ii) - (viii) until convergence.

Remark C.1. We discretize the state space of x using a set number of points along each

of the three dimensions and impose a fixed step size between points for each of these dimen-

sions. For interior points, we approximate the first derivatives using a first-order upwind

scheme while the second derivatives are calculated using a central difference scheme. Up-

wind schemes are one-sided difference approximations that use the sign of the drifts for the

states to determine the direction of the difference. (See, for instance, “An Introduction to

Finite Difference Methods for PDE methods in Finance” by Agnes Tourin, Fields Insti-

tute.) At boundary points we sometimes only have one option used in the approximation.

We use a symmetric second difference approximation whenever possible and switch to a

one-sided approximation as needed at boundary points. With this construction, we have

reduced the right-hand side of equaton in step vii) as a matrix applied to the value function

at the chosen set of discrete points.

Remark C.2. We solve the matrix counterpart to the equaion in step (viii) using the

conjugate gradient algorithm. This is a well known iterative algorithm designed to solve
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a minimization problem: 1
2
pΛy ´ λq1pΛy ´ λq for a nonsingular matrix Λ and vector λ.

The y that minimizes this expression satisfies the linear equation Λy “ λ. The matrix Λ

and vector λ come from the numerical approximation of equation (22). We measure the

conjugate gradient error by

c

pΛy ´ λq1pΛy ´ λq

λ1λ
. (C.2)

We prespecify a conjugate gradient error bound and a bound on the difference in value

functions between iterations and take as the starting point for conjugate gradient the output

from the previous iteration. We achieve convergence when the difference in value functions

between iterations satisfies a prespecified error bound. Upon convergence, we compute the

maximum error for the matrix approximation to the right-hand side of equation system in

step C.1. We call this the maximum pde error.

Remark C.3. The choices of ε̃ in step (iv) and ε in step (vii) are made by trading off

increases in speed of convergence, achieved by increasing their magnitudes, and enhancing

stability of the iterative algorithm, achieved by decreasing their magnitudes.

Remark C.4. While we are computing one-sided difference approximations at boundary

points, we are not imposing additional boundary conditions on our finite state space as is

often done when solving pde’s with regular boundaries. Instead we aim to approximate pde

solutions for the stochastic differential equation with unattainable boundaries.

We solved the specification with damages to the growth rate with the same steps applied

to the corresponding HJB equation. Other than altering how damages enter the model, the

key difference for the growth-rate setting is the computation of the minimizing probabilities,

which we discuss in the next section.

D Computing Ambiguity-Adjusted Probabilities

In our implementations, we presume a discrete number of possible damage function speci-

fications along with a normal distribution for the climate sensitivity β.

We consider two particular cases, the first is pertinent when climate damages alter the

growth rate of capital and the second when damages proportionately reduce consumption.

i) Each possible Γ is a quadratic function. In this case, we proceed as follows: we deduce

the implied q by first determining the probability distribution for β conditioning on the
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Γ specification. It is straightforward to show that these conditional distributions are

normal with altered means and variances. We also have a quasi-analytic formula for the

implied relative entropy conditioned on the Γ specification since both the baseline and

altered distributions for β are normal. We then deduce the implied discrete weights

on the alternative Γ specifications and produce the full measure of entropy inclusive

of these discrete components.

ii) One of the Γ’s is not a quadratic function. This is true for the high damage specification

acting through the preferences. In this case, we must do numerical integration to

compute the implied q’s, the relative entropies, and the resulting ambiguity adjusted

drift coefficient. We use Gaussian-Legendre quadrature in our computations.

For the growth specification, we construct nine models for Γ as follows. We take the

approximating normal distribution from Burke et al. (2018) for their linear and quadratic

coefficient estimates. In effect, this treats their asymptotic approximation as a prior for

our analysis. We take a Cholesky decomposition of the covariance matrix and the cor-

responding linear transformation of the coefficients so as to obtain a bi-variate standard

normal distribution. With a three point Gaussian-Hermite quadrature for each dimension,

we generate nine implied models for Γ with the Gaussian-Hermite weights scaled to sum

to one as the baseline probabilities. Had the SCC not been so substantial, we would have

been more concerned about “lopping off tails” with so few points of approximation.

E Backing Out Parameters

Our approach to calibration is to invert the previous equations taking the steady states for

pi, e, y, πq and the growth rate η as inputs for determining pν, c, jq along with the production

parameters. There is a nice recursive structure, which we exploit in the following steps.

i) Compute pc, νq from the first-order conditions for e and the formula for π:

δκ

e
“ ν “ 1´

„

δp1´ κq

c



π

ii) Given pi, πq and η, we solve for the capital evolution parameters.
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a) From the first-order conditions for investment, solve

π “ 1` φ1i

for φ1, where we have set φ0φ1 “ 1.

b) From the growth equation,

η “ µK ` φ0 log p1` φ1iq ,

solve for µK given η, φ0, and φ1.

iii) Given pη, c, y, eq, we have three equations for the three unknowns pψ0, ψ1q and log j

based on the first-order conditions for j, the state equation for reserves, and the co-

state equation for reserves:

log

„

δp1´ κq

c



“ log ν ` logψ0 ` logψ1 ` pψ1 ´ 1q log j ´ ψ1y,

logpη ` eq “ logψ0 ` ψ1 log j ´ ψ1y,

logpe´ δq “ logψ0 ` logψ1 ` ψ1 log j ´ ψ1y.

It is most convenient to transform this equation system.

a) By subtracting the first and third equations, we get

log

„

δp1´ κq

c



´ logpe´ δq “ log ν ´ log j,

which we use to solve for log j.

b) Substituting log j into the second equation gives a linear equation for ψ1 expressed

in terms of logψ0.

c) Substituting this expression for ψ1 into the third equation gives us a single equation

to solve in a single unknown, logψ0.

iv) Given pc, i, jq determine α from the output constraint by adding them together. It

may be verified that α “ i` δπ.

These equations may not be solvable for some empirical inputs, but they do have solu-

tions for the inputs that we used.
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F Some Empirical Evidence

Our model is highly stylized, making it challenging to find precise inputs to use as calibra-

tion targets. To implement the approach in Section E, we set the growth rate η at 2%, and

the reserve capital ratio at .98. We will return to this second number later when we discuss

initial conditions. Our number for the emissions-to-reserves ratio is .015. While this ratio

is less than that used by Bornstein et al. (2017), theirs is only based on oil. (Their ratio

is between .026 to .028.) We use a smaller number to incorporate coal, based in part on

numbers from BP (2018) and Figueres et al. (2018).4

There are four preference parameters that are pertinent pδ, κ, ξp, ξmq to our analysis.

In our reported computations, we abstracted from model misspecification concerns and

effectively set ξm “ 8. In the Section 4.1, we discussed discounting in valuation for which

the subjective discount rate, δ, is only part of the story. Stochastic growth and uncertainty

aversion, which we feature, are important contributors. In Section 5, we argued that the

implied worst-case probabilities or their relative entropies are easier to interpret than the

numerical value of ξp. The actual numerical values for ξp are 1
4000

for the proportional

damages in preferences specification and 1
175

for the damages to growth rates specification.

Finn (1995) and Leduc and Sill (2004) use .04 as the value of the energy input share

which we deflate by 80% based on the approximate proportion of energy consumption that

comes from fossil fuels. For instance, see data from the International Energy Agency (IEA)

Statistics database. Thus, we use κ “ .032 in our computations.

Consider next the technology parameters for capital accumulation and productivity.

For such a stylized model, there is no agreed upon way to fit parameters to measured

counterparts of steady states. We agree with Pindyck and Wang (2013) that capital within

this model should be interpreted broadly to include both human, intangible, as well as

organizational capital. Even for more narrow views of capital, there is a rather substantial

range for the magnitude of the adjustment costs. We set the steady state π “ 2.5 and

the investment-capital ratio to be .09. Although not critical to computation, the implied

investment-capital ratio is sensitive to whether the costs are presumed on the input or

output side of the capital evolution. This number would be the substantially lower (.055)

had we used the alternative construction given in Appendix A.

The capital and oil reserves volatility σK , σR are vectors where the relevant entries are

4Specifically, we choose an initial period emissions target of about 10 GtC/yr in our calibrations to
match the most recent number from Figueres et al. (2018).
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chosen to match the empirically measured annual percent changes in the time series of GDP

and reserves from the World Bank database and BP (2018). We assume σK ¨ σR “ 0, and

so σK “ r.0161, 0, 0s1 and σR “ r0, .0339, 0s1. Given the structure of our model and focus on

smooth ambiguity in the computational analysis, σd is inconsequential for the calculations

that we report.

Table F.1: Initial Values

Y0 80

Ka
0 695.65

R0 650

F0 290

aK0 is derived from K0 “ Y0{α

The initial values for the model solution simulations are given in Table F.1. The value

for GDP comes from the World Bank database and the capital value is implied by the

assumed productivity parameter α and this GDP value. The value for reserves comes from

estimates of existing recoverable reserves of oil and coal from the U.S. Energy Information

Administration (EIA), BP (2018), empirical measures of reserves cited by McGlade and

Ekins (2015) (who provide detailed information on the reserves data, including the EIA

and BP estimates), and earlier research by Rogner (1997). By construction, the ratio of the

initial reserves to capital matches the steady state value used in setting the steady state

target y. The initial value of cumulative emissions or atmospheric carbon concentration

comes from the NOAA dataset. We use anomaly from the preindustrial level, where the

preindustrial level we use is 580, in line with the IPCC Fourth Assessment Report (2007) for

concentrations around 1800. The Carbon Dioxide Information Analysis Center (CDIAC)

provides a conversion factor to convert the NOAA and IPCC concentrations values from

parts per million (ppm) to gigatons of carbon (GtC).

G More Computations

In this section we consider some calculations associated with alternative model configura-

tions which we use to supplement the findings reported in the text.
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G.1 Abstracting from the climate externality

While we reported previously the social cost of carbon for the socially efficient allocation, we

now show the difference when we produce analogous computations under the competitive

allocation. While these are not directly transformable into Pigouvian taxes, they do reveal

the implied social costs for marginal changes in emissions. Under the competitive allocation

the costs are substantially higher because the allocations are much more damaging to the

economy. This is evident in Figure G.1 which shows much higher cost trajectories when

the market economy ignores climate damages. We limit the time horizon for Figure G.1 to

60 years because the difference in the SCC is so drastic for longer horizons.
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Figure G.1: Social cost of carbon comparison for alternative allocations. The left panel imposes the

competitive allocation ignoring the climate externality. The right panel imposes the social planner’s solution

and reproduces Figure 6. The right panel plots use a shorter time period than in Figure 6 to facilitate

comparisons to the computations with the competitive allocaiton. The blue solid curve represents the total

SCC, and the red dashed curve represents the uncertainty contribution.

Figure G.2 compares the two emissions trajectories. Since the competitive solution

ignores the climate externality, it increases along a balanced growth path. In contrast, the

trajectory from the social planner’s problem decays because of the potential for serious

damages to the environment.
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Figure G.2: Emissions comparison for alternative allocations. The blue solid curve reproduces the

emissions trajectory for the social planner and is reproduced from from Figure 7 in the paper. The red

dashed curve shows the emissions trajectory for the competitive allocation.

Table G.1 compares the relative entropies under the competitive allocation with those

for the planner’s problem. In addition, the implied worst-case probabilities for the low

damage specification are provided in parentheses. Given that ξp is held fixed, the relative

entropies of the implied worst-case probabilities are larger under the competitive allocation.

Competitive Planner’s

allocation allocation

Year Entropies (prob) Entropies (prob)

0 .005 (.50) .005 (.50)

30 .019 (.50) .011 (.50)

60 .343 (.32) .053 (.49)

Table G.1: Relative entropies and implied worst-case probabilities for the consumption damage speci-

fication. The left-panel evaluations are under the competitive allocation, and the right-panel evaluations

are under the allocation under the planner’s solution.

G.2 Omitting investment in exploration

Next we explore the impact of exploration. We display the SCC comparisons in Figure

G.3 starting from the same initial conditions. As we see from the left panel of this figure,
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the SCC is substantially higher without the possibility of exploration. This is driven by

a significantly higher private contribution to the SCC, which now dominates, whereas the

uncertainty adjustment is inconsequential. Without the opportunity to invest in explo-

ration, this is a Hotelling-type model and the finite stock constraint imposed by reserves

dominates the damage contribution. This is in sharp contrast to what happens when we

allow for exploration.
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Figure G.3: Social cost of carbon across different reserve settings. The left panel precludes investment

in exploration while the right panel allows for this investment. The right panel replicates Figure 6 in the

paper. The blue solid curves represent the total SCC, and the red dashed curves represent the uncertainty

contribution. The green dot-dashed curves represent the private contributions that do not account for

damages to the climate.

The emissions trajectories for the two economies are reported in Figure G.4. Not sur-

prisingly, emissions are lower when we preclude exploration.
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Figure G.4: Emissions comparison. The blue solid curve reproduces the emissions trajectory from Figure

7 in the paper while the red dashed curve shows results for our economy without investment in exploration.

Table G.2 reports the relative entropies and worst-case probabilities for the specifica-

tions with two different initializations for the stock reserves. Exploration is closed down for

these runs. Consistent with the small uncertainty contribution to the SCC in the absence

of exploration and the reserve stock initialized at 650, we find that the relative entropies

are very small and probability adjustments for the damage configurations are negligible in

this case. Increasing the stock of reserves to 9000 changes substantially this finding.

Year
Reserves = 650 Reserves = 9000

Entropies (prob) Entropies (prob)

0 .002 (.50) .005 (.50)

25 .002 (.50) .010 (.50)

50 .002 (.50) .026 (.49)

75 .002 (.50) .112 (.46)

100 .002 (.50) .197 (.42)

Table G.2: Relative entropies for different initial reserves without exploration

Once we exclude exploration, arguably we should increase substantially the stock of

reserves in the calibration to include “potential reserves.” When we initialize the stock

at 9000, we obtain essentially the same emissions and SCC trajectories as we found with
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exploration. This larger reserve stock effectively makes the Hotelling constraint irrelevant

when damages are present. See McGlade and Ekins (2015) for some rough estimates of the

stock of potential reserves, which we use as motivation to introduce such a substantially

larger initialization.

G.3 Using damaged consumption as the numeraire

As we noted in Section 4 of the paper, it is of potential interest to use damaged consumption

as the numeraire for the SCC computations. For the time horizons that we report results,

we verified that this change has negligible implications. In contrast, for longer simulations

actual damages become more pronounced and the implications for the SCC become much

more pronounced.

G.4 Ambiguity in the damage evolution

When climate damages alter the macroeconomic growth rate, parameter ambiguity spills

over to the evolution of the SCC. In Table G.3 we report the SCC and the corresponding

relative entropies under two different simulation protocols for damages, one in which we

replace unknown parameters by their means and the other under the associated worst-

case evolution. Interestingly, the SCC numbers are lower under the worst-case simulation

because of the more sluggish capital evolution.

Year
Base-case Worst-case

SCC total SCC uncertainty SCC total SCC uncertainty

0 411 209 411 209

50 1,168 590 1,079 545

100 3,244 1,638 2,745 1,386

Table G.3: SCC when climate damages alter macroeconomic growth under two trajectories. The base-

case simulation sets shocks to zero and uses parameter averages for damage evolution. The worst-case

simulation also sets the shocks to zero but uses the worst-case distributions for averaging the unknown

parameters period by period.

Importantly, the dynamic implications, including the relative importance of uncertainty,

that we featured in the body of our paper remain regardless of which simulation setting we

use for the analysis.
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H Impulse Response Approximation to Climate Dy-

namics

Figure H.1: This figure shows the cross model heterogeneity in carbon-climate responses. It reproduces
Figure 1A of Joos et al. (2013).

In this section we report findings using the impulse response approximations from Joos

et al. (2013) that illustrate cross-model heterogeneity and speak to the potential impor-

tance of model ambiguity in decision making. Figure H.1 shows the responses for long-term

changes in carbon concentration. In looking at the left panel, all models agree that the

impact of a change in emissions decays, but not to zero, and that the decay is very slow.

After 100 years, alternative models have substantial differences in terms of their implica-

tions for carbon concentration. The impact of emissions continues to decline over future

centuries, but this additional decay is remarkably slow. While there are considerable sim-

ilarities in the pattern of the responses, there is substantial variation in the magnitudes
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of the responses.5 The corresponding temperature responses display more erratic behavior

as reported in Joos et al. (2013) for the reasons they describe. Castruccio et al. (2014)

provide further evidence for cross model differences in temperature responses to changes in

radiative forcing.

We present this evidence to suggest further important research to be done that incor-

porates model uncertainty from climate science and to suggest some of the challenges that

embracing this evidence entails.

5We invite the reader to inspect other figures in Joos et al. (2013) that illustrate model heterogeneity
of responses of surface temperature, ocean temperature, sea level rise and other variables of interest to
emission pulses of CO2.
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