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I. Introduction

There aremany calls for policy implementation to address climate change
based on confidence in our knowledge of the adverse impact of economic
activity on the climate, and conversely the negative effects of climate
change on economic outcomes. Our view is that the knowledge base to
support quantitative modeling in the realm of climate change and else-
where remains incomplete. Although there is a substantial body of evi-
dence demonstrating the adverse human imprint on the environment,
uncertainty comes into play when we build quantitative models aimed
at capturing the dynamic transmission of human activity on the climate
and on how adaptation to climate change will play out over time. In
many arenas, it has been common practice in discussions of economic
policy to shunt uncertainty to the background when building and using
quantitativemodels. To truly engage in “evidence-based policy” requires
thatwe are clear both about the quality of the evidence and the sensitivity
to the modeling inputs used to interpret the evidence. Although the im-
portance of quantifying uncertainty has been emphasized and imple-
mented in a variety of scientific settings, the analysis of economic policy
provides some unique challenges. Specifically, our aim is to exploreways
to incorporate this uncertainty for the purposes of making quantitative
assessments of alternative courses of actionwhile exploring a broader con-
ceptualization of uncertainty than is typical in econometric analyses. We
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see this challenge asmuchmore thanputting standard errors on econometric
estimates or incorporating risk (uncertainty with known probabilities)
into the analysis. We turn to developments in dynamic decision theory
as a guide to how we confront uncertainty in policy analysis.
In climate economics,Weitzman (2012),Wagner andWeitzman (2015),

and others have emphasized uncertainty in the climate system’s dynam-
ics and how this uncertainty could create fat-tailed distributions of poten-
tial damages. Relatedly, Pindyck (2013) andMorgan et al. (2017) find ex-
isting integrated assessment models in climate economics to be of little
value in the actual prudent policy.We are sympathetic to their skepticism
and are not offering simple repairs to the existing integrated assessment
models in this area nor quick modifications to Environmental Protection
Agency (EPA) postings for the social cost of carbon (SCC). Nevertheless,
we find value in the use of models to engage in a form of “quantitative
storytelling” and we explore the consequences for policy when multiple
models or specifications are entertained.1 Instead of proceeding with
comparing policies model by model, our ambition is to incorporate at
least some of the model uncertainty into the formal analysis. That is,
our aim is to explore ways to assess policies with amore explicit account-
ing for the limits to our understanding. In the climate-economics arena,
not only is there substantial uncertainty about the economicmodeling in-
puts, but it is also about the geoscientific inputs.
Drawing on insights from decision theory and asset valuation, Barnett,

Brock, andHansen (2020) proposed a framework for assessing uncertainty,
broadly conceived, to include ambiguity over alternative models and the
potential form of the misspecification of each. As is demonstrated in that
paper, this broad notion of uncertainty is reflected in an endogenously
determined adjustment to the probabilities used to depict meaningful
economic values. This adjustment pushes well beyond the familiar dis-
cussions of social discount rates in the environmental economics liter-
ature. But the examples in Barnett et al. (2020) scratch the surface of the
actual quantitative assessment of uncertainty pertinent to the economics
of climate change, and they abstract from setups inwhich the uncertainty
is at least partially resolved in the future.
In Sections III and IV, this paper takes inventory of the alternative

sources of uncertainty that are pertinent to climate change policy:
• carbon dynamicsmapping carbon emissions into carbon in the atmosphere,

• temperature dynamicsmapping carbon in the atmosphere into temper-
ature changes, and
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• economic damage functions that depict the fraction of the productive ca-
pacity that is reduced by temperature changes.

We necessarily adopt some stark simplifications tomake this analysis trac-
table. Many of the climate models are both high dimensional and nonlin-
ear. Rather than using thosemodels directly, we rely on outcomes of pulse
experiments applied to the models. We then take the outcomes of these
pulse experiments as inputs into our simplified specification of the climate
dynamics inside our economic model. We follow much of the environ-
mentalmacroeconomicmodeling literature in the use of adhoc static dam-
age functions, and explore the consequences of changing the curvature in
these damage functions. Even with these simplifications, our uncertainty
analysis is sufficiently rich to show how uncertainty about the alternative
channels bywhich emissions induce economic damages interact in impor-
tantways.Modeling extensions that confront heterogeneity in exposure to
climate change across regions will also open the door to the inclusion of
cross-sectional evidence for measuring potential environmental damages.
Decision theory provides tractable ways to explore a trade-off between

projecting the “best guess” consequences of alternative courses of action
and “worst possible” outcomes among a set of alternativemodels. Rather
than focusing exclusively on these extremal points, we allow our decision
maker to take intermediate positions in accordance with parameters that
govern aversions to model ambiguity and potential misspecification. We
presume adecisionmaker confrontsmanydimensions of uncertainty and
engages in a sensitivity analysis. To simplify the policy analysis, we con-
sider a world with a “fictitious social planner.” Thus, we put to the side
important questions pertaining to heterogeneity in the exposure to climate
change and to the consequent policy objectives by different decisionmak-
ers. Instead, we simplify the policy implementation to that of a Pigouvian
tax that eliminates the wedge between market valuation and social valu-
ation.We use this setup to illustrate howuncertainty can contribute to so-
cial valuationwhile recognizing the need for furthermodel richness in fu-
ture research. Our planner confronts risk, model ambiguity, and model
misspecification formally and deduces a socially efficient emissions tra-
jectory. The planner’s decision problem adds structure to the sensitivity
analysis and reduces a potentially high-dimensional sensitivity analysis
to a two-dimensional characterization of sensitivity parameterized by
aversion tomodel ambiguity and potential misspecification.We describe
formally in Section V some convenient continuous-time formulations of
decision theory designed so that recursive methods familiar in economic
dynamics can be applied with tractable modifications.



256 Barnett, Brock, and Hansen
We use the SCC as a barometer for investigating the consequences of
uncertainty for climate policy. In settings with uncertainty, the SCC is
the economic cost to the current and future uncertain environmental
and economic damages induced by an incremental increase in emis-
sions. In effect, it is the current period cost of an adverse social cash flow.
Borrowing insights from asset pricing, this cash flow should be dis-
counted stochastically inways that account for uncertainty. This follows
in part revealing discussions in Golosov et al. (2014) and Cai, Judd, and
Lontzek (2017), who explore some of the risk consequences for the SCC.
We extend this by taking a broader perspective on uncertainty. The
common discussion in environmental economics about what “rate”
should be used to discount future social costs is ill-posed for the model
ambiguity that we feature. Rather than a single rate, we borrow and ex-
tend an idea from asset pricing by representing broadly based uncer-
tainty adjustments as a change in probability over future outcomes for
the macroeconomy. As we argue formally in Section VI, when we incor-
porate uncertainty we are pushed away from the commonly employed
modular approaches for measuring the SCC as the modular compo-
nents to the SCC become much more intertwined.2 Drawing on insights
from recursive approaches to economic dynamics adds clarity to how
best to rationalize and quantify the SCC in presence of decision-maker
uncertainty.
Finally, this paper extends previous work by “opening the hood” of

climate change uncertainty and exploring which components have the
biggest impact on valuation. Rather than embrace a “one-model-fits-all-
types-of-approaches” perspective, we give three computational examples
designed to illustrate different points. The example presented in Section
VII is by far the most ambitious and sets the stage for the other two. This
first example explores what impact future information about environ-
mental and economicdamages, triggeredby temperature anomaly thresh-
olds, should have on current policy. It adds a dynamic richness missing
from other treatments of model uncertainty. The second example, pres-
ented in Section VIII, implements a novel decomposition of uncertainty
assessing the relative importance of uncertainties in carbon dynamics,
temperature dynamics, and damage function uncertainty. The approach
that is described and implemented in Section VIII is more generally ap-
plicable to other economic environments. Finally, the third example in-
vestigates the interacting implications of the uncertainties in the develop-
ment of green technologies and in environmental damages for prudent
policy. This example is developed in Section IX.
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In the next section, we elaborate on some of the prior contributions
that motivate our analysis.

II. Some Motivating Literature

Palmer and Stevens (2019) take inventory of what we know about cli-
mate change from basic principles, although they note the limits to
the existing efforts at quantitative modeling. They articulate the discon-
nect between arguments made to advance environmental policy and the
state of knowledge coming from climate science. Moreover, they argue
for the systematic inclusion and quantification of stochastic components
in climate models as a way to make a substantive improvement in pre-
dictive models from climate science, even though the “big picture” is
quite settled. Palmer and Stevens proposed modeling improvements
that are well beyond the ambition of our work, but we have a shared ap-
preciation for explicit stochastic modeling. It is important for our uncer-
tainty quantification methods that we incorporate explicit randomness
to partially disguise the model ambiguity and misspecification from a
decisionmaker.We aim to enrich the policy discussions by acknowledg-
ing rather than disguising uncertainty.
Our specification of damage function uncertainty can be motivated in

part by “tipping points” in the climate system. Consistent with our for-
mulation, Sharpe and Lenton (2021) and Lenton (2020), though noting
that the “great majority of climate tipping points are damaging ones,
and they may be closer than is often assumed,” also present evidence
for tipping points that open the door to a far greener and less damaged
economy. Lenton, then, highlights the need to comprehensively study
the uncertainty in such complicated, nonlinear settings so that we can ef-
fectively risk-manage positive and negative tipping points. Our example
includes the possibility of good news with the delay in the Poisson event
realization. On the other hand, although we are illustrating an important
message for policy making, our example is too simplistic to connect for-
mally to tipping-point specifications and the resulting uncertainties.3

Hausfather and Peters (2020) noted that policymakers and researchers
have increasingly designated scenarios as “business as usual” without
good justification. The formal use of decision theory allows for useful dis-
tinctions between adverse scenarios that are possible and best guesses for
decision makers to trade off considerations between such projections.
In prior work, Rudik (2020) explored damage function uncertainty. He

reviewed the extensive literature on damage functions and developed a
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Bayesian learning framework about uncertain damage function parame-
ters together with an analysis of the effects of robustness concerns caused
bymisspecification of the damage functions. Our formulation of damage
function uncertainty differs substantially from his because of our Poisson
event that governs damage function steepness. In our analysis, observa-
tions prior to this event are not informative about the damage function
curvature beyond a threshold yet to be attained.

III. Uncertain Climate Dynamics

In this section, we first describe some very tractable characterizations of
cross-model variation in the dynamic responses of temperature to emis-
sion pulses. To support our analysis, we then build a simplified stochas-
tic specification of the pulse responses.

A. Simple Approximations to Climate Dynamics

Recent contributions to the climate-science literature have produced low-
dimensional approximations, emulators, and pulse experiments that
provide tractable alternatives to full-scale Atmospheric-Oceanic General
Circulation Models (AOGCMs) used by climate scientists. These results
allow for the inclusion of climate models within economic frameworks
in ways that can be informative and revealing. We use the pulse experi-
ment results of Joos et al. (2013) andGeoffroy et al. (2013) across various car-
bon and climate dynamics models to build the set of models we will use
in our uncertainty analysis.4

Joos et al. (2013) report the responses of atmospheric carbon concentra-
tion to emission pulses of 100 gigatonnes of carbon for several alternative
Earth Systemmodels. The emission pulse experiments follow a standard-
ized model intercomparison analysis so that outcomes are directly com-
parable. We use the responses for nine such models to capture the varia-
tion and uncertainty present in models of carbon cycle dynamics.
We feed these responses for carbon concentration into log-linear ap-

proximations of temperature dynamics constructed by Geoffroy et al.
(2013). In accordance with the Arrhenius (1896) equation, these dynam-
ics relate the logarithm of carbon in the atmosphere to future tempera-
ture. The parameters that Geoffroy et al. (2013) constructed using their
simplified representation differ depending on the model being approxi-
mated.We use the 16models listed in appendix A. Thus, we take the nine
different atmospheric carbon responses as inputs into the 16 temperature
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dynamics approximations, giving us a total of 144 different temperature
responses to emissions.5

Figure 1 captures the resulting temperature responses across various
sets of these 144 models. The top panel provides the results based on
all 144 models, the middle panel provides the results based on variation
in the carbonmodels, and the bottom panel provides the results based on
variation in the temperature models. In each case, the maximal tempera-
ture response to an emission pulse occurs at about a decade and the sub-
sequent response is very flat. These dynamics are consistent with the re-
sponse patterns featured by Ricke and Caldeira (2014).
The top panel of figure 1 also reports the percentiles for each horizon

computed using the 144 different temperature response functions from
all the different combinations of models of carbon and temperature dy-
namics. Although there are similar patterns across the temperature re-
sponse functions, there is considerable heterogeneity in the magnitudes
of the responses. For a further characterization of this heterogeneity,
we compute the exponentially weighted average of each of these re-
sponse functions and use them in our computations.We report the result-
ing histogram in figure 2.
The eventually flat trajectories of the temperature response functions

are consistent with model comparisons made using what is called the
transient climate response (TCRE) to carbon dioxide emissions. The
TCRE is the ratio of CO2-induced warming realized over an interval of
time to the cumulative carbon emissions over that same time interval.
This linear characterization provides a simplification suggested by Mat-
thews et al. (2009) and others by targeting the composite response of the
carbon and temperature dynamics instead of the components that induce
it. MacDougall, Swart, and Knutti (2017) provide a pedagogical sum-
mary of this literature and report a histogram for the TCRE computed
for 150model variants. Their histogram looks very similar to what we re-
port in figure 2.
The middle and bottom panels of figure 1 show the contribution of

uncertainty in temperature and carbon dynamics to the temperature
impulse responses. In generating the middle panel of figure 1, we com-
puted the implied temperature responses for 9 alternative models of at-
mospheric CO2 dynamics averaging over the 16 models of temperature
dynamics. In generating the lower panel of figure 1, we computed the
16 temperature responses for 16 temperature models while averaging
over the nine models of atmospheric CO2 dynamics. Consistent with the
results reported by Ricke and Caldeira (2014), we find heterogeneity in



Fig. 1. Percentiles for temperature responses to emission impulses. The emission pulse
was 100 gigatonnes of carbon (GtC) spread over the first year. The temperature units for
the vertical axis have been multiplied by 10 to convert to degree Celsius per teratonne of
carbon (TtC). The boundaries of the shaded regions are the upper and lower envelopes.
Top panel: percentiles for impulse responses including both carbon and temperature dy-
namic uncertainty. Center panel: responses obtained for the different carbon responses
for nine models each averaged more than the 16 models of temperature dynamics. Bottom
panel: percentiles for the 16 temperature responses using each averagedmore than the nine
models of carbon concentration dynamics. A color version of this figure is available online.
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the temperature responses to bemore prominent than that coming from
the atmospheric CO2 dynamics.6

B. Stochastic Climate Pulses

To explore uncertainty, we introduce explicit stochasticity as a precur-
sor to the study of uncertainty. We capture this randomness in part by
an exogenous forcing process that evolves as

dZt = mz(Zt)dt + jz(Zt)dWt,

where {Wt : t ≥ 0} is a multivariate standard Brownian motion. We parti-
tion the vector Brownian motion into three subvectors as follows:

Wt =

Wy
t

Wn
t

Wk
t

2664
3775,
Fig. 2. Histograms for the exponentially weighted average responses of temperature to
an emissions impulse from 144 differentmodels using a rate d = :01. A color version of this
figure is available online.
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where the first component consists of the climate change shocks, the sec-
ond component contains damage shocks, and the third component cap-
tures the technology shocks. Consider an emissions “pulse” of the form

iy � Zt

� �Et udt + ς � dWy
tð Þ,

where Et is fossil-fuel emissions and iy � Z = fiy � Zt : t ≥ 0g is a positive
process that we normalize to have mean one. The iy � Z-process captures
“left out” components of the climate system’s reaction to an emission of
Et gigatonnes into the atmosphere while the ς � dWy

t process captures
short time-scale fluctuations. We will use a positive Feller square root
process for the iy � Z process in our analysis.
Within this framework,we impose the “Matthews’ approximation” by

making the consequence of the pulse permanent. The temperature anom-
aly, Y = fYt : t ≥ 0g, evolves stochastically as

dYt = my(Zt, Et)dt + jy(Zt, Et)dW
y
t ,

where

my(z, e) = e iy � z
� �

u

jy(z, e) = e iy � z
� �

ς0:

Throughout, we will use uppercase letters to denote random vector or
stochastic processes and lowercase letters to denote possible realizations.
Armed with this “Matthews’ approximation,” we collapse the climate
change uncertainty into the cross-model empirical distribution reported
in figure 2. We will eventually introduce uncertainty about u.
This specification misses the initial buildup in the temperature re-

sponse and instead focuses exclusively on the flat trajectories depicted
in the upper panel of figure 1. We expect that this error might be small
when the prudent social planner embraces preferences that have a low
rate of discounting the future, but this requires further investigation. Al-
though others in climate sciences find linear approximations to be rele-
vant, we recognize the need for subsequent efforts to explore systemat-
ically the potential importance of nonlinearities. Ghil and Lucarini
(2020) is a thorough review of climate physics at a hierarchy of temporal
and spatial scales that embraces the inherent complexity of the climate
system.

Remark 3.1. For a more general starting point, let Yt be a vector used to repre-
sent systemdynamics where the temperature anomaly in this specification is the
first component of Yt. This state vector evolves according to
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dYt = KYtdt + iy � Zt

� �Et Hdt + UdWy
tð Þ,

where K is a square matrix and H is a column vector. Given an initial condition
Y0, the solution for Yt satisfies

Yt = exp tKð ÞY0 +
ðt
0
exp (t - u)K½ � iy � Zu

� �Eu Hdu + UdWy
uð Þ:

Thus under this specification, the expected future response of Y to a pulse at date
zero is

exp uKð ÞH:

It is thefirst component of this function that determines the response dynamics of
the temperature anomaly to an emissions pulse to the climate system. This gen-
eralization allows for multiple exponentials to approximate the pulse responses.
Our introduction of a multiple exponential approximation adapts, for example,
Joos et al. (2013) and Pierrehumbert (2014).7

As an example, we capture the initial rise in the emission responses by the fol-
lowing two-dimensional specification:

dY1
t = Y2

t dt

dY2
t = -lY2

t dt + luEtdt,

which implies the response to a pulse is

u 1 - exp(-lt)½ �E0:

A high value of l implies more rapid convergence to the limiting response uE0.
This approximation is intended as a simple representation of the dynamics
where the second state variable can be thought of as an exponentially weighted
average of current and past emissions.8

Remark 3.2. The approximation in Geoffroy et al. (2013) includes the logarithm
of carbon in the atmosphere as argued for by Arrhenius (1896), which is not di-
rectly reflected in the linear approximation to the temperature dynamics that
we use. The pulse experiments from Joos et al. (2013) show a more than propor-
tional change in atmospheric carbon when the pulse size is changed. It turns out
that this is enough to approximately offset the logarithmic Arrhenius adjustment
so that the long-term temperature response remains approximately proportional
for small pulse sizes. See also Pierrehumbert (2014), who discusses the approxi-
mate offsetting impacts of nonlinearity in temperature and climate dynamics.
IV. Uncertain Environmental and Economic Damages

Discussions of climate change policy are often simplified to specifications
of temperature anomaly targets. For instance,many such discussions used
a 2-degree anomaly as an upper bound on the amount of climate change
that policy-makers should tolerate. More recently, this target number has
been reduced to the point where numbers as low as a 1.5-degree anomaly
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shouldbe entertained as a target upper boundwithwarnings ofpotentially
severe consequences once warming exceeds these thresholds. There is
considerable debate as to the scientific underpinnings of such thresholds.
Moreover, economic analyses have often introduced so-called damage
functions whereby economic opportunities are reduced by global warm-
ing depending on the curvature of the damage function. Although dam-
age functions are ad hoc simplifications that simplify the model solution
and analysis, there remains considerable uncertainty as to their steepness.
For purposes of illustration,we introduce explicitly stochasticmodels of

damages. The specification includes an unknown threshold whereby the
curvature becomes apparent. In some of our computations, this threshold
occurs somewhere between 1.5 and 2 degree Celsius, but we also explore
what happens when this interval is shifted to the right. Under a baseline
specification, damage function curvature is realized in accordance with
a Poisson event and an intensity that depends on the temperature anom-
aly. The event is more likely to be revealed in the near future when the
temperature anomaly is larger. Although we adopt a probabilistic formu-
lation as a baseline,wewill entertain ambiguity over damage function cur-
vature and potential misspecification of the Poisson intensity. We intend
our specification of the damage function to reflect that the value of future
empiricism in the near termwill be limited as the climate-economic system
is pushed into uncharted territory. On the other hand, we allow for the
damage function steepness to be revealed in the future as the climate sys-
tem moves potentially closer to an environmental tipping point.
We posit a damage process,Nt = fNt : t ≥ 0g, to capture negative exter-

nalities on society imposed by carbon emissions. The reciprocal of dam-
ages, 1=Nt, diminishes the productive capacity of the economybecause of
the impact of climate change.We followmuch of climate-economics liter-
ature by presuming that the process N reflects, in part, the outcome of a
damage function evaluated at the temperature anomaly process. Impor-
tantly, we use a family of damage functions in place of a single function.
Our construction of the alternative damage functions is similar to Barnett
et al. (2020) with specifications motivated in part by prior contributions.
Importantly, we modify their damage specifications in three ways:

• we entertain more damage functions, including ones that are more
extreme,

• we allow for damage function steepness to emerge at an ex ante un-
known temperature anomaly threshold, and

• we presume that ex post this uncertainty is resolved.
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Weconsider a specificationunderwhich there is a temperature anomaly
threshold after which the damage function could be much more curved.
This curvature in the “tail” of the damage function is only revealed to de-
cision makers when a Poisson event is triggered. As our model is highly
stylized, the damages captured by the Poisson event are meant to capture
more than just the economic consequences of a narrowly defined temper-
ature movements. Temperature changes are allowed to trigger other
forms of climate change that in turn can spill over into themacroeconomy.
In our computational implementation,weuse a piecewise log-quadratic

function for mapping how temperature changes induced by emissions
alter economic opportunities. The Poisson intensity governing the jump
probability is an increasing function of the temperature anomaly. We
specify it so that the Poisson event is triggered prior to the anomaly hit-
ting an upper threshold �y. Construct a process

�Yt =
Yt  t < t

Yt - Yt + �y  t ≥ t
,

(

where t is the date of a Poisson event. Notice that �Yt = �y. The damages
are given by

logNt = C �Ytð Þ + in � Zt, (1)

where

C(y) = g1y +
g2

2
y2 +

gm
3

2
1y≥�y(y - �y)2

and the only component of dW pertinent for the evolution of in � Zt is dWn
t .

Neither do decision makers know when the Poisson event will be trig-
gered nor do they know ex ante what the value of gm

3 is prior to the real-
ization of that event. At the time of the Poisson event, one of M values
of gm

3 is realized. In our application the coefficients gm
3 are specified so that

the proportional damages are equally spaced after the threshold �y.
The intensity function,J, determines the possibility of a jump over the

next small increment in time. For Yt = y, eJ(y) is the approximate jump
probability over small time increment e. Equivalently, J is a local mea-
sure of probability per unit of time. In our computations, we use inten-
sity function

J (y) =
r1 exp

r2
2
(y - y)2

h i
- 1

� �
y ≥ y

0 0 ≤ y < y,

8<:
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as depicted in figure 3. AsJ is increasing in y, jumps become all themore
likely as Yt approaches the upper threshold �y. This intensity depends on
y, which we refer to as the lower threshold. We set the values of (r1, r2) so
that the probability that the Poisson event is realized prior toYt = �y is es-
sentially unity. Thus, the uncertainty is concentrated for state Y in the in-
terval [y, �y]. We use the intensity plotted in figure 3 in computations that
follow for y = 1:5 and �y = 2.
The probability that the process has not jumped over the time interval

[0, t) is

exp -
ðt
0
J (Yt)dt

� �
so that a larger intensity makes the jumps more likely.
Figure 4 shows the range of damage function uncertainty that we im-

pose in our computations. Given our intensity specification, we expect
the Poisson jumps to occur between 1.5 and 2 degree Celsius. The upper
panel shows the potential damage function quantiles when the jump is
delayed until a 2-degree temperature anomaly. These functions are all
continuous extensions of initial damage functions beyond �y. When a
jump occurs at anomalies less than 2, the damage functions are steeper.
This is illustrated in the lower panel, which shows the possible damage
Fig. 3. Intensity function, r1 = 1:5 and r2 = 2:5.With this intensity function, the probabil-
ity of a jump at an anomaly of 1.6 is approximately .02 per annum, increasing to about .08
per annum at an anomaly of 1.7, increasing further to approximately .18 per annum at an
anomaly of 1.8 and then to about one-third per annum when the anomaly is 1.9. A color
version of this figure is available online.
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function quantiles for temperature anomalies beyond the anomaly just
prior to the jump. Earlier jumpdates imply steeper damage functions and
are thus a formof “badnews.” In contrast, delayed jumps are “goodnews.”

Remark 4.1. Our choice of y = 1:5 and �y = 2 degree Celsius thresholds for the
temperature anomaly ismotivated by discussions in the climate-science literature.
Thus these damage functions are not only more than economic responses to
changes in temperature but also inclusive of potentially dramatic environmental
Fig. 4. Range of possible damage functions for different jump thresholds. The shaded re-
gions in these plots give the range of possible values for exp(-n), which measures the pro-
portional reduction of the productive capacity of the economy. The top panel shows the
damage function curvature when the jump occurs atYt = 2:0, and the bottom panel shows
the damage function curvature if that jump happens atYt = 1:5. A color version of this fig-
ure is available online.
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changes triggered by so-called tipping points. Drijfhout et al. (2015) provided a
catalog of potential abrupt changes implied by projections from a variety of
earth-science models. Motivated by such concerns about such changes, Rogelj
et al. (2018) and Rogelj et al. (2019) suggested a 1.5-degree temperature anomaly
as a goal for limiting human damages of the climate system. As this goal may be
unachievable, they point to a 2-degree target in line with the 2015 Paris agree-
ment, while noting the increased danger of severe damages. Although there
are concerns about temperature anomalies triggering these tipping points,
Ritchie et al. (2021) used recent developments in dynamical systems theory to ar-
gue that “the point of no return” for climate thresholds is highly uncertain. As an
external form of sensitivity analysis, we also report results with the temperature
threshold shifted to the right with y = 1:75 and �y = 2:25.
V. Model Ambiguity and Misspecification Concerns

Themodel we have built so far is one inwhich uncertainty is captured by
the stochastic specification of shocks as is typical when building dynamic
stochastic models in macroeconomics. We think of this shock specifica-
tion as characterizing risk. The presence of these shocks opens the door
to a comprehensive assessment of uncertainty in which we entertain a
broader notion of uncertainty. We include uncertainty over model spec-
ifications and parameters, which we refer to as ambiguity. In this discus-
sion,we treatmodels and parameters as synonymous by thinking of each
parameter as indexing an alternativemodel. As in our priorwork, Barnett
et al. (2020) and Berger and Marinacci (2020), we are led to depart from
the Bayesian approach, which starts with the specification of a subjective
prior over the alternativemodels, but does not distinguish the role of sub-
jective probabilities overmodels from the probabilities given amodel. In-
stead, we use recent formalisms from decision theory under uncertainty
to explore the impact of uncertainty over the subjective inputs. Within
statistics, this gave rise to robust counterparts to Bayesian inferences in
the study of prior sensitivity, often outside the realm of a specific decision
problem. The decision theory framework formalizes the question of “sen-
sitivity to what?” and the formal trade-off between making best guesses
versus possible bad outcomes as we look across models. Although in
some settings, data richness may diminish the role of prior sensitivity,
we find the economics of climate change to be a problem whereby prior
sensitivity remains an important question for the decision maker. Of
course, anymodel we write down is necessarily a simplification. We also
incorporate concerns about the potential misspecification of the models
under exploration using ideas from robust control theory extended to dy-
namic economic models.
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Our use of decision theory gives rise to a form of uncertainty quantifi-
cation. Uncertainty quantification in the sciences is typically done by re-
searchers. For instance, we might ask how the SCC differs as we change
the modeling ingredients. But decision makers also confront this uncer-
tainty, including ones inside the models that we build. Thus, model am-
biguity or misspecification concerns by decisionmakers should arguably
be taken into accountwhendetermining the prudent course of action. This
same uncertainty emerges as adjustments to the SCC as set by, say, a
benevolent social planner. Just as risk aversion can induce caution in
decision-making, the same can be said of broader notions of uncertainty
aversion. Although the decision theory we use does not determine the
magnitude of what this aversion should be, it reduces a potentially high-
dimensional sensitivity analysis to a much lower-dimensional one cap-
tured by low-dimensional representations of uncertainty aversion.
We analyze this uncertainty using the formalism of decision theory un-

der uncertainty. We apply two versions of such theory; one comes under
the heading of variational preferences and the other under smooth ambi-
guity preferences.We adapt both to continuous-time specifications,which
facilitates their implementation and interpretation. We use this decision
theory to reduce the sensitivity analysis to a one- or two-dimensional pa-
rameterization that locates the potentialmisspecification that ismost con-
sequential to a decisionmaker. Our aim is to provide amore complete un-
certainty quantification within the setting of decision problems.

A. State Dynamics

Posing our model in continuous time leads to a simplified characteriza-
tion of robustness. When constructing dynamic programming solu-
tions, it is advantageous to represent the local dynamics

lim
e↓0

1
e
E V(Xt+e) - V(Xt) ∣Xt = x, a)½ � = m(x, a) � ∂V

∂x
(x)

+
1
2
trace

∂2V
∂x∂x0

(x)R x, að Þ0
� �

+ I (x)
ð
V(~x) - V(x)½ �Q(d~x ∣ x),

(2)

where R is the diffusion matrix

R(x, a) = j(x, a)j(x, a)0,

and local exposure of Xt to a multivariate standard Brownian motion is
j(Xt, a) dWt, I is the state-dependent jump intensity, and Q(d~x ∣ x) is the
jumpdistribution conditioned on the process jumping. Both the intensity
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and the jump distribution can depend on the current Markov state. The
first two contributions to the drift ofV(Xt) are familiar from Ito’s Lemma.
We allow for both m and j to depend on a current action a. The baseline
probabilities are the ones implied by this stochastic process specification.
Given our interest in recursive methods, in what follows we will de-

scribe in turn implications for misspecifying a Brownian motion, a jump
process, and an ambiguity adjustment for the local mean of the dynami-
cal system.9 We introduce robustness by following the approach de-
scribed in Anderson, Hansen, and Sargent (2003) and model ambiguity
by following the approach in Hansen and Miao (2018).

B. Misspecified Brownian Increments

Following James (1992),Hansen andSargent (2001), andothers, the poten-
tial misspecification of a Brownianmotion has a particularly simple form.
It is known from the famed Girsanov Theorem that a change in distribu-
tion represented by a likelihood ratio replaces the standard Brownianmo-
tion by a Brownian motion with a drift. Specifically, under such a change
inprobability distribution, dWt is changed fromaBrownian increment to a
Brownian increment with a drift or local mean that can be state (ormodel)
dependent, which we denote Htdt. Thus, to explore the consequences of
misspecification, we modify our (locally) normally distributed shocks
by entertaining possiblemean distortions. Allowing for arbitrary changes
in the drift without a constraint or a penalty leads to an uninteresting and
inflexible decision problem. Here we follow one of the preference spec-
ifications in Hansen and Sargent (2001) whereby we use an expected log-
likelihood ratio measure of discrepancy called relative entropy to restrain
the search over alternative possible drift specifications.10 For Brownian
motion models, the relative entropy penalty is (yr=2)jHtj2dtwhere yr is the
penalty parameter that governs the decision maker’s concern for misspec-
ification and (1=2)jHtj2dt is the local contribution to relative entropy.
Given our intention to use recursive methods, we characterize the im-

pact that the Brownian motion has for the state dynamics in terms of the
local means for functions of the Markov state. We allow for the probabil-
ities implied by amultivariate standard Brownian motion to bemodified
to include possible drift distortions. Equivalently, we introduce potential
model misspecification by replacing m by

min h
∂V
∂x

� m + jhð Þ + yr

2
h0h =

∂V
∂x

� m -
1
2yr

∂V
∂x

� 	0
R

∂V
∂x

� 	
, (3)

where the minimizing h is
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h* = -
1
yr
j0 ∂V

∂x
;

h is a drift distortion in the Brownian increment. This distortion is state
dependent as reflected by the partial derivative of the value function.
The term (1=2)h0h is the local measure of relative entropy implied the local
normality of Brownian motion. Large values of the penalty parameter yr
induce small robustness adjustments.

C. Misspecified Jump Components

To specify a Markov jump process requires both (a) a state-dependent
intensity, I, governing the probability of a jump, and (b) the distribution
Q(� ∣ x) over the postjump state given the current jump state, x. Both of
these could bemistaken.We capture potential misspecification by intro-
ducing positive functions g of the postjump state:

I (x)
ð
V(~x) - V(x)½ �g(~x)Q(d~x ∣ x):

The implied probabilities resulting from the concern about misspec-
ification are given by

1
�g(x)

g(~x)Q(d~x ∣ x)

and the implied intensity is given by �g(x)I (x), where

�g(x) ≐
ð
g(~x)Q(d~x ∣ x):

Thus the choice of g determines both the jump probabilities and the
jump intensities in a manner that is mathematically tractable. The local
relative entropy discrepancy for a jump process is

I (x)
ð
1 - g(~x) + g(~x) log g(~x)

 �

Q(d~x ∣ x):

This measure is nonnegative because the convex function g log g ex-
ceeds its gradient g - 1 evaluated at g = 1.
We make a robustness adjustment by solving

min
g

I (x)
ð
V(~x) - V(x)½ �g(~x)Q(d~x ∣ x)

+ yrI (x)
ð
1 - g(~x) + g(~x) log g(~x)

 �

Q(d~x ∣ x):
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The minimizing g is given by

g*(~x, x) = exp -
1
yr

V(~x) - V(x)½ �
� 	

with a minimized objective given by

yrI (x)
ð

1 - exp -
1
yr

V(~x) - V(x)½ �
� 	� �

Q(d~x ∣ x):

We use this outcome in place of the jump contributionð
V(~x) - V(x)½ �Q(d~x ∣ x)

in the local mean contribution for a continuous-time Hamilton-Jacobi-
Bellman (HJB) equation.
D. Structured Ambiguity

To assess the consequences of the heterogeneous responses from alterna-
tive climate models, we use what are called recursive smooth ambiguity
preferences proposed byKlibanoff,Marinacci, andMukerji (2009). For an
important special case of these preferences, Hansen and Sargent (2007)
provide a robust prior/posterior interpretation of these preferences. This
alternative interpretation has advantages both in terms of calibration and
representation of social valuation, which we exploit in our characteriza-
tion. In deploying such preferences, we use a robust prior interpretation
in conjunction with the continuous-time formulation of smooth ambigu-
ity proposed by Hansen and Miao (2018).
To assess the consequences of the heterogeneous responses from alter-

native climate models, we follow Hansen andMiao (2018). Suppose that
m(x, a ∣ u) where u is an unknown parameter. In our applications, u is the
climate sensitivity parameter pertinent for theMatthew’s approximation.
Let p denote a subjective probability distribution over u. For instance, this
could be the cross-model distribution coming from the alternative pulse
experiments reported infigure 1. To justify this distribution as ameaning-
ful distribution from a decision-theoretic perspective requires that all
model outputs be treated as equally plausible. In Bayesian parlance, p
would be a current period posterior dependent on an initial prior and
likelihood. The decision maker does not have full confidence in the pos-
terior and engages in a robust adjustment by solving
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min
f ,

ð
f (u)p(du) = 1

∂V
∂x

(x) �
ð
m(x, a ∣ u)f (u)p(du) + ya

ð
f (u) log f (u)p(du), (4)

where f(u) is a density relative to a baseline probability p. The minimiz-
ing f is

f *(u ∣ x, a) ∝ exp -
1
ya

� 	
∂V
∂x

(x) � m(x, a ∣ u)
� �

,

where the right side requires scaling to be a proper relative density.11 The
minimizing objective is

- ya log
ð
exp -

1
ya

� 	
∂V
∂x

(x) � m(x, a ∣ u)
� �

p(du)
� 	

,

which replaces

∂V
∂x

(x) �
ð
m(x, a ∣ u)p(du)

in an HJB equation.

E. A Valuation Adjustment for Uncertainty

There is much discussion in the literature on environmental economics
about what discount rate to use. In our analysis so far, there is a single
discount rate used to define the preferences of a fictitious social planner.
But the discussions in the literature usually refer to present discounted
value formulas for marginal valuation. We represented the robust ad-
justments in terms of altered probabilities, which we compute in con-
junction with the HJB equations used for optimization. As Barnett et al.
(2020) demonstrate, these same probabilities provide the uncertainty ad-
justments for social valuation. Thus, to account for uncertainty, broadly
conceived, we are pushed beyond the question of what discount rate to
use because the necessary adjustment is most conveniently depicted as
an altered probability measure.

F. Other Approaches to Uncertainty Quantification across Models

We briefly discuss three prior forms of uncertainty quantification as it
pertains to unknown parameters or models. We give these as illustra-
tions, but the list is by no means exhaustive.
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Olson et al. (2012) propose and implement a Bayesianmethod formak-
ing inferences about certain parameters of interest, including a climate
sensitivity parameter coming from theUVic (University ofVictoria) Earth
System climatemodel. They document posterior sensitivity of the climate
sensitivity parameter to priors and other unknown modeling inputs. In
particular, they show the need to use an informative prior for climate sen-
sitivity to obtain reasonable results, therefore demonstrating the poste-
rior uncertainty in their informative statistical investigation. Although
not the focal point of their analysis, there is additional uncertainty in
the likelihood construction. These forms of uncertainty are pertinent
not only to researchers presenting evidence but also to decision or policy
makers in their efforts. Thus, wemove the uncertainty quantification “in-
side the decision problem,” including the sensitivity analysis. This allows
us to explore the impact of model or parameter ambiguity for choosing
socially prudent emissions trajectories and imputing the implied SCC.
In an alternative investigation of uncertaintywithin and across climate-

economic models, Gillingham et al. (2018) and Nordhaus (2018) computed
distributions of model outcomes given a priori distributions of parameters,
specifications, and model inputs, including emissions pathways. From
their analysis, they are able to produce a set of outputs associated with
each parameter or model configuration to demonstrate the role of un-
certainty in their setting. Their static analysis occurs “outside the decision
problem,” but it opens the door to exploring changes in the prior proba-
bility distribution without a systematic analysis of the sensitivity. Our
framework uses recursive methods and decision-theoretic tools to deter-
mine endogenously prudent choices of emissions over time and the im-
plied SCC trajectories when the policy maker confronts prior ambiguity.
Policy outcomes include endogenous feedbacks and dynamic impacts on
the SCC, and, importantly, an adjustment for uncertainty that is either
unresolved or only resolved well into the future.12

In a third approach, Hassler, Krusell, and Olovsson (2018) conducted
an analysis of uncertainty by comparing policy outcomes across two pa-
rameter intervals, one pertaining to damages and another to climate
sensitivity. Instead of putting a probability distribution over parame-
ters, they evaluate policy outcomes at the extreme points of the param-
eter space. Their analysis can be thought of as a simple illustration of
robust decision-making allowing for arbitrary probabilities over the un-
known parameters and is a revealing starting point to the policy prob-
lem they investigate. Our analysis of the policy problems is explicitly
dynamic and imposes probabilistic restraints on the probabilities that



Climate Change Uncertainty Spillover 275
could be assigned over a potentially large set of alternative model con-
figurations. The dynamic decision theory formulation we use collapses
our resulting sensitivity analysis to a low-dimensional representation in
terms of ambiguity and misspecification aversion parameters.

VI. Social Cost of Carbon

The SCC is intended to be the expected discounted value of future envi-
ronmental and economic damages induced by carbon emissions during
the current period. In the special case in which socially efficient alloca-
tions are used, the wedge between the discounted social costs and mar-
ket prices determines the Pigouvian taxes that support the efficient allo-
cation in the presence of the environmental externality provided that the
socially efficient emissions are positive.13 More generally, the SCC is a de-
cidedly local measure applicable to marginal changes in policy. Because
the SCC can be represented as an expected discounted value, we draw on
insights from asset pricing to explore the implications of uncertainty.
To place our research in a broader context of environmental economics,

we draw on a recent report from theNational Academies of Sciences, En-
gineering and Medicine (2017), which featured a four-step modular ap-
proach to measuring the SCC. We quote from the executive summary:
“The committee specifies criteria for future updates to the SC - CO2. It
also recommends an integrated modular approach for SC - CO2 estima-
tion to better satisfy the specified criteria and to drawmore readily on ex-
pertise from the wide range of scientific disciplines relevant to SC - CO2

estimation. Under this approach, each step in SC - CO2 estimation is de-
veloped as a module—socioeconomic, climate, damages, and discount-
ing—that reflects the state of scientific knowledge in the current, peer-
reviewed literature.”14

The report goes on to argue, “In addition, the committee details longer-
term research that could improve each module and incorporate interac-
tions within and feedbacks across modules.”
The modularization has the advantage of compartmentalizing differ-

ent ingredients to the SCC estimation. Perhaps this is a valuable shortcut,
but aswewill argue, it misses or disguises contributions to valuation that
we take to be central. This is especially true once we seek to formally in-
tegrate uncertainty into the analysis. In what follows, we will use recur-
sive methods from control theory and economic dynamics to expose
some of the considerations missed or treated inconsistently by the mod-
ular approach.
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A. Impacts of Marginal Changes in Emissions

For pedagogical (and computational) simplicity, we consider a highly
stylized problem to pose some important conceptual challenges.We sup-
pose a single policy maker with a dynamic stochastic objective, but, im-
portantly, we will not suppose that the emissions are set in a socially op-
timal way.We suppose that the controlAt includes emissions Et as its last
entry and that this control can be expressed as an invariant function of the
state vector Xt. The invariance is imposed for simplicity, but the depen-
dence on the state vector will be important in what follows. Even if we
are dubious about whether the emissions will approximate a socially effi-
cient outcome,wewish to allow for some policy responseswhereby future
emissions depend on, say, the magnitude of the temperature anomaly or
on economic damages that emerge in the future. We allow both damages
and the temperature anomaly to be components of the state vector Xt. An
efficient social planner would certainly do this, but the feedback of emis-
sions onto endogenous state variables can occur much more generally. A
more complete analysis would impose a specific market structure and im-
pose explicit constraints on the policy maker recognizing the impliedmar-
ket responses. The plausible assessments of exogenous scenarios arguably
have such considerations in the background, but aswewill see their formal
presence can have an important impact on the construction of the SCC.
Consider the following recursive formulation of social valuation

posed in the absence of model ambiguity or misspecification aversion:

0 = -dV(x) + U(x, a) + m(x, a) � ∂V
∂x

(x) +
1
2
trace

∂2V
∂x∂x0

(x)R x, að Þ0
� �

+ I (x)
ð
V(~x) - V(x)½ �Q(d~x ∣ x),

(5)

where d is the subjective rate of discount used by a fictitious social plan-
ner, the control is defined as a = w(x), and U is the instantaneous contri-
bution to the planner’s continuation value function V. This relation is a
version of a Feynman-Kac equation with a jump component. Intuitively,
it says that the instantaneous utility contribution,U, should exactly offset
the local mean of the discounted continuation value process.

B. A Discrete-Time Representation

For a measure of the net benefits (or minus net costs), we deduce the
marginal impact of an additional unit of emissions into the atmosphere.
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Although we will derive continuous-time formulas, we start with a
discrete-time approximation with e as the gap between time points.
Heuristically, we aim to evaluate the ratio of

MVt = e
d
dEt

E S
∞

j=0
exp -djeð ÞU Xt+je,At+ej

� �
∣ Ft

" #
(6)

to the marginal utility of a numeraire consumption good at a date t = �je
for some integer�j. We include the e on the right side of (6) to view this ex-
pression as a Reimann sumapproximation of an integral over time. Express

MVt = e
d
dEt

E S
∞

j=0
exp -dejð ÞU(Xt+je,At+je) ∣ Ft

" #

= eE S
∞

j=0

exp(-dje)
∂U
∂a

(Xt+je,At+je)
∂w
∂x

(Xt+je) +
∂U
∂x

(Xt+je,At+je)
� �

Rt+je,t∣Ft

 !

and

Rt,t+je =
dXt+je

dEt

is the random response of the future state vector Xt+je to an emissions
pulse Et at date t. This discounted expected value is expressed in utility
units and becomes the SCC once we divide by the marginal utility of
the consumption numeraire. For linear dynamics, as is well known from
impulse response theory, Rt,t+je, j = 0, 1, 2, . . . will not be random. More
generally, there are well-known methods for characterization of nonlin-
ear impulse responses for diffusions.15

C. Two Forms of Impulse Responses

As we have seen, impulse responses are inputs into the SCC computa-
tions. We consider two alternative formulations of these responses, in-
cluding one that is common in scenario analysis and another that is fa-
miliar in dynamic stochastic equilibrium theory.
It is common to run “scenarios” through climate-economic models.

Prominent examples in climate science are the Representative Concentra-
tion Pathway (RCP) scenarios, which are typically specified as exogenous
paths of atmospheric carbon over time. See, for example, Zickfeld et al.
(2013) (fig. 1), for the four main RCPs for carbon concentration. In gener-
ating these and other scenarios, the emissions or the atmospheric carbon
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trajectories are treated as an exogenous input and not as something that is
determined endogenously by themodel. Such scenarios are helpful in un-
derstanding temperature dynamics and making cross-model compari-
sons without attempting to complete or close the dynamical system.
We call these functions “scenario response functions” (SceRFs).
In contrast, for a completely specifieddynamical system, emissions and

atmospheric carbon trajectories are determined endogenously. As these
variables may feed back onto the state of the dynamical system, there
are alternative impulse responses that take into account this endogeneity.
We call these “system response functions” (SysRFs). These impulse re-
sponses are also the ones pertinent to represent the SCC when the full
climate-economic model has a recursive representation of emissions as
a function of theMarkov state. These latter impulses are commonly used
when depicting the implications of dynamic stochastic equilibriummod-
els. In what follows, we will represent both forms of impulse responses.
For simplicity, we will abstract from the jump components, although

there are direct extensions to the more general case in which they are in-
cluded in the analysis.

Exogenously Specified Scenarios

Consider first a SceRF. We suppose a block recursive structure for the
dynamics:

dXt = m(Xt,At)dt + j(Xt,At)dWt

d�Xt = �m(�Xt)dt + �j(�Xt)dWt

(7)

and

At = �w(�Xt),

where Xt includes states used to represent climate dynamics and envi-
ronmental or economic damages. We rewrite the first equation block
in this system as

dXt = m½Xt, �w(�Xt)�dt + j½Xt, �w(�Xt)�dWt

to represent the Markov dynamics in the composite state vector (Xt, �Xt).
Under this specification, the response �Xt+t to an emissions pulse is zero.
In this setting, alternative scenarios are alternative specifications of (�m,

�j, �w). We construct the response functions by introducing emissions
“pulses” at an initial time period.
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Endogenous Emissions

Suppose that the full state dynamics are captured by

dXt = m(Xt,At)dt + j(Xt,At)dWt,

where

At = w(Xt):

A special case of this is when w is computed as the solution to a ficti-
tious social planner’s problem. We represent the state dynamics as

dXt = m½Xt, w(Xt)�dt + j½Xt, w(Xt)�dWt:

This specification allows for emissions to depend on theMarkov state
vector, including endogenous states that capture temperature anoma-
lies or other forms of climate change and economic damages. A marginal
change in emissions at date t induces marginal changes in emissions in
future time periods because of some form of policy or market response.
Suppose, for instance, that economic policies that influence carbon
emissions adapt to temperature anomalies in the future. This will conse-
quently alter the marginal impact of emissions today on future temper-
ature anomalies in ways that are missed by treating emissions as fully
exogenous. For instance, when we study a social planner’s problem,
emissions feed back on the temperature anomaly and mute the response
of the temperature anomaly relative to the flat response featured in the
Matthew’s approximation.
This endogeneity illustrates the “interactions within and feedbacks

acrossmodules”mentioned in the National Academies of Sciences, Engi-
neering andMedicine (2017) report that should be embraced in a “longer-
term research” agenda.

Hybrid Approach

A third approach is a hybrid of the first two. It borrows a well-known
idea frommacroeconomic dynamics sometimes referred to as “big K lit-
tle k.” Consider a prespecified w giving the feedback of a = w(x). Sup-
pose that �Xt = Xt as an equilibrium outcome. Write the dynamical sys-
tem as in equation (7), where

�m(x) = m½x, w(x)�
�j(x) = j½x, w(x)�

:
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We impose the initializationX0 = �X0. A hypothetically small emissions
pulse alters marginally the trajectory ofXt+t but not that of �Xt+t. Although
this approach imposes internal consistency along an equilibrium path,
this consistency is not imposed in the perturbation leading to a different
computation of the SCC. On the other hand, the exogenous scenario is
constructed in a manner that is consistent with an endogenous policy re-
sponse. As part of the equilibrium, this approach takes account of future
market or policy responses when assessing plausible scenarios in a man-
ner that is internally consistent while preserving the exogenous perspec-
tive of an emissions scenario.

D. Markov Solutions

We explore Markov solutions for the second two approaches as the first
one, in an unconstrainedmanner, seems hard to defend fromadynamical
systems perspective. For the marginal change in emissions, we are led to
differentiate the right-hand side with respect to emissions e and to eval-
uate the derivative at e = w(y):

MV(x) =
∂U
∂e

½x, w(x)� + ∂V
∂x

(x) � ∂m
∂e

x, w(x)½ �

+
1
2
trace

∂2V
∂x∂x0

(x)
∂
∂e

R x, w(x)½ �
� �

,

(8)

where V solves equation (5). Recall that e is the last entry of the current
period action a. Given our continuous-time specification, MV(Xt) is a
per-unit time measure of the marginal impact of a change in emissions.
Under a social planner’s solution, MV(x) = 0, unless the emissions solu-
tion is at a boundary.
This same logic can be modified when we proceed under the prospec-

tive of an exogenous emissions scenario. Now, the value function �V de-
pends on both x and �x and satisfies a Feynman-Kac equation that is the
analog to equation (5). A marginal change in e is presumed to only affect
x. The formula for the net benefit in the current state is now

MV(x, �x) =
∂U
∂e

½x, �w(�x)� + ∂�V
∂x

(x, �x) � ∂m
∂e

x, �w(�x)½ �

+
1
2
trace

∂2 �V
∂x∂x0

∂2 �V
∂x∂�x0

∂2 �V
∂�x∂x0

∂2 �V
∂�x∂�x0

26664
37775(x, �x) ∂∂e �R x, �x, �w(�x)½ �

0BBB@
1CCCA,
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where a = �w(�x) and

�R(x, �x, a) ≐
j(x, a)

�j(�x)

" #
j(x, a)0 �j(�x)0½ �,

although under the hybrid approach Xt = �Xt, it will typically be the case
that

MV(x, x) ≠ MV(x):

This follows because of the differences in the implied responses to
emissions pulses.
Although MV or MV are the net benefits (benefits minus costs), the

separation of the two components depends on the details of the plan-
ner’s problem, as we will illustrate in some example economies.
E. Uncertainty Adjustment

To accommodate ambiguity andmisspecification aversion, we introduce
minimization into the construction of the value function using the ap-
proaches described in Section V. The outcome of this minimization gives
an uncertainty adjustment for valuation, which is conveniently represented
as a probability distribution. This probabilistic adjustment emerges be-
cause of our choice to include uncertainty “inside” the decision problem.
Just as external researchers confront uncertainty, so do policy makers.
The discountingmodule in National Academies of Sciences, Engineering
andMedicine (2017)misses this uncertainty adjustment. Because the out-
come of theminimization depends on uncertainty in both the climate dy-
namics and the damage function specification, this identifies important
linkages between the different modules that are missed by the simplistic
discount rate sensitivity analyses often featured in the environmental eco-
nomics literature. Although the choice of d is important, so is the decision
maker’s aversion to ambiguity and potential model misspecification.

Remark 6.1. It is well known in the macroeconomics literature when using ag-
gregate consumption as a numeraire for the purposes of marginal valuation that
the subjective rate of discount is augmented with a growth adjustment that de-
pends in part on the elasticity of intertemporal substitution. Relatedly, in the
macroeconomic-asset pricing literature, investor risk aversion alters discounting
bymaking it stochastic. The discounting depends on the exposure of the cashflow
being discounted to aggregate risk. Cai et al. (2017) include both of these consid-
erations in their treatment of the SCC. Our calculations extend these insights by
constructing probabilistic adjustments for model ambiguity for social valuation.
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Next, we show how tomake the uncertainty adjustment for valuation
that incorporates robustness tomodel ambiguity and potentialmisspecifi-
cation. We modify the construction of MV, but the adjustment to MV is
entirely analogous. To incorporate uncertainty, we modify the Feynman-
Kac equation (5) by incorporating a minimization problem. Formally,
the equation (5) now becomes an HJB equation pertinent for continuous-
time discounted dynamic programming solutions with minimization:

0 = min
f ,

ð
f (u)p(du) = 1

min
g(~x)

min
h

-dV(x) + U(x, a)

+
∂V
∂x

(x) � j(x, a)h½ � + 1
2
trace

∂2V
∂x∂x0

(x)R x, að Þ
� �

+
∂V
∂x

(x) �
ð
m(x, a ∣ u)f (u)p(du) + ya

ð
f (u) log f (u)p(du)

+ I (x)
ð
V(~x) - V(x)½ �g(~x)Q(d~x ∣ x)

+ yr
1
2
h0h + I (x)

ð
1 - g(~x) + g(~x) log g(~x)

 �

Q(d~x ∣ x)
� �

,

where a = w(x). We then use this value function solution in equation (8)
to construct an uncertainty-adjusted version of MV.16

We next consider three example economies: the first features damage
function uncertainty and its resolution, the second features a novel uncer-
tainty decomposition that incorporates robustness to model ambiguity
andmisspecification, and the third investigates the impact of uncertain ad-
vances in the availability of less carbon-intensive technologies. Although
our methods for making uncertainty adjustments for the SCC are more
generally applicable, in all three caseswe feature emission trajectories that
are outcomes of social-planning problems. Even though highly stylized,
each of the three examples illustrates novel impacts of uncertainty.

VII. Uncertain Damages

Our first example features how the perceived unraveling of uncertainty
about economic and environmental damages influences prudent decisions.

A. Capital Evolution

We consider an AK technology for which output is proportional to cap-
ital and can be allocated between investment and consumption. Capital
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in this specification should be broadly conceived to include human cap-
ital or intangible capital. Suppose that there are adjustment costs to cap-
ital that are represented as the product of capital times a quadratic func-
tion of the investment-capital ratio.
As a modeling construct, we first consider “undamaged” counterparts

to consumption, output, and capital. Abstracting from damages, capital
evolves as

dKt = Kt mk(Zt)dt +
It
Kt

� 	
dt -

k

2
It
Kt

� 	2

dt + jk(Zt)dWk
t

� �
,

where Kt is the capital stock and It is investment. The capital evolution
expressed in logarithms is

d log Kt = mk(Zt) +
It
Kt

� 	
-
k

2
It
Kt

� 	2� �
dt -

jjk(Zt)j2
2

dt + jk(Zt)dWk
t :

We let consumption,Ct, and investment, It, sumup to output, which is
proportional to capital:

Ct + It = aKt:

Next, we consider environmental damages. We suppose that the
damage process that we depicted previously shifts proportionately con-
sumption and capital by amultiplicative factor. For instance, the damage-
adjusted consumption is ~Ct = Ct=Nt, and the damage-adjusted capital is
~Kt = Kt=Nt.
Without uncertainty aversion, preferences for the planner are time-

separable with a unitary elasticity of substitution. The planner’s instan-
taneous utility from “damaged consumption” and emissions is given by

(1 - h) log ~Ct + h log Et

= (1 - h)(log Ct - log Kt) + (1 - h)(logKt - logNt) + h log Et,

where we will denote the subjective rate of discount used in preferences
as d.We can think of emissions and consumption as distinct goods, or we
can think of ~Ct as an intermediate good that when combined with emis-
sions determines final consumption.
Given this formulation of the model, there are two noteworthy simpli-

fications that we exploit in both characterizing a solution to the planner’s
problem and solving it numerically.
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Remark 7.1. The model, as posed, has a solution that conveniently separates.
Wemay solve two separate control problems: (i) determines “undamaged” con-
sumption, investment, and capital; (ii) determines emissions, the temperature
anomaly, and damages. It is the latter that is of particular interest. Undamaged
consumption, investment, and capital are merely convenient constructs that al-
low us to simplify the model solution.

Remark 7.2. We obtain a further simplification by letting

eEt = Et iy � Zt

� �
:

We use eEt as the control variable and then deduce the implications for Et.

Remark 7.3. In this illustration, the costs of emissions are given solely by the en-
vironmental and economic damages. In our previous research (Barnett et al.
2020), we followed Bornstein, Krusell, and Rebelo (2017) and Casassus, Collin-
Dufresne, and Routledge (2018) by including reserves as a state variable that
can be augmented by an investment in new discoveries. Although this richer
specification has more substantive interest, the emissions costs implied by this
technology were quite small relative to social costs induced by damages. For this
example, we dropped this additional state variable to simplify further our char-
acterization of the uncertainty implications.

Remark 7.4. AsAnderson et al. (2003) note, there is a preference equivalence be-
tween a concern formodelmisspecification and risk aversion in the recursive util-
ity formulation of Kreps and Porteus (1978) and Epstein and Zin (1989) when
there is a unitary elasticity of substitution as we have assumed here. Our macro-
economicmodel, by design, can capturewhat is called “long-run risk” in themacro-
finance literature in the absence of climate change (Bansal and Yaron 2004).
The long-run risk literature explores the valuation consequence of growth-rate
uncertainty using a recursive utilitymodel of investor preferences. The preference
specification presumes a full commitment to the baseline probabilities, but the ra-
tionale for this commitment appears to be weak when confronting specific forms
of growth-rate uncertainty. The long-run risk literature often imposes a seemingly
large risk aversion parameter that arguably can lookmore plausiblewhen reinter-
preted as a concern of model misspecification. In what follows, we will impose
yr = 5 as our largest value. The implied risk aversion under recursive utility is
21,which is certainly large but typically not dismissed as too large in the empirical
literature on long-run risk. The Brownian drift induced by a robustness concern is
quite sizable for the counterpart adjustment to the consumption/capital dynam-
ics. Borrowing and updating a specification of growth-rate uncertainty ofHansen,
Heaton, and Li (2008), Hansen and Sargent (2021) fit a simple consumption/cap-
italmodel to aggregate data designed tomeasuremacroeconomic growth-rate un-
certainty. Their model is the undamaged version of the model we pose here, with
two shocks. One shock is to the stochastic process for growth-rate productivity,
and the other is an independent shock to only the capital productivity. These
shocks imply two of the consumption shocks in Bansal andYaron (2004).17 The im-
plied drift distortions for the stochastic capital evolution are
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h =
-:715

-:170

" #
 

productivity growth rate shock distortion

capital productivity shock distortion:

Given the relative magnitudes of the adjustments, it is the growth uncertainty
channel that is of particular importance to the decision maker. Because 0.715 is
large in comparison to the unit standard deviation of the shock, one might dis-
miss our choices of yr as being too extreme.

Although we find the comparison between misspecification and risk
aversion in the presence of growth-rate uncertainty to be revealing, an
uncomfortable feature of the long-run risk formulation in themacro asset
pricing literature is that the long-run risks are a “black box.” In what fol-
lows, we will step back from the dual interpretation of risk aversion and
abstract frommisspecification implications for the undamaged consump-
tion or capital evolution. The implied Brownian motion distributions for
the climate dynamics will turn out to be considerably smaller than the
growth-rate shock distortion reported here.

B. HJB Equations and Robustness

We now describe our approach to solving the model and incorporating
concerns about robustness and ambiguity aversion. The uncertainty that
we consider has a single jump point after which the damage function un-
certainty is revealed. This leadsus to compute continuationvalue functions
conditioned on each of the damage function specifications. These continu-
ation value functions then are used to summarize postjump outcomes
when we compute the initial value function. We describe the HJB equa-
tions for each of these steps in what follows. Some further details about
the computations and parameter settings are provided in appendix B.

Postjump Continuation Value Functions

We first compute the value functions pertinent after the Poisson event
that reveals that the damage function curvature is realized. Although
the damage specification uncertainty is resolvedwith this event, there re-
mains climate model uncertainty.
The state variables are the temperature anomaly and the exogenous

Brownian uncertainty. Recall that after the Poisson event, the argument
of the function C is �Yt = Yt - Yt + �y, where t is the date of the Poisson
event. We abuse notation a little bit by letting y denote a potential reali-
zation of �Yt. Because -Yt + �y is time invariant postjump, both Yt and
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�Yt share the same increment. Moreover, �Yt = �y, which is a pertinent
boundary condition for the postjump value functions.
We solve the optimization problems for the continuation value func-

tions fm conditioned on each of the damage functions, m = 1, 2, ... , M.
Even though the optimization problem is well posed whenever y ≥ 0, we
only care about the range in which y ≥ �y. In our computations, we use
20 equally spaced values for gm

3 .
In formulating theHJB equation, we include robustness considerations

as described in SectionVwhere ya and yr are penalty parameters. TheHJB
equation conditioned on a fm is given by

0 = max
~e

min
h

min
qj,SL

‘=1q‘=1
-dfm(y) + h log~e

+
dfm(y)
dy

~eς � h +
(h - 1)

d
g1 + g2y + gm

3 (y - �y)½ �~eς � h +
yr

2
h0h

+
dfm(y)
dy S

L

‘=1
q‘u‘~e +

1
2
d2fm(y)
(dy)2

jςj2~e2

+
(h - 1)

d
g1 + g2y + gm

3 (y - �y)½ �S
L

‘=1
q‘u‘~e +

1
2
(g2 + gm

3 )jςj2~e2
 !

+ yaS
L

‘=1
q‘ log q‘ - log p‘

� �
:

(9)

In this calculation, the pℓ’s are the climate model probabilities, and
the qℓ’s are the alternative probabilities that we consider when making
a robust adjustment. A jump happening in the model is equivalent to an
increase in y to �y. After a jump, the model follows one of the m damage
specifications with y reinitialized at the threshold. For computational
purposes, the fm(�y)’s are a fixed set of numbers imposed in the HJB com-
putation. For a given q and h, the minimization over~e has a quadratic ob-
jective and can be solved quasi-analytically. For a given ~e, the minimiza-
tion problem for h is quadratic and can also be solved analytically.
Similarly, the minimizing qℓ’s satisfy

q*‘ ∝ pa
‘ exp -

1
ya

dfm(y)
dy

u‘~e +
(h - 1)

d
g1 + g2y + gm

3 (y - �y)½ �u‘~e
� �� 	

:

The expression on the right side requires scaling so that the resulting q*‘ ’s
sum toone.Weexploit the resulting formulas in our recursive computations.
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We solve equation (9) for theM continuation value functions that we use
in our analysis.

Prejump Value Function

The prejump value function has a similar structure with two exceptions:
(i) we include the intensity function discussed earlier and (ii) we intro-
duce robustness concerns for both the intensity and distribution over
the alternative gm

3 coefficients. Given these modifications, we include

J (y)S
M

m=1
gmpm fm(�y) - f(y)½ � + yrJ (y)S

M

m=1
pm 1 - gm + gm log gm
� �

pm

in the HJB equation and to minimize with respect to the nonnegative
gm’s. The continuation value functions fm are all evaluated at y = �y in this
HJB equation pertinent for the prejump analysis. This occurs because im-
mediately after a Poisson event is triggered, the damage function C is
evaluated at the threshold point �y.
We now illustrate the impact of uncertainty about the magnitude and

timing of damages from climate change along with uncertainty in the
carbon-temperature dynamics.
Our specifications of aversion to climate model ambiguity and damage

functionmisspecification are expressed in terms of the twopenalty param-
eters, ya and yr. We use these parameters to restrain the search over alter-
native probabilities. The outcome of this search is an uncertainty-adjusted
probability measure that is of interest for two reasons. First, it shows im-
pliedprobabilities that aremost problematic to thedecisionmaker. Should
these appear to be too extreme, then the penalization used in the decision
problem is not severe enough. This type of inspection follows common
practices for robust Bayesian methods following the proposal of Good
(1952). Second, these altered probabilities provide an adjustment for social
valuation implied by model ambiguity and misspecification uncertainty.

C. Robust Adjustments to Climate Model Uncertainty

For the 144 carbon-climate dynamic models, we take as our baseline
probabilities an equal weighting of all of the models. Although it is
straightforward to explore a whole family of values for ya, in the calcula-
tions that followwe set ya = :01. To determinewhether or not this is a rea-
sonable choice of ya to use in our analysis, we examine the implied distor-
tion to the probability distribution of uℓ values resulting from our choice
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as compared with the baseline prior probability distribution. Both the
original prior probability distribution (light gray histogram) and the dis-
torted probability distribution (medium gray histogram) of uℓ values are
given in figure 5. The increased concern about uncertainty over the
geoscientific inputs leads to a shift to the right in the uℓ probability dis-
tribution, highlighting increased concerns about worst-case climate dy-
namics, while still maintaining a spread in the weights on the values of
uℓ and not loading all the weight on the far right tail. We, therefore, view
this shift in the distribution as reasonable to entertain. The impliedmean
distortion is about 0.26 for the unknown parameter u. Although the con-
cerns about geoscientific uncertainty are state dependent, the distortion
in the probability distribution for u remains roughly constant over the
course of our simulations.
There is an additional mean shift in this temperature distribution that

is induced bymisspecification concerns. This shift is negligible for yr = 5
and only about 0.07 for yr = 1. Its impact is much more substantial for
Fig. 5. Histograms of climate sensitivity parameters. The light gray histogram is the out-
come of equally weighting all 144 climate models. The medium gray histogram is the out-
come of the minimization in the recursive formulations of our social planner’s problem. A
color version of this figure is available online.
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the low penalty, yr = 0:3with an impliedmean shift of about 0.23. These
distortions show very little sensitivity to the state dynamics.

D. Robust Adjustments to Damage Function Uncertainty

We next consider the penalty parameter yr that governs concerns about
misspecifying the Poisson jump process, including both the jump inten-
sity and the probability distribution conditioned on a jump. Recall that
we use this process to capture uncertainty of the steepness in the damage
function and timing of when this steepness becomes known to the deci-
sion maker. This uncertainty is only pertinent prior to the realization of
the Poisson event. We report results for three different values of this pa-
rameter yr = 5, yr = 1, yr = :3 in figure 6. The distorted histogram for the
lowest value, yr = :3, is arguably extreme, although the other two choices
seem considerably harder to dismiss.
Fig. 6. Distorted probabilities of damage functions. Baseline probabilities for damage
functions are 1/20 (light gray bars), and the medium gray bars are robust adjustments
to the probabilities induced by model misspecification concerns (left panel: yr = 5, center
panel yr = 1, right panel: yr = 0:3). These histograms are the outcome of recursive minimi-
zations. These distortions are close to being constant as the temperature anomaly in-
creases up to the Poisson jump date. A color version of this figure is available online.
Fig. 7. The left panel shows the probabilities that a jump will occur prior to the date
given on the horizontal axis. The right panel shows the simulated pathway for the temper-
ature anomaly and the points where the anomaly reaches y = 1:5 and �y = 2:0 (dashed
lines). A color version of this figure is available online.
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Finally, in figure 7, we display the probabilities that a jump will occur
prior to the specified dates along the socially efficient trajectory for emis-
sions. Again, we impose yr = 1. The jump is pretty much assured to hap-
pen by about 100 years out, at which point the temperature anomaly is
2 degree Celsius. On so-called business-as-usual trajectories, the jump
probabilities will converge to one much more quickly than what is dis-
played in this figure.

E. Emission and Anomaly Trajectories

To show the effects of concerns about damage function uncertainty on
policy decisions of the planner, we explore the behavior of emissions
for different amounts of aversion to uncertainty. In figure 8, we report
the prejump control laws for~e as a function of the temperature anomaly,
and y, for three values of yr infigure 8. Although the e, in contrast to~e, also
depends multiplicatively on the exogenous state vector, it is the depen-
dence of the temperature anomaly that is of particular interest. For com-
parison, this figure also includes the control law for ~e when the planner
has full commitment to the baseline probabilities.We confine the domain
Fig. 8. Emissions as a function of the temperature anomaly for different penalty config-
urations. The thresholds are y = 1:5 and �y = 2:0. We limit the domain of the function to be
1.1–1.5 because for larger temperature anomalies the Poisson event may be realized. A
color version of this figure is available online.
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of the control laws to temperature anomalies between 1.1 and 1.5 degree
Celsius. After the temperature anomaly reaches 1.5, the probability of a
jump occurring becomes nonzero.
Aswe see, even in advance of gainingmore information about damage

function curvature, the fictitious planner embraces a substantial level of
precaution due to the concerns about the unknown future damage state.
In light of uncertainty concerns, the control law for emissions is about
20% lower when yr = 1 than the control law based solely on the baseline
probabilities. We also see that, as the value of yr is decreased, the caution
is amplified and the choice of emissions is lowered even further. It follows
that the emission trajectories for the lower control laws necessarily reach
the y = 1:5 threshold later starting from a common initial condition.
Although the 1.5- and 2-degree thresholds have dominated much of

the policy discussion, there is debate as to the extent to which these
are firmly backed up by evidence. For this reason, in figure 9, we report
the consequences of shifting the thresholdsweuse in our computations to
y = 1:75 and �y = 2:25. The results for emissions are very similar, except
that in comparison to figure 8, the control laws are shifted to the right
as should be expected because of delay in when the more extreme dam-
age function curvature is manifested.
Fig. 9. Emissions as a function of the temperature anomaly for different penalty config-
urations. The thresholds are y = 1:75 and �y = 2:25. We limit the domain of the function to
be 1.1–1.75 because for larger temperature anomalies the Poisson eventmay be realized. A
color version of this figure is available online.
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Returning to our original specification, when the temperature anomaly
reaches values of y ∈ ½y, �y� = ½1:5, 2�, the Poisson event revealing the full
damage function will at some point be realized. Once it is revealed, the
emissions trajectorieswill jump to either a higher or a lower level depending
on how much damage function curvature is realized. We report the initial
emissions, postjump, infigure 10 as a function ofg3 governing the curvature
of the damage function for large temperature anomalies. Importantly, this
function is highly convex. The realization of a very low damage function
curvature is good news for the planner, resulting in an increase in emissions
in contrast to many of the other damage function specifications that could
be realized. For the damage functions with even a little more curvature,
there is a large reduction in emissions as reflected in the steep slope of the
function of optimal emissions choices for small values of g3. The emissions
choices are increasingly more concentrated at similar values for higher cur-
vature, as seen in the much flatter slope for the larger values of g3.

F. Temperature Anomalies

Given the probabilistic nature of the Poisson event, the emissions and re-
sulting temperature anomalies behave probabilistically, even abstracting
from Brownian motion risk. Although the planner has uncertainty about
Fig. 10. Emissions choices, conditioned on a jump having occurred, for different realized
damage function parameters g3 upon realization of the jump. A color version of this figure
is available online.
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these probabilities, we find it revealing to report the distributions under
the baseline specification.We show the implied temperature anomaly dis-
tributions conditioned on the Poisson event being realized in figure 11.18

We extend the simulation out 100 years to ensure that the no-jump prob-
ability is essentially zero. The vast majority of temperature anomaly val-
ues are less than the 2-degree threshold, though there is a small right tail
going beyond that and a small right peak leading up to it. This relatively
constrained distribution of temperature anomalies is driven largely by the
initial caution exercised by the planner and the continued caution formost
of the damage function realizations. A small fraction of realizations of the
damage function curvature parameter g3 results in higher temperature
anomalies than 2 degrees because the planner is willing to increase emis-
sions after the Poisson event reveals “good news.”

G. Social Cost of Carbon

Weuse the SCC evaluated at the socially efficient trajectory as the barom-
eter for the economic externality induced by climate change. The planner
equates marginal social costs and benefits of emissions. We represent the
marginal benefits in units of damaged consumption so that
Fig. 11. Histogram of possible temperature anomaly values for the scenario, where
ya = 0:01 and yr = 1. The temperature anomaly values are for year 100. The simulation
is done under the baseline probabilities and abstracts from the Brownian motion shocks.
A color version of this figure is available online.
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SCCt =
h ~Ct

� �
(1 - h) ~Et

� � = h Ctð Þ
(1 - h) Ntð Þ~Et

,

where the right-hand side variables are evaluated along the socially effi-
cient trajectory. Taking logarithms, we get

log SCCt = log h - log(1 - h) + log Ct - logNt

� �
- log ~Et:

As we noted previously, “undamaged consumption” evolves in a
manner consistent with a long-run riskmodel familiar frommacro asset
pricing. The logarithm of consumption grows stochastically along a lin-
ear trajectory with variation increasing approximately linearly over the
growth horizon. Our focus instead will be on the behavior of

log h - log(1 - h) - log ~Nt

� �
- log ~Et, (10)

where log ~Nt excludes the exogenous stochastic contribution to log Nt,
which is common across our specifications of the robustness parameter
yr. The variation of this measure over time depends entirely on the tem-
perature anomaly trajectory prior to reaching the lower threshold y. In
the figures that follow, we report this dependence.
Because emissions depend on the temperature anomaly, under the

planner’s solution there is an important distinction between the SceRF
and the SysRF discussed in Subsection IV.C. The SceRF for the tempera-
ture anomaly behaves in accordance with the Matthew’s approximation
whereby emissions today have a permanent impact on the future temper-
ature anomaly. The SysRF incorporates the dependence of emissions on
the temperature anomaly, and it is the SysRF that is embedded in the SCC
computation for the social planner’s problem. Although this dependence
is a direct outcome of the planner’s problem, more generally the plausi-
bility of future emissions trajectories should be tied to the potential policy
responses as we experience the impact of climate change.
To deduce the emissions contribution, we differentiate the HJB equa-

tion (9) with respect to ~e and solve for h=~e:

h

~e
= -

df(y)
dy S

L

‘=1
q‘u‘ -

d2f(y)
(dy)2

jςj2~e + (1 - h)
d

g1 + g2yð ÞS
L

‘=1
q‘u‘ + g2jςj2~e

" #
(11)

for 0 < y. For the planner’s problem, because marginal benefits are equated
to marginal costs, we may use either side of this equation to measure the
emissions contribution to the SCC.
Figure 12 shows the log SCC for the baseline case of yr = ∞, ya = ∞

(linewith squares), and three cases of increasing concerns about damage
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function uncertainty: yr = 5 (line with triangles), yr = 1 (line with dia-
monds), and yr = 0:3 (solid line), where ya = :01 for all three cases. The
results use the socially efficient emissions trajectories for the different
values of yr. The log SCC values are calculated using equations (1)
and (11). In figure 12, we see substantial values of the log SCC in each
case. The magnitudes are amplified as we increase concerns about dam-
age function misspecification (by decreasing the value of yr). In particu-
lar, as a function of the temperature anomaly, the SCC for yr = 1 is be-
tween 20% and 30% higher than when we abstract from robustness
concerns. Although not reported here, changing the thresholds to be
y = 1:75 and �y = 2:25 effectively shifts the curves in figure 12 degrees
to the right with a corresponding smaller SCC at the initial temperature
anomaly of y = 1:1.

H. Summary

In this example economy, the social planner adopts an emissions policy
that is cautious at the outset even though considerably more information
about potential damageswill be available in the future. Thedamage func-
tion uncertainty is resolved by a single Poisson event that becomes more
Fig. 12. Log(SCC) as functions of temperature anomaly under different penalty config-
urations. The SCC is state dependent, and we focus on the domain for which the anomaly
is less than 1.5 degrees. The values in logarithms are translated by the initial period log-
arithm of consumption. A color version of this figure is available online.
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likely the larger the temperature anomaly. Once this event is realized,
there is an asymmetric response. For a small fraction of the damage func-
tions with the most modest curvature, emissions immediately increase.
These are “good news events” and are determined endogenously within
our model. For a much larger fraction of damage function specifications,
the emissions responses continue to be modest, although the magnitude
of these responses depends on the curvature of the damage function that
is revealed. The implied SCC increases by about 20% due to the com-
bined damage function and carbon-climate model uncertainty prior to
the realization of the Poisson event. This impact can be larger or smaller
depending on the social planner’s aversion to ambiguity and model
misspecification. Although acknowledging the simplified nature of the
model used for our computations, our results demonstrate the impor-
tance of accounting not only for different uncertainty channels but also
for the information dynamics when designing optimal climate policy.
VIII. Uncertainty Decomposition

An advantage to the more structured approach implemented as smooth
ambiguity is that it allows us to “open the hood,” so to speak, on uncer-
tainty. We build on the work of Ricke and Caldeira (2014) by exploring
the relative contributions of uncertainty in the carbon dynamics versus
uncertainty in the temperature dynamics. We depart from their analysis
by studying the relative contributions in the context of a decisionproblem,
and we include robustness to model misspecification as a third source of
uncertainty. This latter adjustment applies primarily to the damage func-
tion specification. We continue to use the SCC as a benchmark for assess-
ing these contributions. We perform these computations using the model
developed in the previous section, although the approach we describe is
applicable more generally. For the uncertainty decomposition, we hold
fixed the control law for emissions, and hence also the implied state evo-
lution for damages, and explore the consequences of imposing constraints
on minimization over the probabilities across the different models.
Recall that we use climate sensitivity parameters from combinations of

16 models of temperature dynamics and nine models of carbon dynam-
ics. A parameter u corresponds to climate-temperature model pair. Let
H denote the full set of L = 144 pairs, and let Pj for j = 1, 2, ... J be a par-
tition of the positive integers up to L. The integer J is set to 9 or 16 depend-
ing on whether we target the temperature models or the carbon. For any
given such partition, we solve a constrained version of the minimization
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problem (eq. [4]) by targeting the probabilities assigned to partitionswhile
imposing the benchmark probabilities conditioned on each partition:

min
�qj,j=1,2,:::,J
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where �pj = S‘∈Pjp‘ and

p‘
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‘ ∈ Pj

are the baseline conditional probabilities for partition j. We only mini-
mize the probabilities across partitions while imposing the baseline con-
ditional probabilities within a partition.
We impose yr = ∞when performing thisminimization and let ya = :01

as in Section VII.We perform additional calculationswherewe let yr = 1
and ya = ∞ to target damage function uncertainty rather than temperature
or climate dynamics uncertainty.19 The two states in our problem are x =
(y, n), and we look for a value function of the form V(y, n) = f(y) +
(h - 1)=dn while imposing that ~e = e(y). For each partition of interest, we
construct the correspondingHJB equation that supports thisminimization.
Because we are imposing the control law for emissions but constrain-

ing the minimization, the first-order conditions for emissions will no lon-
ger be satisfied. Recall equation (8) from Section VI with adjustments for
uncertainty. In the absence of optimality, the net benefitmeasureMV(x) is
not zero with the minimization constraints imposed. Consistent with the
SCC computation from the previous section, we use

-
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for our cost contributions in the SCC decomposition.
We obtain the smallest cost measure when we preclude minimization

altogether while solving for the value function and the largest one when
we allow for full minimization with yr = 1 and ya = :01. We have three
intermediate cases corresponding to temperature dynamic uncertainty,
climate dynamic uncertainty, and damage function uncertainty. The small-
est of these measures corresponds to a full commitment to the baseline
probabilities. We form ratios with respect to the smallest measure, take
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logarithms, and multiply by 100 to convert the numbers to percentages.
Importantly, we change both probabilities and value functions in this
computation.
We report the results in figure 13. From this figure, we see that the un-

certainty adjustments in valuation account for 20%–30% of the SCC. The
contributions from temperature and carbon are essentially constant over
time with the temperature uncertainty contribution being substantially
larger. The damage contribution is initially below half the total uncer-
tainty, but this changes to more than half by the time the temperature
anomaly reaches the lower threshold of 1.5 degree Celsius.

Remark 8.1. The uncertainty decomposition we implement depends on the
underlying emissions trajectory we impose. For the reported computations,
we used the planner’s solution for when all uncertainty components are consid-
ered. Because our planner cares about uncertainty, robustness considerations
lead our planner to avoid excessive exposure to uncertainty when possible. In
our particular setting,with uncertainty aversion, the plannerwill prefer to avoid
being vulnerable to damage function uncertainty, which can be achieved in part
by delaying when the potentially steep slope of the damage function becomes
operative. Yet the exposure components of uncertainty can look very different
Fig. 13. Uncertainty decomposition for the logarithm of the marginal value of emissions
(scaled by 100). These computations impose ya = :01 and yr = 1. The figures report log
differences between marginal values of the different components relative to baseline
probability counterparts. The uncertainty partitions account separately for temperature
dynamics ambiguity, carbon dynamics ambiguity, and robustness to damage function
misspecification. A color version of this figure is available online.
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for, say, business-as-usual trajectories of emissions or even socially optimal
trajectories of emissions that do not incorporate concerns about uncertainty.
Thus, our decompositions are of potential interest for emissions trajectories
other than those chosen as part of a solution to an uncertainty-averse planner’s
problem.

IX. Carbon Abatement Technology

Although themodel posed in SectionVII illustrated how the unfolding of
damages should alter policy, the economic model was not designed to
confront transitions to fully carbon-neutral economies. There have been
several calls for such transitions with little regard for the role or impact
of uncertainty. We now modify the model to allow for green technology
in decades to come.
We next consider a technology that is close to the Dynamic Integrated

Climate-Economy (DICE) model of Nordhaus (2017). See also Cai et al.
(2017) and Cai and Lontzek (2019) for a stochastic extension (DSICE) of
the DICE model.20 For our setting, we alter the output equation from
our previous specification as follows:

It
Kt

+
Ct

Kt
+
Jt
Kt

= a,

where

Jt
Kt

=

aϑt 1 -
Et

altKt

� 	� �u Et

aKt

� 	
≤ lt

0
Et

aKt

� 	
≥ lt:

8>>>><>>>>: (12)

To motivate the term Jt, express the emissions-to-capital ratio as

Et

Kt
= alt(1 - it),

where 0 ≤ it ≤ 1 is abatement at date t. The exogenously specified pro-
cess l gives the emissions-to-output ratio in the absence of any abate-
ment. By investing in it, this ratio can be reduced, but there is a corre-
sponding reduction in output. Specifically, the output loss is given by

Jt = aKtϑ(it)u:

Equation (12) follows by solving for abatement it in terms of emissions.21

The planner’s preferences are logarithmic over damaged consumption:
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log ~Ct = logCt - logNt = (log Ct - log Kt) - logNt + logKt:

In contrast to the previous specification, the planner’s value function
for this model is no longer additively separable in (y, k), although it re-
mains additively separable in log damages, n.
For the purposes of illustration, we consider two Poisson events that

reduce both (ϑt, lt), representing technological innovations that decrease
the cost of abatement and improve the emissions-to-output ratio. Thefirst
jump cuts (ϑt, lt) in half, and the second jump sets (ϑt, lt) = (0, 0), indicat-
ing a transition to a purely carbon-neutral economy. Both events have the
same constant intensity, which we set so that the expected arrival time is
20 years. The stochastic specification of damages remains the same as in
the previous models. Not surprisingly, these two new Poisson events
change substantially our calculations. In our discussion that follows,
we highlight a few of the important differences.
The penalty parameters yr and ya are not necessarily transportable

across the different models. Instead, it is sensible to loosen the penalty set-
tings formore complicated economic environments to achieve probability
distortions of comparable magnitudes. In our calculations, we increased
ya = :02,making the implieddistorteddistribution for the climate sensitiv-
ity parameter similar to the one we computed for Section VII. We again
explore three settings for the robustness parameter (yr = 2:5, 5, 7.5), and
we explore which of the three Poisson events is of most concern to the so-
cial planner.AppendixCprovidesmoredetail about the parameter values
we use and the approach to computation.
Figure 14 shows the baseline jump probabilities and the implied dis-

torted probabilities for the three robustness settings. Because the second
Fig. 14. Distorted probability of the Poisson events for technology changes and damages
under different penalty configurations. The simulation uses the planner’s optimal solu-
tion. The left panel shows the distorted jump probabilities for the first technology jump.
The middle panel shows the distorted jump probabilities for the second technology jump.
The right panel shows the distorted jump probabilities for the damage function curvature
jump. The baseline probabilities for the right panel are computed using the state-dependent
intensities when we set ya = yr = ∞. A color version of this figure is available online.
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technological jumpnecessarily follows thefirst, the probabilities reported
in themiddle panel take as a starting point the date atwhich thefirst tech-
nology advance is realized. Comparing the probabilities across the different
plots, it is clear that the probabilistic specification of the first green technol-
ogyadvance is of themost concern to theplanner. Inparticular,whenwe set
yr = 2:5, the probability slanting is arguably extreme implying probabilities
that are about 70% lower than the baseline probabilities. But even when
yr = 5, there is about a 25%reduction in theprobabilities relative to thebase-
line. The reductions are notably smaller for the other two Poisson events.
Given the prospect of advances in green technology, damage function un-
certainty concerns are less concerning to the planner than the technological
uncertainty. Notice that in this economy, the technological advancements
make it much more plausible to avoid the more severe damages.22

Figure 15 reports the probability distortions for the damage function
and climate sensitivity models. Here, we have imposed ya = :02 and
yr = 5:0. Note that the damage function probability distortions are rela-
tivelymodest, consistent with our previous discussion. The climatemodel
distortions, by design, are of similar magnitude as those reported previ-
ously in figure 5.
To summarize, it is the probability of thefirst technological advance that

is of the biggest concern to the social planner. In particular, uncertainty in
the environmental and economic damages induced by climate change is
now less problematic given the potential advances in green technology.
The possibilities of technological improvements appearing sometime in

the future together with the extra ability to mitigate emissions by paying
Fig. 15. Distorted probabilities of damage functions and climate models. These compu-
tations impose ya = :02 and yr = 5:0. Baseline probabilities are given by the light gray bars,
and the medium gray bars are robust adjustments to the probabilities induced by model
uncertainty concerns. The left panel shows the damage function probabilities and the right
panel shows the climate model probabilities. The histograms are the outcome of recursive
minimizations with the distortions calculated at year 40 of the simulation. A color version
of this figure is available online.



302 Barnett, Brock, and Hansen
a cost dampens the strong precautionary behavior of the fictitious plan-
ner that we found before. This finding points out the importance of add-
ing a research and development (R&D) sector for the development of
more productive green technologies and to open the door to policies that
subsidize these sectors as has been explored in other studies.23 Because
R&D investments can be highly speculative, the methods in this paper
would allow for an investigation of the consequent uncertainties in addi-
tion to the ones explored here.

X. Denouement

Wedrawour paper to endby taking inventory ofwhatwe see as the valu-
able messages. During the course of writing and presenting this paper,
we have received a variety of comments, some of which have helped
us set the stage for future research, and others that are based on a poten-
tial misunderstanding about where our research is positioned relative to
other discussions of prospective emissions and the SCC.

A. Quantitative Storytelling

We have used highly stylized models to help us better understand how
uncertainty should affect prudent policy making. There are two interre-
lated reasons for the stylized nature of our exercise: one is to preserve trac-
tability, and the other is to ensure thatmapping frommodel inputs to con-
clusions is transparent. The models we use in this paper have obvious
flaws and limitations, but the resulting analyses are intended to point to
where more ambitious models might contribute to the knowledge base.
Calibrating such highly stylized models is a bit like walking on a tight-

rope. We want the findings to have credibility, with results that are not
driven by perverse or extreme parameter settings. But the models we
are parameterizing deliberately omit elements of both the climate and
economic dynamics. We view this research as an initial step in what we
hope will be a research agenda that will become evenmore substantively
ambitious as we explore increasingly complex dynamic models and the
associated uncertainties.

B. SCC

Our choice in this paper to feature solutions to planners’ problems has
important ramifications for interpreting our measurement of the SCC
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relative to the modular approaches that we discussed previously. Aswe
noted, others have also featured planners’ approaches in part motivated
by the Pigouvian approach for taxing externalities. The planner’s solu-
tion pins down the contingency rule for emissions expressed in terms
of the Markov states. Because the planner internalizes the impact of car-
bon emissions on damages, this has important ramifications for emis-
sions trajectories and the SCCmeasured as a shadow price of emissions
relative to a consumption numeraire. For instance, even the lower-
bound temperature anomaly ywhere the damage function jumps begin
to occur in our analysis will not be crossed for somewhere between 50
and 75 years when simulating this path going forward for our first model.
This pushes the potentially extreme damage realizations far into the
future relative to “business-as-usual” trajectories. The SCCs are sub-
stantial relative to other computations based on solutions to planners’
problems and made larger because of the explicit adjustments for model
ambiguity and robustness to potential misspecification. Recall that our
approach to uncertainty quantification results in a two-parameter charac-
terization depending on the two forms of aversion. Although we re-
ported sensitivity to misspecification aversion in the paper, we show
the impact of additional concerns aboutmodel ambiguity in our accom-
panying online notebook. Increasing ambiguity aversion in ways that are
arguably plausible increases further the uncertainty contribution to about
35%. But these are for an illustrative model with no backup or green
technology, the inclusion of which would alter substantially both the
emissions trajectory and the SCC. In fact, this is what happens in the sec-
ond model we consider. An interested reader can see these additional
results and others in an online notebook we constructed to supplement
this paper.24 We mention such numbers to convey that the planner in
our examples is responding aggressively to climate change, but such
numbers are not good candidates for numerical values to post on EPA
webpages because of the preliminary and stylized nature of the models
including the uncertainty inputs into the computations.25

Although there is path uncertainty in ourmodel because of shocks that
impinge on the dynamical economic system, our approach does not in-
clude the multiple exogenous scenarios and accompanying uncertainty
across the scenarios that are part of the modular approaches. The practi-
cal connection of the computation of the SCC computed from a social op-
timum to taxation is limited because it ignores the presence of other taxes
and other constraints on policy making, including cross-country coordi-
nation. Nevertheless, in our view, the socially efficient allocation remains
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interesting as a benchmark to compare with existing policy outcomes.
Within this context, we find the SCC to be a revealing barometer for
the importance of uncertainty.
As explained in NYSERDA and RFF (2021) and elsewhere, the mod-

ular approach advocated by some for the purposes of regulation is local
in nature. It is computed as a local or a small change around an existing
allocation. Though perhaps suggestive, this approach does not quantify
the impact of global changes in policy. As this local construct of an SCC
is also forward-looking, it depends on the prospective future emissions
and the damages they might induce. The actual computations depend
on emissions scenarios. These are alternative emission pathways, typi-
cally imposed exogenously. The differences in the socially efficient emis-
sions process and the array of emission scenarios can have an important
impact on the SCC calculation. The treatment of uncertainty for this lo-
cal approach typically (a) is static in nature; (b) presumes, at least implic-
itly, a priori probabilities across a small array of scenarios; and (c) is out-
side the decision problem. The outcome is a histogram of SCCs instead of
an SCC that incorporates uncertainty. Thus, this local construct of the
SCC is very different from the one used in our paper, all themore so given
common implementations.26

The methods we describe could be applied to local measures of the
SCC, provided that emissions scenarios would be specified recursively
in ways amenable to the application of dynamic programming methods.
Importantly, there is more to discounting than the choice of a single con-
stant discount rate. As featured in Barnett et al. (2020), these uncertainty
adjustments can be most conveniently represented as a change in the
probabilitymeasure used for evaluation. These types of adjustments lead
naturally to important interactions in the components of the commonly
employed modular approach. SCC measurements designed to incorpo-
rate uncertainty within a decision-making or policy-design framework
cannot be easily modularized.

C. Damage Functions

Our damage function specifications, like many other ones in the inte-
grated assessment literature, should be taken with a grain of salt, so to
speak. They are ad hoc primarily to support tractable illustration. As
we mentioned previously, Pindyck (2013) and Morgan et al. (2017) raise
valid points about the quantitative implications of integrated assessment
models in part because of the ad hoc nature of the damage functions.
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Most recently, Carleton and Greenstone (2021) have a valuable discus-
sion of what is missed by this approach and the need to incorporate a
broader range of empirical evidence. To incorporate such evidence in
an internally consistent manner would require much more elaborate
models than the ones we have used here. Such efforts would also be ac-
companied by a rather substantial degree of model uncertainty.
Our specification of damage possibilities included thresholds that

could trigger more extreme damages. This formulation is intended to in-
clude contributions from environmental tipping points as well as reduc-
tions in economic opportunities, which adds to the challenge of how to
bound uncertainties in meaningful ways. Productive discussions of our
work, while still in progress, included important reminders that the an-
nounced thresholds such as a 2-degree or 1.5-degree anomaly have been
set as rather arbitrary policy guides and are notfirmly groundedwith sci-
entific evidence.We find our probabilistic use of such thresholds coupled
with robustness concerns to be revealing, but there is little doubt that fur-
ther modeling and measurement would strengthen the analysis.
Many recent policy discussions have focused on “carbon budgets,” or

formal limits on the cumulative amount of CO2 emissions that should be
allowed in the future based on specific temperature thresholds. Although
carbon budgets allow for simplicity in communication, they are hard to
defend in the presence of uncertainty as to the timing and magnitude
of temperature responses to carbon emissions. A temperature threshold
can be viewed as a very special type of damage function whereby losses
are negligible prior to reaching the threshold and very severe (infinite) af-
ter the threshold is crossed. But again, uncertainty about the transition
dynamics for future temperature changes as they respond to current
emissions requires a commitment to capture carbon in the atmosphere
to avoid exceeding the threshold. Though we have already noted the
somewhat arbitrary nature of a single temperature threshold, we could
approximate socially efficient responses to such a threshold within the
framework of our models. This could be done by restricting the upper
and lower temperature thresholds to be the same and embracing a steeply
curved damage function. The embracing of a single steeply curved dam-
age function could emerge formally as part of a robustness response to
damage function uncertainty. Specifically, it could be viewed as the out-
come of an extreme form of robustness where degenerate bounds have
been placed on the probabilities over the alternative specifications for
damage function curvature. Thus, a simple extension to our analysis could
approximate a single temperature threshold decision criterion.
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Previous commentaries have expressed validmodeling concerns about
how to capture adaptation to climate change. As adaptation is inherently
a dynamic process, to accommodate it in ameaningful way requires both
evidence and amodel to interpret the evidencewhile opening the door to
an additional source of model uncertainty. Private-sector adaptation to
climate change is an important extension of ours in other analyses, but
we should also expect policies to adapt to observed changes in the envi-
ronment that partially resolve the damage function uncertainty. A mod-
ular approach that treats uncertainty in emissions trajectories to be inde-
pendent of damage function uncertainty seems ill-conceived once we
take amoredynamic interactive perspective. Such considerations suggest
that sensitivity analyses in the specification of baseline probabilities of the
type that we propose would be a revealing way to addressing this poten-
tial dependence.
Ourmodel of damage function “learning” is purposefully simplified to

illustrate some important points. The stark way in which information is
revealed is no doubt extreme, but one needs only to read the recent Inter-
governmental Panel on Climate Change (IPCC) Sixth Assessment Report
to see claims that observed damages to climate are speeding up our abil-
ity to learn about climate change. In our example economy, in spite of the
one-shot nature of the learning, the social planner adopts caution in ad-
vance of becoming more fully informed about damage functions. It is
too costly to delay action until after the uncertainty is resolved. Also,
there is an asymmetric response to the revelation of the damage function
curvature. As with any form of rational learning, there is a potential for
good news. In this case, the good news is that there might be less damage
function curvature than was feared. In our computations, this news re-
sponse is only really notable for a small portion of the good news realiza-
tions.Our purpose in this example is to illustrate the potential importance
of going beyond what some in environmental economics, such as
Nordhaus (2018), call “learn, then act,” and instead to incorporate infor-
mational dynamics into the analysis.
D. Technology

One concern from our model is the use of a Cobb-Douglas specification
and the energy input share of fossil fuels that we use with that specifica-
tion. As in Barnett et al. (2020), we use empirical estimates of the energy
input share from Finn (1995), adjusted by the approximate proportion of
fossil-fuel energy consumption, for our value of the energy input share of
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fossil fuels. This parameter value allows us to match the optimal emis-
sions choice for the solution to the model without climate impacts to
the annual emissions of 10 gigatonnes of carbon per year (GtC/yr) mea-
sured by Figueres et al. (2018). In addition, the value is similar to themean
value for the fossil-fuel income share found recently by Hassler, Krusell,
and Olovsson (2021). Importantly, even with this energy share value, un-
certainty is still of first-order importance. Larger energy input share val-
ues would serve to amplify the importance of uncertainty for the SCC.
Although the Cobb-Douglas specification allows us to simplify the

computations and exploit numerically value function separability, a flaw
in this specification is that it allows for the planner to reduce energy us-
ages freelywithout incurring any abatement costs. Our secondmodel fol-
lows theDICE literature by explicitly introducing abatement into the pro-
duction technology whereby output is reduced when deviating from a
fixed proportions technology. This allows us to further evaluate the im-
pacts of uncertaintywhen adjusting carbon emissions is somewhat costly.
Thismodel opens the door tomore interestingdiscussions of technological
change and exploring the impact of greener technologies thatmight arrive
in the future. Because there is uncertainty about the arrival of cleaner tech-
nologies, this model includes an additional channel whereby uncertainty
has an important impact on the analysis.27

Each of the models we presented was designed to tell an interesting
quantitative story.Althoughwe explored the uncertaintywithin each set-
up, we could have had our decision maker entertain both models simul-
taneously as possibilities. Instead,wefind itmore productive to push fur-
ther the computational boundaries in studying a more ambitious model
of technology with interesting special cases.
XI. Conclusion

Inmanydynamic settings, our understandingof the true underlyingmodel
relevant for economic decision-making is limited because existing evidence
is weak along some important dimensions. As a result, the design and con-
duct of policy occurs in settings in which policy outcomes are uncertain.
We offer the economics of climate change as an example, but there are
many others. We turned to decision theory under uncertainty to serve as
a guide for how we conduct uncertainty quantification as it contributes
to thedesign of policy. Furthermore,we showedhowdifferent forms of un-
certainty affect our quantification, how information about environmental
and economic damages revealed in the future influence current policies,



308 Barnett, Brock, and Hansen
and how different sources of uncertainty contribute to the SCC in the pres-
ence of model and ambiguity and misspecification concerns.
Our analysis in this paper is made simpler here by posing the resource

allocation problem as one faced by a single policy maker or social plan-
ner. To push closer to a realistic policy setting, multiple decision makers
come into play, including alternative policy makers as well as private-
sector consumers and investors. Because these different agents confront
uncertainty from different perspectives, their uncertainty concerns are
expressed in different ways. Moreover, in more realistic policy settings,
political constraints prevent first-best solutions. Although we fully ap-
preciate the need to extend our analysis of uncertainty to address these
modeling challenges, we have little reason to doubt that the uncertainty
considerations should remain as first-order concerns and not be shunted
to the background as they often are in policy discussions.

Appendix A

Carbon and Temperature Model Sets

As mentioned previously, we use 16 models of temperature dynamics
from Geoffroy et al. (2013) and nine models of carbon dynamics models
from Joos et al. (2013). We briefly describe the model experiments used
in these papers, list the models we include in our analysis, and provide
details for the reader to find additional information about these models
and model experiments.
Geoffroy et al. (2013) approximate the temperature dynamics of 16 dif-

ferent models using a two-layer energy-balance model (EBM) to study
properties of AOGCMs. Table A1 lists the model name for each of the
16models used in their and our analysis and direct the reader toGeoffroy
et al. (2013) and Seshadri (2017) for additional details about each of the
models.
The Geoffroy et al. (2013) EBMmodel uses the following specification:

cs
dTs

dt
= F - gTs - ex(Ts - To)

co
dTo

dt
= -x(To - Ts)

F = 5:35 log CO2 - log CO2

� �
,

where Ts is the surface temperature, To is the ocean temperature, CO2 is
atmospheric carbon dioxide, and CO2 is the preindustrial benchmark.
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The construction of F comes from the “Arrhenius” equation (Arrhenius
1896). The EBMmodel is solved for explicit solutions, calibrated to fit the
responses of 16 AOGCMs that participated in the Coupled Model Inter-
comparison Project Phase 5 (CMIP5), and then validated by using the
AOGCM responses to the linear forcing experiments of 1% of CO2 per
year. The parameters they estimate in this simplified representation dif-
fer depending on themodel used in the calibration of the approximation,
providing a measure of the heterogeneity and uncertainty present in
models of temperature dynamics. We use this specification along with
Geoffroy et al.’s estimates of the 16 temperature dynamics models in
our simulations to capture the carbon-to-temperature component of cli-
mate model uncertainty.
Joos et al. (2013) use a carbon cycle-climate model intercomparison

analysis to study the impulse response timescales of Earth System mod-
els. From their analysis, we use the impulse response functions of nine
models based on a 100GtC emission pulse added to a constant CO2 con-
centration of 389 parts per million.28 All of the models we use are Earth
SystemModels of Intermediate Complexity, except for the reduced form
model Bern-SAR. We list the model name for each of the models used in
our analysis in table A2. We direct the reader to appendix A in Joos et al.
(2013) for detailed descriptions of these and othermodels used in their in-
tercomparison analysis.
Table A1
List of Temperature Dynamics Models from Geoffroy et al. (2013)
and Seshadri (2017) Used in our Analysis
Temperature Dynamics Models

BCC-CSM1–1
BNU-ESM
CanESM2
CCSM
CNRM-CM5
CSIRO-Mk3.6.0
FGOALS-s2
GFDL-ESM2M
GISS-E2-R
HadGEM2-ES
INM-CM4
IPSL-CM5A-LR
MIROC
MPI-ESM-LR
MRI-CGCM3
NorESM1-M
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Table A2
List of Carbon Dynamics Models from Joos et al. (2013)
Used in our Analysis
Carbon Dynamics Models

Bern3D-LPJ (reference)
Bern2.5D-LPJ
CLIMBER2-LPJ
DCESS
GENIE (ensemble median)
LOVECLIM
MESMO
UVic2.9
Bern-SAR
Appendix B

Value Function Components for Section VII Model

In Section VII, we discussed a climate-economics HJB equation in the
state variable y. This HJB equation uses a quasianalytical simplification
for the damages state n of the form f(y) - 1 - h=dn, which derive using
the “guess and verify” method. This is part of a larger system that can
be solved with two additional subsystems of equations. The three sub-
system solutions, when combined, give a solution to the composite HJB
equation of the planner.
B.1. Climate-Economics System Parameters

Table B1
Climate-Economics System Parameters
Parameter Value

ς’ [2.23 0 0 ]
g1 .000177
g2 .0044
gm
3

:333(m-1)
19 , m = 1, 2, ... , 20

h .032
d .01
Note: To understand better the implications of the ς specification, note that for a constant
emissions path, the implied standard deviation associated with the coefficient of the Mat-
thew’s approximation is 0.446 at 25 years, 0.315 for 50 years, and 0.223 for 100 years.
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B.2. Consumption-Capital Dynamics

The undamaged version of the consumption-capital model, by design,
has a straightforward solution. We use the “guess and verify” method
to derive a solution for this subsystem, guessing a value function of
uk log k + z(z). The HJB equation for this component is

0 = max
i

min
h

- d uk log k + z(z)

 �

+ (1 - h) log a - ið Þ + log k

 �

+
yr

2
jhj2

+ uk mk(z) + i -
k

2
ið Þ2 + jk(z)0h -

jjk(z)j2
2

� �
+
∂z
∂z

(z) mz(z) + j(z)0h½ � + 1
2
trace j(z)0

∂2z
∂z∂z0

(z)j(z)
� �

:

From this equation, we derive the constant scaling the capital compo-
nent of the value function uk and can see that it must be

uk =
1 - h

d
:

Solving for the first-order conditions, we see that the first-order con-
dition for h is

yrh + jkuk + jz
∂z
∂z

= 0,

and the first-order conditions for the investment-capital ratio is

-(1 - h)
1

a - i

� 	
+ uk 1 - kið Þ = 0:

Notice that the equation for the optimal h is therefore

h = -
1
yr

jkuk + jz
∂z
∂z

� �
and that the investment-capital ratio is constant. Although there are two
solutions for the first-order conditions for i, only one is positive. In our
illustration, we set a = :115 and k = 6:667.
The solution for hwill be state dependent if we allow for jk or jz to de-

pend on z or if there is nonlinearity in the drift specifications. Such depen-
dence is common in the macro-finance literature as a form of stochastic
volatility. In the computations that follow, we will abstract from this de-
pendence and impose linear dynamics for z. We impose that
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mk(z) = -:043 + :04(ik � z)
and

jk = :01 :87 :38½ �dWk
t ,

where dWk is a two-dimensional subvector of the Brownian increment
vector dW. The evolution for the process ik � Z is given by a continuous-
time autoregression:

d ik � Ztð Þ = -:056 ik � Ztð Þdt + 0 :055½ �dWk
t :

In this case, z(z) = z0 + z1ik � z, where z1 satisfies

- dz1 + uk(:04) + z1(-:056) = 0:

The implied solution for h is constant and equal to

h* = -
1
yr

:85

3:58

" #
:

The implied consumption dynamics in this setting are consistent with
the ones given in Hansen and Sargent (2021):29

d log Ct = :0194 + :04Ztdt + :01 :87 :38½ � � dWk
t :

B.3. Contribution of iy � z

There is one remaining contribution to the planner’s HJB equation for
each of our models. Note that although log iy � z is included in the objec-
tive of the planner, this term has not been accounted for in our solution
so far. Thus there is a third contribution, ~z , to the value function that
solves

minh -d~z(z) - h log(iy � z) + ∂~z
∂z

(z)
� �

� mz(z) + jz(z)h½ � + yr

2
h0h

+
1
2
trace jz(z)0

∂2~z
∂z∂z0

(z)jz(z)
� �

= 0:

(13)

To support this value function separation, we impose that iy � Z and
ik � Z are independent processes with iy � Z constructed as a function of
the dWy increments and ik � Z constructed in terms of the dWk increments.
Moreover, we assume that
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ς0jz(z)0
∂~z
∂z

(z)
� �

= 0, (14)

where ~z is the solution to HJB equation [∂~z=∂z(z)].
As a special case, suppose that iy � Zt evolves as Feller square root pro-

cess with mean one:

d(iy � Zt) = -x(iy � Zt - 1)dt +
ffiffiffiffiffiffiffiffiffiffiffiffi
iy � Zt

p
~ς � dWy

t ,

where ~ς � ς = 0. Then the solution of interest to equation (13) can be ex-
pressed as a functional equation in the scalar argument iy � z. Given the
separability, this value function contribution is used for the figures that
we produce.
As part of a “guess and verify” solutionmethod, we add the three value

function components and the three components for the minimizing h to-
gether along with the proposed solutions for the investment-capital ratio
i and for scaled emissions ~e. In fact there may be good reasons to relax as-
sumption (eq. [14]) and combine the climate-economics HJB contribution
and that coming from (eq. [13]) into a single HJB equation to be solved in-
stead of two lower-dimensional functional equations.

Appendix C

Value Function Components for Section IX Model

The HJB equation for the model in Section IX depends on the state vari-
ables y and k. As with the previous model, this HJB equation uses a
quasianalytical simplification for the damages state n, as well as a sepa-
rable subsystem for the exogenous forcing state z. The value function that
solves the HJB equation is of the form J(y, k) - (1=d)n + z(z), which is de-
rived using the “guess and verify”method. The two subsystem solutions,
one forJ(y, k) - (1=d)n andone for z(z), when combined, give a solution to
the composite HJB equation of the planner.

C.1. HJB Equations Details

As was the case for the model in Section VII, this model has pre- and
postjump values functions. These HJB equations are similar in structure
to those shown in the previous model. However, in this case there are
additional layers for two reasons: (i) the potential for two different tech-
nology jumps related to the abatement technology and (ii) the lack of
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separability between y and k due to the functional form of abatement
technology. As a result, we must compute numerous continuation value
functions based on postjump outcomes across multiple dimensions, as
well as a prejump value function. We denote the predamage jump value
functions asJi(y, k) and the postdamage jump value functions as Ji,m(y, k),
where i denotes the number of technology jumps that have already oc-
curred, and thus the values for (lt, ϑt), so that i ∈ f0, 1, 2g. We denote
the intensity rate for each technology jump asℋ, given that it is constant
and equal for each jump scenario.

C.2. Additional Parameters Values and Initial Conditions

Weprovide a table of the consumption-capital parameters and the abate-
ment technology parameters (table C1). Except for the parameters per-
taining to abatement, which were not included in the previous model,
the parameters for this model match those given in appendix B.

Table C1
Abatement Parameters
Parameter Value

H 3.0
(ϑ0, l0) (.0453, .1206)
ℋ .05
Note: The initial values for the abatement technology (ϑ0, l0) are based on the implied val-
ues for 2020 from Cai and Lontzek (2019). We set the initial value of capital so that our ini-
tial gross domestic product (GDP) matches the 2020World GDP value of $85 trillion in the
World Bank National Accounts data. Therefore, K0 = 739:13. We set the initial value of at-
mospheric temperature anomaly to match recent estimates provided by the IPCC. There-
fore, Y0 = 1:1 degree Celsius.

Endnotes

Author email address: Hansen (lhansen@uchicago.edu). An online notebook, which in-
cludes supplemental results and the code used to derive our model solutions, is available
at https://climateuncertaintyspillover.readthedocs.io/en/latest. We thank Shirui Chen,
Han Xu, and Jiaming Wang for the computational support on this research. Zhenhuan
Xie, Samuel Zhao, and especially Diana Petrova provided valuable help in preparing this
manuscript. We benefited from valuable feedback from Fernando Alvarez, Marty Eichen-
baum, Michael Greenstone, Kevin Murphy, Tom Sargent, and Chris Sims during helpful
conversations while preparing this manuscript. Finally, Per Krusell, Ishan Nath, and Mar
Reguant provided thoughtful discussions of earlier versions of the research that helped
us in subsequent revisions of thismanuscript. Financial support for this projectwas provided
by the Alfred P. Sloan Foundation (grant G-2018-11113). For acknowledgments, sources of
research support, anddisclosure of the authors’materialfinancial relationships, if any, please
see https://www.nber.org/books-and-chapters/nber-macroeconomics-annual-2021
-volume-36/climate-change-uncertainty-spillover-macroeconomy.

mailto:lhansen@uchicago.edu
https://climateuncertaintyspillover.readthedocs.io/en/latest
https://www.nber.org/books-and-chapters/nber-macroeconomics-annual-2021-volume-36/climate-change-uncertainty-spillover-macroeconomy
https://www.nber.org/books-and-chapters/nber-macroeconomics-annual-2021-volume-36/climate-change-uncertainty-spillover-macroeconomy


Climate Change Uncertainty Spillover 315
1. The term “model” is used differentially in statistical discussions of uncertainty. For
us, a model conditions on any unknown parameters. Thus, we differentiate a model from
a parameterized family of models.

2. See, e.g., National Academies of Sciences, Engineering andMedicine (2017) for a dis-
cussion and a defense for the modular approach.

3. See Lemoine and Traeger (2016) and Cai, Lenton, and Lontzek (2016) for an example
of an economic analysis with tipping point uncertainty.

4. See Seshadri (2017), Eby et al. (2009), Matthews et al. (2009), and MacDougall et al.
(2017) for additional examples of work in this area.

5. Appendix A provides additional details on the emission pulse responses from Joos
et al. (2013) and the approximating model of Geoffroy et al. (2013), and lists the specific
models we use from these two studies.

6. Ricke and Caldeira (2014) also consider separately two sources of temperature
dynamics.

7. See eq. (5) of Joos et al. (2013) and eqs. (1)–(3) of Pierrehumbert (2014). Pierrehumbert
puts the change in radiative forcing equal to a constant times the logarithm of the ratio of
atmospheric CO2 at date t to atmospheric CO2 at baseline date zero. His figs. 1 and 2 illus-
trate how an approximation of the Earth System dynamics by three exponentials plus a
constant tracks a radiative forcing induced by a pulse into the atmosphere at a baseline
date from the atmosphere works quite well with half-lives of approximately 6, 65, and
450 years.

8. In independent work, Dietz and Venmans (2019) and Barnett et al. (2020) have used
such simplified approximationswithin an explicit economic optimization framework. The
former contribution includes the initial rapid upswing in the impulse response functions.
The latter contribution abstracts from this. Barnett et al. instead explore ways to confront
uncertainty, broadly conceived, while using the Matthews approximation.

9. See Hansen and Sargent (2022) and Cerreia-Vioglio et al. (2021) for decision-theoretic
discussions of the distinct roles for model ambiguity and misspecification concerns.

10. This approach is a continuous-time version of the dynamic variational preferences
of Maccheroni, Marinacci, and Rustichini (2006).

11. In particular, the right-hand side needs to integrate to one over u.
12. See Lemoine and Rudik (2017) who provided a related commentary, arguing why

recursive methods from economic dynamic can open the door to important extensions in
climate economics including parameter learning. Nordhaus (2018) noted the inability of
his framework to address such endogenous feedbacks and unresolved uncertainty, and
also pointed out the potential value to using the type of recursive methods we employ
in our analysis as a way to address such issues.

13. As Cai and Lontzek (2019) noted and encountered in some of their simulations,
when emissions hit a zero constraint, the SCC may reflect a desire for negative emissions
while Pigouvian taxes are needed only to reach the zero emissions outcome.

14. We use units of carbon as opposed to CO2 in our computation, which is in effect a
different choice of units.

15. See, e.g., Borovička, Hansen, and Scheinkman (2014) for a pedagogical treatment of
nonlinear impulse response functions for diffusions and related computations pertinent
for valuation. The calculations relate closely to two well-known mathematical tools, the
method of characteristics and Malliavin differentiation.

16. Including parameter learning requires additional state variables that serve as
sufficient statistics for the unknown parameter vector u under the base probability
specification.

17. These shocks imply two of the consumption shocks in Bansal and Yaron (2004).
Bansal and Yaron also include a shock to stochastic volatility that we abstract from here
and consider implications for changing the intertemporal elasticity of substitution.

18. The number of outcomes in the histograms is determined by the number of values
of gm

3 , which is 20, and the time discretization used in the simulation.
19. Although the robustness adjustment also applies to the climate dynamics, as we saw

in the previous section, this adjustment was small relative to the ambiguity adjustment.
20. Among other stochastic components, the DSICE incorporates tipping elements and

characterizes the SCC as a stochastic process. From a decision theory perspective, DSICE



316 Barnett, Brock, and Hansen
focuses on risk aversion and intertemporal substitution under an assumption of rational
expectations.

21. The link to the specification used in Cai and Lontzek (2019) is then:

jt = lt

ϑt = u1,t

u = u2

mt = it

:

22. To provide further confirmation of this interpretation, the initial emissions are a lit-
tle higher for this model than the ones from Section VII that are depicted in figure 9. They
now range between 6.9 and 8.1, depending on the value of yr.

23. See, e.g., Acemoglu et al. (2016).
24. Our online notebook, which includes these supplemental results and the code used

to derive our model solutions, is available at https://climateuncertaintyspillover.read
thedocs.io/en/latest.

25. As readers of Koonin (2021) and of the challenges by climate scientists to some of its
claims such those noted in Bellanger (2021), we expect rather heterogeneous views about
plausible uncertainty bounds to use in quantitative investigations like ours.

26. The National Academies of Sciences, Engineering and Medicine (2017) report sug-
gests investigating sensitivity to discount rates. With discount rates as low as 2%, some of
the scenario pathsmust be projected far out into the future to compute present discounted
values. It is well known that present-value calculations can be highly sensitive to assump-
tions about the distant future. Of course, recursive methods do not escape this challenge
but address it by positing dynamic evolutions rather than paths.

27. In contrast to our earlier work, Barnett et al. (2020), and some other contributions to
the climate-economics literature, we also abstracted from production or resource extrac-
tion costs for fossil fuels. This was done for pedagogical simplicity because these costs
are typically internalized in the productive process.

28. We thank Fortunat Joos for graciously providing the data for these and other re-
sponse experiments on his website: https://climatehomes.unibe.ch/~joos/IRF_Intercom
parison/results.html.

29. Hansen and Sargent (2021) represent the dynamics in terms of a time unit of 1 quar-
ter instead of 1 year, and they report a different but observationally equivalent orthogonal-
ization of the Brownian increments.
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