
Remarks on Identification, Recovery and Martingales1

Recently, Lars was at a very nice event recognizing important contributions of Steve

Ross. The “recovery theorem” was discussed multiple times. We write this with a bit of

hesitation. We are big fans of Steve Ross’ intellectual contributions, and in no way do we

seek to undermine his profound impact on financial economics. That said, in spite of the

multiple formal analyses of “recovery,” there remains some confusion as was evident in the

conference discussions. We wrote this note to provide some clarity and push the discussion

away from purely technical concerns and back to basic economic considerations. Of course,

the technical issues are also key, but apparently the economic implications are not fully

appreciated. Consistent with Steve’s enthusiasm for research, we aim to provide continued

effort and energy to the discussion of research of interest to Steve and to us.

The discussion of “recovery” in finance is a special case of what econometricians call

identification. Suppose we have at our disposal (hypothetically) Arrow prices over a one

time period in discrete time or over an instant in continuous time. We also impose a

Markov structure on the prices. The question is what can be learned about beliefs and

discounting. We consider the simplest case of a single stand-in or representative consumer.

There are some interesting extensions that look at more general environments and discuss

implications for Arrow prices over multiple time periods, but we will not discuss those in

what follows.

• What is the relation between Hansen and Scheinkman (Econometrica, 2009), Borovička,

Hansen and Scheinkman (Journal of Finance, 2016) and Ross (Journal of Finance,

2015)?

We show how to use versions of Perron-Frobenius theory to extract martingale com-

ponents to valuation using an “operator approach.” We built on a mathematical the-

ory of “multiplicative functionals” and semigroups because they provide a powerful

and elegant framework for studying valuation over multiple time horizons. Roughly

speaking, but fine for the purposes of this discussion, multiplicative functionals and

processes are constructed from an underlying Markov process for which the logarithm

of the process has stationary Markov increments. This mathematical structure builds

on a convenient Markov representation of asset valuation.

Our application of Perron-Frobenius methods to valuation is essentially the same as

that used by Ross. Perron-Frobenius methods target an “eigenvalue” that is largest

1We thank Peter Carr for comments.
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in magnitude, strictly positive, and can be shown to dominate over long investment

horizons. The underlying goal of our research is to provide valuation methodol-

ogy that supports the period by period growth due to productive investments or

stochastic discounting, which captures impatience and aversion to risk or ambiguity.

The Perron-Frobenius theory allows for transient and durable contributions to cash

flows to their valuation, while targeting the long-term impacts. Our application of

this theory is motivated in part by Alvarez and Jermann (Econometrica, 2005) and

more generally by uncertainty contributions to valuation that could have permanent

consequences and contribute to long-term risk return tradeoffs. Viewing stochastic

discount factors as a so-called ”multiplicative process” was a natural starting point.

Within our framework, the Ross result presumes that the martingale contributions

that we sought to characterize were degenerate. The point we make in our paper,

“Misspecified Recovery” is that Ross’ result is not wrong, but that it is based on

some additional restrictions ruled out by many structural models of asset pricing.

• How does identification work in the finite-state Markov chain example?

What follows is essentially lifted from the front end of Borovička, Hansen and Scheinkman.

Suppose that a discrete-time Markov process has n states. For each of the n current

states, there are n states that could occur in the next time period. Thus, there are

n2 Arrow prices. Stack all of the Arrow prices into an n � n matrix A and find the

eigenvalue that is largest in magnitude. In discrete time, it will be positive as will

be the corresponding eigenvector. Raising the one-period Arrow price matrix A to

an integer power gives the implied prices over the time horizon given by the integer

power. Now consider a potential probability matrix that we seek to identify. This

matrix can be expressed in terms of n2 � n free entries as row sums must add up

to one. To relate these to the one-period Arrow prices, we have to take account of

stochastic discounting, for which we discount the future and adjust for uncertainty.

This puts n2 more free parameters to consider. Thus at this abstract level we have

2n2 � n free parameters (subject to some inequality restrictions) to infer from the

n2 Arrow prices. We are in a situation that an econometrician would refer to as

underidentification. Of course, we can address this by imposing more restrictions on

the stochastic discounting as is commonly done.

In this Markov chain environment, consistent with both Ross and Hansen and Scheinkman,

we use the Perron-Frobenius eigenvalue equation to construct a probability measure.

Note that the Perron-Frobenius eigenvalue ρ for an eigenvector e with positive entries
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satisfies:

Ae � ρe.

Form:

pij �
aijej
ρei

where ei is entry i of the vector e. Fill out the matrix P � rpijs. This is a valid

probability matrix, but what have we identified? Ross takes this as a way to infer

investor beliefs, whereas for Hansen and Scheinkman, this is an interesting probability

measure that captures long-term risk return tradeoffs. The point is that without

further restrictions, we cannot claim that these probabilities are the subjective beliefs

of investors. Thus, it is appropriate to focus the discussion on the economic rationale

of the additional restrictions.

Not surprisingly the construction of a probability measure in this manner can be

extended to more general Markovian environments. I will give another example sub-

sequently.

• What about long-term risk return tradeoffs?

There is a very nice earlier paper by Kazemi (Review of Financial Studies, 1992) that

assumes a stationary Markov process for consumption and discounted, time separable

expected utility. Under a power utility, this analysis extends by allowing for a time

trend in logarithms. This is an environment in which recovery as envisioned by Ross

works as the positive eigenvector informs us of the marginal utilities in each realized

state. The eigenvalue captures discounting and possibly trend growth. Kazemi does

not use Perron-Frobenius theory explicitly, but he makes an important observation.

The reciprocal of the one-period holding period return of a (arbitrarily) long-term

discount bond acts as a stochastic discount factor. Arguably, this has strong empirical

implications under rational expectations. It can be tested as in Hansen and Singleton

(Econometrica, 1982) provided that there is a good approximate measurement of this

holding period return. The Kazemi finding carries over to the construction we just

described of a probability measure using Perron-Frobenius theory. It also gives a

formal sense in which long-term risk return tradeoffs are degenerate. See Borovička,

Hansen and Scheinkman for an expanded discussion of this and see Bakshi, Chabi-Yo,

Gao (Review of Financial Studies, in press) for empirical tests.

Alvarez and Jermann (Econometrica) take this insight further by observing that more

generally the stochastic discount factor process will have an additional martingale
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component. They and others seek to measure this component using asset market

data. By design, the Perron-Frobenius approach in Hansen and Scheinkman allows

for this component to be present.

• What about structural models used in macro asset pricing?

Kazemi identifies one important environment in which the Perron-Frobenius approach

identifies investor beliefs. His finding is undermined by i) the presence of stochastic

growth in consumption, ii) allowing investors to have recursive utility beliefs or iii) al-

lowing investors to be averse to ambiguity. Indeed Alvarez and Jermann first discussed

how recursive utility in conjunction with a stationary or trend stationary consumption

process induces a martingale component to stochastic discount factors. This result

is easiest to see in the case of a unitary elasticity of substitution. Hansen (Jour-

nal of Political Economy, 2014), among others, describes the martingale component

induced by some alternative forms of ambiguity aversion. Hansen and Scheinkman

purposefully consider a broader class of Markov valuation models in order to include

a rich collection of structural asset pricing models. As a consequence, the probabil-

ity recovered using Perron-Frobenius theory includes a component that necessarily

absorbs long-term risk return tradeoffs but the recovered probability may differ from

investor beliefs.

• How do these issues play out in continuous-time asset pricing models?

This answer is specialized for the math finance audience and is not essential to under-

standing the economic rationale behind recovery. Of course, mathematical formalism

and clarity is important and required for a full understanding of the issue.

Hansen and Scheinkman’s original formulation was aimed at continuous-time Markov

models. Carr and Wu (Journal of Derivatives, 2012), in their discussion of the Ross

recovery, look specifically at diffusion models. As they note (as did Hansen and

Scheinkman), there are some nontrivial technical conditions that come into play such

as discrete spectra and spectral gaps. While important, these do not seem to be at

the “heart” of what makes recovery work.

Think of asset pricing as implying a family of operators that map payoffs that are

functions of Markov states into prices that are functions of Markov states, similarly

to how we used Arrow prices to form a matrix. Of course, other payoffs are also

of interest, but this payoff collection is sufficiently rich to imply stochastic discount

factor processes. These processes may then be used to price more general claims.
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There is a different operator for each investment horizon. For time-homogeneous

Markov processes, these operators depend on the length of the investment horizon.

As we make the horizon small there is “derivative” operator that emerges as a so-

called generator. For diffusions this is a second-order differential operator consistent

with the discussion in Carr and Wu.

In what follows, we will be deliberately casual with some regularity conditions. To

connect this to diffusions, imagine that we have a Markov diffusion process in some

underlying probability. This could be the probability that governs data generation.

Now suppose that we represent prices using a stochastic discount factor process whose

logarithm has stationary Markov increments, say

d logSt � βspXtqdt� αspXtq � dWt

where W is a possibly multivariate diffusion. We may infer the generator, heuristi-

cally, by computing

Af � lim
tÓ0

1

t
E rStfpXtq|X0 � xs �

�
βs �

1

2
|αs|
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f � Bf � pαsq

1σ1
Bf

Bx

where σσ1 is the diffusion matrix and B is the generator of the Markov process.

Here the local risk free rate is �βs�
1
2
|αs|

2 and the local risk prices for the Brownian

increments are contained in the vector �αs. Consider now a positive martingale with

a comparable structure:

d log �Mt � �
1

2
|α̃mpXtq|

2dt� α̃mpXtq � dWt

We can always form a new probability measure using �M and a new stochastic discount

factor rS � S�M�1. Notice that log rS also has stationary Markov increments. Recovery

or identification has to tie the hands of a researcher to preclude such a construction.

The pair prS,�Mq is indistinguishable from pS, 1q.

Perron-Frobenius theory gives us a way to do this. Following Hansen and Scheinkman,

solve:

E rStepEtq|X0 � xs � exppρtqepxq

for a positive e. (There are often multiple solutions, but Hansen and Scheinkman
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discuss selection of which is the interesting one.) Note that

exppρtqSt
epXtq

epX0q
�M�

t

is a martingale identified by a Perron-Frobenius eigenvalue problem. The process

logM� can be represented as suggested with stationary increments in logarithms.

Without further restrictions, using this martingale to change measure would produce

a probability, but one that does not necessarily govern investor beliefs. Carr and Wu

obtain the Ross recovery by imposing Assumption 6 which is equivalent to restricting

logSt � φpXtq � φpX0q � exppδtq

in our Markov valuation environment. (Carr and Wu work with a process L attributed

to Long that is the reciprocal of S). In this case e � 1
φ

and ρ � �δ and M� � 1. More

generally, however, using M� � 1 to change measure would produce a probability

that is a long-term counterpart to a risk-neutral probability.

• In terms of empirical evidence, Alvarez and Jermann and Bakshi and Chabi-Yo (Jour-

nal of Financial Economics, 2012) compute lower bounds on the martingale compo-

nent under rational expectations but with incomplete data on Arrow prices. They

argue that the martingale contribution is quantitatively important. In addition to

the Bakshi, Chabi-Yo and Gao paper we mentioned previously, there is also a finan-

cial mathematics literature that models directly the evolution of interest rates or the

evolution of stock prices and examines the presence of the martingale component.

On the interest rate side there is the Qin, Linetsky and Nie (2016) paper on bond

prices that concludes “Thus, transition independence and degeneracy of the martin-

gale component are implausible assumptions in the bond market.” Dillschneider and

Maurer (2017) use S&P options and also find evidence that Ross recovery is mis-

specified. We do not doubt that misspecified models are of value (all models are in

some sense misspecifed), but it is still valuable to understand what could underlie

this misspecification.

Jaroslav Borovička

Lars Peter Hansen

Jose Scheinkman
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