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This paper studies alternative ways of representing uncertainty about a law of motion
in a version of a classic macroeconomic targetting problem of Milton Friedman (1953).
We study both “unstructured uncertainty” – ignorance of the conditional distribution of
the target next period as a function of states and controls – and more “structured
uncertainty” – ignorance of the probability distribution of a response coefficient in an
otherwise fully trusted specification of the conditional distribution of next period's target.
We study whether and how different uncertainties affect Friedman's advice to be cautious
in using a quantitative model to fine tune macroeconomic outcomes.
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1. Introduction
“As Josh Billings wrote many years ago, “The trouble with most folks isn't so much their ignorance, as knowing so
many things that ain't so.” Pertinent as this remark is to economics in general, it is especially so in monetary
economics.” Milton Friedman (1965)1
Josh Billings may never have said that. Some credit Mark Twain. Despite, or maybe because of the ambiguity about who
said them, those words convey the sense of calculations that Milton (Friedman, 1953) used to advise against using
quantitative macroeconomic models to “fine tune” an economy. Ignorance about details of an economic structure prompted
Friedman to recommend caution.

We use a dynamic version of Friedman's model as a laboratory within which we study the consequences of four ways
that a policy maker might confess ignorance. One of these corresponds to Friedman's, while the other three go beyond
Friedman's. Our model states that a macroeconomic authority takes an observable state variable Xt as given and chooses a
control variable Ut that produces a random outcome for Xtþ1:

Xtþ1 ¼ κXtþβUtþαWtþ1: ð1Þ

The shock process W is an iid sequence of standard normally distributed random variables. We interpret the state variable
Xtþ1 as a deviation from a target, so ideally the policy maker wants to set Xtþ1 ¼ 0, but the shock Wtþ1 prevents this.

Friedman framed the choice between “doing more” and “doing less” in terms of the slope of the response of a policy
maker's decision Ut to its information Xt about the state of the economy. Friedman's purpose was to convince policy makers
nts and Effects of Changes in the Stock of Money, 1875–1960, Columbia University Press, New York and
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to lower the slope. He did this by comparing optimal policies for situations in which the policy maker knows β and in which
it does not know β.

For working purposes, it is useful tentatively to classify types of ignorance into not knowing (i) response coefficients (β),
and (ii) conditional probability distributions of random shocks (Wtþ1). Both categories of unknowns potentially reside in
our model, and we will study the consequences of both types of ignorance. As we will see, confining ignorance to not
knowing coefficients puts substantial structure on the source of ignorance by trusting significant parts of a specification. Not
knowing the shock distribution translates into not knowing the conditional distribution of Xtþ1 given time t information
and so admits a potentially large and less structured class of misspecifications.

After describing a baseline case in which a policy maker completely trusts specification (1), we study the consequences of
four ways of expressing how a policy maker might distrust that model2:
I.
 A “Bayesian decision maker” does not know the coefficient β but trusts a prior probability distribution over β. (This was
Friedman's way of proclaiming model uncertainty.)
II.
 A “robust Bayesian decision maker” uses operators of Hansen and Sargent (2007) to express distrust of a prior
distribution for the response coefficient β. The operators tell the decision maker how to make cautious decisions by
twisting the prior distribution in a direction that increases probabilities of β's yielding lower values.
III.
 A “robust decision maker” uses either the multiplier or the constraint preferences of Hansen and Sargent (2001) to
express his doubts about the probability distribution of Wtþ1 conditional on Xt and a decision Ut implied by model (1).
Here an operator of Hansen and Sargent (2007) twists the conditional distribution of Xtþ1 to increase probabilities of
Xtþ1 values that yield low continuation utilities.
IV.
 A robust decision maker asserts ignorance about the same conditional distribution mentioned in item (III) by adjusting
an entropy penalty in a way that Petersen et al. (2000) used to express a decision maker's desire for a decision rule that
is robust at least to particular alternative probability models.

Approaches (I) and (II) are ways of ‘not knowing coefficients’ while approaches (III) and (IV) are ways of ‘not knowing a
shock distribution.’ We compare how these types of ignorance affect Friedman's conclusion that ignorance should induce
caution in policy making.3

2. Baseline model without uncertainty

Following Friedman, we begin with a decision maker who trusts model (1). The decision maker's objective function at
date zero is

�1
2

X1
t ¼ 0

exp �δt
� �

E ðXtÞ2jX0 ¼ x
h i

¼ �1
2

X1
t ¼ 0

exp �δ tþ1ð Þ� �
E ðκXtþβUtÞ2jX0 ¼ x
h i

�1
2
x2� α2 expð�δÞ

2½1�expð�δÞ�; ð2Þ

where δ40 is a discount rate. The decision maker chooses Ut as a function of Xt to maximize (2) subject to the sequence of
constraints (1). The optimal decision rule

Ut ¼ �κ
β
Xt ð3Þ

attains the following value of the objective function (2):

�1
2
x2� α2 expð�δÞ

2½1�expð�δÞ�:

Under decision rule (3) and model (1), Xtþ1 ¼ αWtþ1.
In subsequent sections, we study how two types of ignorance change the decision rule for Ut relative to (3):
�
 Ignorance about β.

�
 Ignorance about the probability distribution of Wtþ1 conditional on information available at time t.
3. Friedman's Bayesian expression of caution

This section sets Friedman's analysis within a perturbation of model (1). We study how the decision maker adjusts Ut to
offset adverse effects of Xt on Xtþ1 when he does not know the response coefficient β. Does he do a lot or a little? Friedman's
purpose was to advocate doing less relative to the benchmark rule (3) for setting Ut.
2 Our preoccupation within enumerating types of ignorance and ambiguity here and in Hansen and Sargent (2012) is inspired by Epson (1947).
3 Approaches (I), (II), and (III) have been applied in macroeconomics and finance, but with the exception of Hansen and Sargent (2015), approach (IV) has not.
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We replace (1) with

Xtþ1 ¼ κXtþβtUtþαWtþ1; ð4Þ

where the decision maker believes that fβtg is iid normal with mean μ and variance σ2, which we write

βt �N ðμ;σ2Þ: ð5Þ

An iid prior asserts that information about βt is useless for making inferences about βtþ j for j40, thus ruling out the
possibility of learning.4

Let xn denote a next period value.5 Model (4) and (5) implies that the conditional density for xn is normal with mean
κxþμu and variance σ2u2þα2. Conjecture a value function

V xð Þ ¼ �1
2
ν1x2�

1
2
ν0

that satisfies the Bellman equation:

V xð Þ ¼max
u

� expð�δÞ
2

ν1ðκxþμuÞ2�expð�δÞ
2

ν1σ2u2�expð�δÞ
2

ν1α2�expð�δÞ
2

ν0�
1
2
x2

� �
: ð6Þ

First-order conditions with respect to u imply that

�exp ν1½μðκxþμuÞþσ2u� ¼ 0

so that the optimal decision rule is

u¼ � μκ
μ2þσ2

� 	
x; ð7Þ

which has the same form as the rule that Friedman derived for his static model. Because

μκ
μ2þσ2o

κ
μ
;

caution shows up in decision rule (7) when σ240, indicating how Friedman's Bayesian decision rule recommends “doing
less” than the known-β rule (3).6

4. Robust Bayesians

A robust Bayesian is unsure of his prior and therefore pursues a systematic analysis of the sensitivity of expected utility to
perturbations of his prior. Aversion to prior uncertainty induces a robust Bayesian decision maker to calculate a lower bound
on expected utility over a set of priors, and to investigate how decisions affect that lower bound. We describe two recursive
implementations.

In this section, we modify the Bayesian model of Section 3. The decision maker still believes that βt is an iid scalar
process. But now he doubts his prior distribution (5) for βt. He expresses his doubts about (5) by using one of two operators
of Hansen and Sargent (2007) to replace the conditional expectation operator in Bellman equation (6). We assume that the
decision maker confronts ambiguity about the baseline normal distribution for fβtg that is not diminished by looking at past
history. The decision maker's uncertainty about the distribution of βt is not tied to his uncertainty about the distribution of
βtþ1 except through the specification of the baseline normal distribution. In this paper, we deliberately close down learning
for simplicity. In other papers (e.g., see Hansen and Sargent, 2007, 2010), we have applied the methods used here to
environments in which a decision maker learns about hidden Markov states.
4.1. T2 and C2 operators as indirect utility functions

We define two operators, T2, expressing “multiplier preferences”, and C2, expressing a type of “constraint preferences” in
the language of Hansen and Sargent (2001). A common parameter θ appears in both operators. But in T2, θ is a fixed penalty
parameter, while in C2, θ is a Lagrange multiplier, an endogenous object whose value varies with both the state x and the
decision u.
4 de Finetti (1964) introduced exchangeability of a stochastic process as a way to make room for learning. Kreps (1988, Chapter 11) described de
Finetti's work as a foundation of statistical learning. Kreps offered a compelling explanation of why an iid prior excludes learning. Prescott (1972) departed
from iid risk to create a setting in which a decision maker designs experiments because he wants to learn. Cogley et al. (2008) study a setting with a robust
decision maker who experiments and learns.

5 From now on, upper case letters denote random vectors (subscripted by t) and lower case letters are realized values.
6 See Tetlow and von zur Muehlen (2001) and Barlevy (2009) for discussions of whether adjusting for model uncertainty renders policy more or less

aggressive.
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4.1.1. Relative entropy of a distortion to the density of βt

Let ϕðβ;μ;σ2Þ denote the Gaussian density for β assumed in Friedman's model. The relative entropy of an alternative
density f ðβ; x;uÞ with respect to the benchmark density ϕðβ;μ;σ2Þ is

entðf ;ϕÞ ¼
Z

mðβ; x;uÞlogðmðβ; x;uÞÞϕðβ;μ;σ2Þ dβ

where mðβ; x;uÞ is the likelihood ratio:

m β; x;u
� �¼ f ðβ; x;uÞ

ϕðβ;μ;σ2Þ

� 	
:

Relative entropy is thus an expected log-likelihood ratio evaluated with respect to the distorted density f ¼mϕ for β.

4.1.2. The T2 operator
Let θA ½θ ; þ1� be a fixed penalty parameter where θ40. Where eV ðβ; x;uÞ is a value function, the operator ½T2eV �ðx;uÞ is

the indirect utility function for the following problem:

½T2 eV �ðx;uÞ ¼ min
mZ0;

R
β
mϕ ¼ 1

Z
expð�δÞeV ðx;β;uÞmðβ; x;uÞϕðβ;μ;σ2Þ dβþθ entðmϕ;ϕÞ


 �
¼ Eβ �mðβ; x;uÞexpð�δÞeV ðx;β;uÞ

� 

þθ entð �mϕ;ϕÞ ð8Þ

where ϕðβ;μ;σ2Þ is a Gaussian density and the minimizer is �m. The minimizing likelihood ratio �m satisfies the exponential
twisting formula

�m β; x;u
� �

pexp �expð�δÞ
θ

eV x;β;u
� �
 �

; ð9Þ

with the factor of proportionality being the mathematical expectation of the object on the right, so that �mðβ; x;uÞ integrates
against ϕ to unity. The “worst-case” density for β associated with ½T2 eV �ðx;uÞ is7

f̂ ðβ; x;uÞ ¼ �mðβ; x;uÞϕðβ;μ;σ2Þ: ð10Þ
Substituting the minimizing m into the right side of (8) and rearranging show that the T2 operator can be expressed as

the indirect utility function:

T2 eVh i
x;uð Þ ¼ �θ log E exp �expð�δÞ

θ
eV Xt ;βt ;Ut
� �
 �����Xt ¼ x;Ut ¼ u

� 	
; ð11Þ

where according to (5), βt �N ðμ;σ2Þ. Eq. (8) represents ½T2 eV �ðx;uÞ as the sum of the expectation of eV evaluated at the
minimizing distorted density �f ¼ �mϕ plus θ times entropy of the distorted density �f . Associated with a fixed θ is an entropy

entð �mϕ;ϕÞðx;uÞ ¼
Z

�mðβ; x;uÞlogð �mðβ; x;uÞÞϕðβ;μ;σ2Þ dβ ð12Þ

that for a fixed θ evidently varies with x and u.

Remark 4.1 (Relationship to smooth ambiguity models). The operator (11) is an indirect utility function that emerges from
solving a penalized minimization problem over a continuum of probability distortions. The smooth ambiguity models of
Klibanoff et al. (2005, 2009) posit a specification resembling and generalizing (11), but without any reference to such a
minimization problem. In the context of a random coefficient model like (4), Klibanoff et al. would use one concave function
to express aversion to the risk associated with randomness in the shock Wtþ1 but conditioned on βt, on the one hand, and
another concave function to express aversion to ambiguity about the distribution of βt, on the other hand. The functional
form (11) emerges from the formulation of Klibanoff et al. (2005) if we use a quadratic function for aversion to risk and an
exponential function for aversion to ambiguity about the probability distribution of βt.

4.1.3. The C2 operator
For the T2 operator, θ is a fixed parameter that penalizes them-choosing agent in problem (8) for increasing entropy. The

minimizing decision maker in problem (8) can change entropy but at a marginal cost θ.
For the C2 operator, instead of a fixed θ, there is a fixed level ηZ0 of entropy that the probability-distorting minimizer

cannot exceed. The C2 operator is the indirect utility function defined by the following problem:

½C2eV �ðx;uÞ ¼ min
mðβ;x;uÞZ0

Z
expð�δÞeV ðx;β;uÞmðβ; x;uÞϕðβ;μ;σ2Þ dβ ð13Þ
7 Notice that the minimizing density (10) depends on both the control law u and the endogenous state x. In Section 4.5, we describe how to construct
another representation of the worst-case density in which this dependence is replaced by dependence on an additional state variable that is exogenous to
the decision maker's choice of control u.
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where the minimization is subject to Eβmðβ; x;uÞ ¼ 1 and

entðmϕ;ϕÞrη: ð14Þ
The minimizing choice of m again obeys Eq. (10), except that θ is not a fixed penalty parameter, but instead a Lagrange
multiplier on constraint (13). Now the Lagrange multiplier θ varies with x and u, not entropy.

Next we shall use T2 or C2 to design a decision rule that is robust to a decision maker's doubts about the probability
distribution of βt.

4.2. Multiplier preference adjustment for doubts about distribution of βt

Here the decision maker's (robust) value function V satisfies a functional equation (15) cast in terms of intermediate
objects that we construct in the following steps:
�
 Average over the probability distribution of the random shock Wtþ1 to computeeV ðx;β;uÞ ¼ E½VðκXtþβtUtþαWtþ1ÞjXt ¼ x;βt ¼ β;Ut ¼ u�;
where W �N ð0;1Þ.
�
 Next, use definition (11) to average eV over the distribution of βt and thereby compute the indirect utility function
½T2 eV �ðx;uÞ.
�
 Choose u to attain the right side of

V xð Þ ¼max
u

�1
2
x2þ T2

h i eV x;uð Þ
� 


: ð15Þ

�
 Iterate to convergence to construct a fixed point Vð�Þ.

4.3. Constraint preference adjustment for doubts about distribution of βt

Here we use the same iterative procedure described in Section 4.2 except that we replace the steps described in the
second and third bullet points with
�
 Use definition (13) of C2 to average eV over random βt and thereby compute ½C2�ðeV ðx;uÞÞ.

�
 Choose u to attain the right side of

V xð Þ ¼max
u

�1
2
x2þ C2

h i eV x;uð Þ
� 


: ð16Þ
Appendix B describes how we approximate V and eV in Bellman equations (15) and (16).

4.4. Examples

Figs. 1–3 show robust decision rules that attain the right sides of (15) and (16) for an infinite horizon model with
parameters set at μ¼ 1;σ ¼ 1; δ¼ :1;α¼ :6; κ ¼ :8. We analyze a two period version in Appendix A. Figs. 1, 2 and 4 show
robust decision rules that attain the right side of (15) while Fig. 3 describes decision rules that attain the right side of (16).

Fig. 1 shows decision rules for u as a function of x for θ values of .5 and 1, as well as for the θ¼ þ1 value associated with
Friedman's Bayesian rule (7) with σ240 and the benchmark no-ignorance rule (3) associated with σ2 ¼ 0. With θoþ1,
the robust decision rules are non-monotonic. They show caution relative to Friedman's rule, and increasing caution for
larger values of jxj. For low values of jxj, the robust rules are close to Friedman's Bayesian rule, but for large values of jxj, the
robust rules are much more cautious. For the two-period model analyzed in Appendix A, the worst-case distribution of βt

remains Gaussian. For the infinite horizon model, the worst-case distributions seem very close to Gaussian. Fig. 2 shows
means and variances of worst-case probability densities (in the top two panels) and relative entropies of the worst-case
distributions with respect to the density N ðμ;σ2Þ under the approximating model, all as functions of x. As x increases in
absolute value, the mean of the worst-case distribution of β decreases, indicating that the policy is less effective. As jxj
increases, the worst-case variance increases at first, but eventually it decreases. The shape of entropy as a function of x,
shown in the bottom panel of Fig. 2, sheds light onwhy the worst-case variance ultimately starts decreasing. As jxj increases,
at first entropy increases too, reaching a maximum and then slowly decreasing. Notice how the “wings” in the two robust
decision rules in Fig. 1 and the worst-case variances in Fig. 2 mirror those in the graph of entropy as a function of x in the
bottom panel of Fig. 2. Fig. 3 plots two robust decision rules and stationary distributions of Xt under those decision rules and
the baseline model (1). The graphs are for two levels of σ: σ ¼ :75 and σ ¼ 1:5. The graphs reveal that the ‘wings’ in the
decision rules do not occur too far out in the tails of the stationary distribution.

The robust decision rules that attain the right side of (16) are reported in the top panel Fig. 4 for values of η of .1 and .4, as
well as the non-robust η¼ 0 rule. The middle and bottom panels show the associated worst-case means and variances,



Fig. 2. Top two panels: worst-case means and variances associated with decision rules that solve maxu�1
2x

2þ½T2�ðeV ðx;uÞÞ for various θ's; lower panel:
entropy as a function of x.

Fig. 1. The β known and Friedman's Bayesian decision rules (the two linear rules), and also robust decision rules that solve maxu�1
2x

2þ½T2�ðeV ðx;uÞÞ for two
values of θ.
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which for a given entropy are constant functions of x. Here, with fixed entropy, the decision rules seem to be linear.8 They
are flatter (more cautious), if the entropy is higher. The minimizing player responds to an increase in entropy by increasing
the variance and decreasing the mean of βt, making policy both less effective and more uncertain. The robust (maximizing)
decision maker responds by making u less responsive to x. The constraint-preference robust Bayesian decision rule looks
like Friedman's, except that it is even more cautious because of how the robust Bayesian decision maker acts as if the mean
of βt is lower and the variance of the βt is larger than does Friedman's Bayesian decision maker.9,10
8 In the two-period version of the model analyzed in Appendix A we can prove that they are linear.
9 This behavior is familiar from what we have seen in other robust decision problems that we have studied: in the sense that variance (noise about β)

gets translated into a mean distortion.
10 Recall formula (7) for Friedman's Bayesian decision rule and notice that

∂
∂μ

μκ
μ2þσ2

� 	
¼ κðσ2�μ2Þ

ðμ2þσ2Þ2
;

which says that depending on the sign of σ2�μ2, the absolute value of the response coefficient may increase or decrease with an increase in μ. Notice that
we have set μ¼ σ in our numerical, which makes this effect vanish. When σ2 ¼ 0, an increase in μ causes the absolute value of the slope to decrease – the
policy maker does less because the policy instrument is more effective.



Fig. 4. Top panel reports the known-β decision rule, Friedman's Bayesian decision rule, and robust decision rules that attain maxu�1
2x

2þ½C2�ðeV ðx;uÞÞ for
different entropies η; bottom two panels report worst-case means and variances of βt as functions of x. For bigger η, decision rules are flatter, worst-case
means lower, and worst-case variances larger.
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Fig. 5 shows that the Lagrange multiplier θ for the constraint preferences in (16) increases apparently quadratically with
jxj. For a given entropy η, the increase in the “price of robustness” θ as jxj increases causes the “wings” that in the robust (15)
decision rules displayed in the top panel of Fig. 1 to disappear in the (16) decision rules displayed in Fig. 4.
Remark 4.2. In applying the C2 operator in recursion (16), we have imposed a fixed entropy constraint period-by-period.
That specification caused the “wings” associated with recursion (15) to vanish. If instead we had imposed a single
intertemporal constraint on discounted entropy at time 0 and solved that entropy constraint for an associated Lagrange
multiplier θ, it would give rise to the fixed-θ decision rule associated with the T2 recursion (15) having the “wings”
discussed above. Our discussion of how entropy varies with x in the fixed θ rule would then pertain to how a fixed
discounted entropy would be allocated across time and states conditioned on an initial realized state X0.
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2þ½C2�ðeV ðx;uÞÞ for two values of
entropy.

L.P. Hansen, T.J. Sargent / Journal of Monetary Economics 69 (2015) 97–113104
4.5. Another representation of worst-case densities

In Section 4.1.2, we reported formula (10), which expresses a worst case m as a function of the control u and the state x.
This worst-case density emerges from a recursive version of the max–min problem that first maximizes over u, then
minimizes over m.11,12 In this section, we briefly describe some analytical dividends that accrue when it is possible to form
an alternative representation of a (sequence of) worst-case densities, an outcome that requires that it be legitimate to
replace max–min with min–max. We presume that current and past values of fðWt ;βt�1Þg along with an initial condition for
X0 are observed when the date t control Ut is decided.

The issue under consideration is whether it is possible to construct a Bayesian interpretation of a robust decision rule.
This requires a different representation of a worst-case distribution than provided by formula (10), one that takes the form
of a sequence of probability densities for βt ; tZ0. When enough additional assumptions are satisfied, this is possible. Then it
can be shown easily that the robust decision rule is an optimal decision rule for an ordinary Bayesian who takes this
sequence of distributions as given.13 In the applications described here, this sequence of worst-case distributions of βt has
some interesting features. In particular, although the baseline model asserts that the sequence βt ; tZ0 is iid, they are in
general not iid under a worst-case model. Instead the worst-case distribution for βtþ1 depends on current and past
information.

4.5.1. Replacing max–min with min–max
A key first step in constructing such a worst-case model that supports such a Bayesian interpretation of a robust rule

involves verifying that exchanging the order of the minimization and maximization in problem (8) or (13) leaves the
associated value function unaltered. If this is true, a Bellman–Isaacs condition for the associated zero-sum, two-player game
is said to be satisfied. That makes it possible to construct a representation of the worst-case m of the form:

mnðβ; xÞ ¼ �m½β; �uðxÞ; x�; ð17Þ
where �uðxÞ is the robust control law. Given mn, the robust decision rule �u solves a dynamic recursive version of Friedman's
Bayesian problem, except that mnðβt ; xÞϕðβt ;μ;σ2Þ replaces the baseline model ϕðβt ;μ;σ2Þ.

4.5.2. Application of “Big K, little k”
For our purpose here, it is troublesome that the state variable Xt, which appears as x in (17), is endogenous in the sense

that its future values are partly under the control of the maximizing decision maker. This can be avoided by using a version
of the macroeconomist's “Big K, little k” trick to represent the worst-case density in a way that puts it beyond influence of
the maximizing player.14 The idea is to start by recalling that ordinary dynamic programming is a recursive method for
11 The minimization is implicit when we use an indirect utility function expressed by applying a T2 or C2 operator, as we do in recursions (15) and (16).
12 The type of analysis sketched in this section is presented in more detail in the context of infinite horizon linear-quadratic models in Hansen and

Sargent (2008, Chapter 7).
13 Establishing that a robust decision rule can be interpreted as an optimal decision rule for a Bayesian with some prior distribution is needed to

establish that a robust decision rule is “admissible” in the sense of Bayesian statistical decision theory.
14 This approach is used in Hansen and Sargent (2008, Chapters 7,10,12,13).
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solving a date zero problem originally cast in terms of choices of sequences. When the Bellman–Isaacs condition is satisfied,
we can use an analogous mapping between date 0 problems cast in terms of sequences and problems expressed recursively
a la dynamic programming applies to two-person zero sum games like the ones we are studying. That reasoning lets us also
exchange orders between maximization minimization at date 0 for a robust control problem cast in terms of choices of
sequences. We accomplish by inventing a new exogenous state variable process fZtg whose evolution is the same as that of
Xtþ1 “along an equilibrium path”, meaning “when the robust control law is imposed”. But now fZtg is beyond the control of
the maximizing agent. This lets us construct a sequence of densities fmnðβ; ZtÞg relative to the normal baseline for βtþ1. The
associated sequence of densities ex post justifies the robust decision rule as solving a version of Friedman' Bayesian problem.
Here ex post means “after the outer minimizing agent has chosen its sequence fmng of worst-case probability distortions.”

5. Uncertainty about the shock

In this section, we again apply a min–max approach in the spirit of Wald (1939), but now we use it to describe a decision
maker's way of representing and coping with his doubts about the specification of the shock distribution. The decision
maker regards (1) as his baseline model. But because he does not trust the implied conditional distribution for Xtþ1, the
decision maker now takes the iid normal model for W only as a benchmark model that is surrounded by other distributions
that he suspects might prevail. Perturbed shock distributions can represent many alternative conditional distributions for
Xtþ1. For example, a shift in the mean of W that is a function of Ut and Xt effectively changes the statistical model (1) in ways
that can include nonlinearities and history dependencies.

5.1. Multiplier preferences

We suppose that the decision maker expresses his distrust of the model (1) by behaving as if he has what Hansen and
Sargent (2001) call multiplier preferences. Let mtþ1 ¼Mtþ1=Mt be the ratio of another conditional probability density for
Wtþ1 to the density Wtþ1 �N ð0;1Þ in the benchmark model (1). (We apologize for recycling the mð�Þ notation previously
used in Section 4 but trust that it will not cause confusion.) Let entt � E ðMtþ1=MtÞ logMtþ1� log Mtð ÞjF t

� �
be the entropy of

the distorted distribution relative to the benchmark distribution associated with model (1).
Let θ be a penalty parameter obeying θ4α2. Define

T1V
h i

x;uð Þ ¼ min
mZ0;

R
mðwÞψ ðwÞdw ¼ 1

Z
m wð Þ κxþβuþαw

� �þθm wð Þlogm wð Þψ wð Þ dw

¼ �θ log
Z

exp �1
θ
V κxþβuþαw
� �
 �

ψ wð Þ dw: ð18Þ

where m depends explicitly on w and implicitly on (x,u) and ψ is the standard normal density. Think of mðWtþ1Þ as a
candidate forMtþ1=Mt . The minimizing distortion mn that attains the right side of the first line of (18) exponentially tilts the
Wtþ1 distribution towards lower continuation values by multiplying the normal density for Wtþ1 by the likelihood ratio:

mn wð Þ ¼
exp �1

θ
V κxþβuþαw
� �
 �

E exp �1
θ
V κxþβuþαWtþ1
� �
 �

jx;u
� 	: ð19Þ

A Bellman equation for constructing a robust decision rule for U is

V xð Þ ¼max
u

�1
2
x2þexp �δ

� �
T1 V½ � x;uð Þ: ð20Þ

To solve this Bellman equation, guess a quadratic value function

V xð Þ ¼ �1
2
ν2x2�

1
2
ν0:

Then

T1V
h i

x;uð Þ ¼ �θ log
Z

exp
ν2
2θ

ðκxþβuþαwÞ2

 �

ψ wð Þ dw�1
2
ν0

¼ �1
2
ν2ðκxþβuÞ2�1

2
ν0�θ log

Z
exp

αν2
θ

κxþβu
� �

wþ ν2
2θ

ðαwÞ2

 �

ψ wð Þ dw:

We can compute the worst-case mn-distorted distribution forWtþ1 by completing the square. The worst-case distribution is
normal with precision:

1�ν2α2

θ
¼ θ�ν2α2

θ
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where we assume that θ4ν2α2. Notice that the altered precision does not depend on u. The mean of the worst-case
distribution for Wtþ1 is

θ
θ�ν2α2

� 	
αν2
θ

� 	
κxþβu
� �¼ αν2

θ�ν2α2

� 	
κxþβu
� �

;

which depends on (x,u) via ðκxþβuÞ. A simple calculation shows that

T1V
h i

x;uð Þ ¼ �1
2
ν2ðκxþβuÞ2�1

2
ν0�

1
2

α2ðν2Þ2
θ�ν2α2

" #
ðκxþβuÞ2þθ

2
log θ�ν2α2� �� log θ
� �

¼ �1
2

θν2
θ�ν2α2

� 	
ðκxþβuÞ2þθ

2
log θ�ν2α2� �� log θ
� ��1

2
ν0:

The objective function on the right side of (20) is quadratic in ðκxþβuÞ and thus the maximizing solution for u is

u¼ �κ
β
x; ð21Þ

which is same control law (3) that prevails with β known and no model uncertainty. Notice also that since the log function is
concave

log θ�ν2α2� �� log θr�ν2α2

θ
;

and thus

θ
2
log θ�ν2α2� �� log θ
� �

r�1
2
ν2α2:

Under control law (21), the implied worst-case mean of Wtþ1 is zero, but its variance is larger than its value 1 under the
benchmark model (1). The value function satisfies

�1
2
ν2x2�

1
2
ν0 ¼ �1

2
x2þexpð�δÞθ

2
log θ�ν2α2� �� log θ
� ��expð�δÞ

2
ν0:

Thus, ν2 ¼ 1 and

ν0 ¼ � expð�δÞθ
½1�expð�δÞ�

� 	
log θ�ν2α2� �� log θ
� �

Z
expð�δÞ

½1�expð�δÞ�

� 	
ν2α2

for α2oθo1. The expression on the right side is the constant term in the value function without a concern for robustness.
Relative to the baseline model, the worst-case model decreases the shock precision but does nothing to the mean. The
contribution of discounted entropy to ν0 is

� expð�δÞθ
1�expð�δÞ

� 	
log θ�α2� �� log θ
� �� expð�δÞθα2

1�expð�δÞ


 �
:

The remainder term

expð�δÞθα2

1�expð�δÞ


 �
is the constant term for the discounted objective under the worst-case variance specification.

5.2. Explanation for no increase in caution

The outcome of the preceding analysis is that Section 2 decision rule (3) is robust to concerns about misspecifications of
the conditional distribution of Wtþ1 as represented by the T1 operator. An important ingredient of this outcome is that the
worst-case model does not distort the conditional mean of W. Consider the extremization problem

max
u

min
v

�1
2
x2�exp �δ

� �ν2
2
ðκxþβuþαvÞ2�exp �δ

� �ν0
2
þexp �δ

� �
θ
v2

2
; ð22Þ

where v is a mean shift in the standard normal distribution for w. The minimizing choice of v potentially feeds back on both
u and x. Why is the minimizing mean shift zero? When θ4α2, the minimizing v solves the first-order condition:

�αðκxþβuþαvÞþθv¼ 0; ð23Þ
while simultaneously u satisfies the first-order condition:

�βðκxþβuþαvÞ ¼ 0: ð24Þ
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In writing the first-order conditions for u, we can legitimately ignore terms in dv=du because v itself satisfies first-order
condition (23). Thus, under a policy that satisfies (24), a nonzero choice of v would leave the following key term in the
objective on the right side of (22) unaffected:

�exp �δ
� �ν2

2
ðκxþβuþαvÞ2 ¼ 0;

but it would add an entropy penalty, so there is no gain to setting v to anything other than zero.
In summary, our “type III” specification doubts about the conditional distribution of Wtþ1 do not promote caution in the

sense of ‘doing less’ with u in response to x. The minimizing agent gains nothing by distorting the mean of the conditional
distribution of the mean of Wtþ1 and therefore chooses to distort the variance, which harms the maximizing agent but does
not affect his decision rule. In Section 6, we alter the entropy penalty to induce the minimizing agent to alter the worst-case
mean of W in a way that makes the u-setting agent be cautious. But first, it is helpful to study in greater depth how the
decision maker in the present setting best sets u to respond to possibly different mean distortions v that might have been
chosen by the minimizing agent, but that were not.

5.3. Prologenomenon to structured uncertainty

To prepare the way for the analysis in Section 6, we study best responses of u to “off equilibrium” choices of v in the two-
player zero-sum game (22). Thus, consider a v that instead of satisfying the v first-order necessary condition (23) takes the
arbitrary form:

v¼ ξxxþξuuþξ0; ð25Þ
where the coefficients ξx; ξu; ξ0 need not equal those implied by (23). Such an arbitrary choice of v implies the altered state
evolution equation:

Xtþ1 ¼ αξ0þðκþαξxÞXtþðβþαξuÞUtþαfWtþ1; ð26Þ
where fWt is normally distributed with mean zero under an altered distribution for Wtþ1 having mean v instead of its value
of 0 under the baseline model. It is possible for the u-setting decision maker to offset the effects of both v and x on xn by
setting u to satisfy

κxþβuþαv¼ 0; ð27Þ
provided that ξua�β=α. This response by the u-setting agent means that the v setting agent achieves nothing by using the
arbitrary choice (25), but that choice incurs a time t contribution to an entropy penalty of the form

exp �δ
� � 1

2θ
ðξxxþξuuþξ0Þ2; ð28Þ

harming the v-setting agent. This deters the minimizing agent from setting (25).15 The term ð1=θÞðξxxþξuuþξ0Þ2
contributing to the entropy penalty for the arbitrary choice of v distortion (25) persuades the v-setting minimizing player
to prefer not to choose that arbitrary v and instead to set v¼0 in the zero-sum two-player game (22).

But what if the decision maker wants to perform a sensitivity analysis of perturbations to his baseline model (1) that he
insists include particular alternative models having the form (26). He wants some way to tell the minimizing agent this, an
ability that he lacks in the framework of the present section. For that reason, in Section 6, we consider situations in which
the u-setting decision maker wants his decision rule to be robust to perturbations of the baseline model (1) that among
others include ones that can be represented as mean distortions having the form of (25). We achieve that goal by adjusting
the entropy penalty with a term involving ð1=θÞðξxxþξuuþξ0Þ2.

6. Structured uncertainty

In this section, we induce Friedman-like caution by making it cheaper for a minimizing player to choose a conditional
mean v of Wtþ1 of the arbitrary form (25). Like Petersen et al. (2000), we do this by deducting the discounted relative
entropy of the model perturbation v¼ ξxxþξuuþξ0 from the right side of the entropy constraint. We can then convert θ
into a Lagrange multiplier by setting it to satisfy the adjusted entropy constraint at some initial state.

Although this adjustment to the entropy constraint makes it feasible for the minimizing player to set the worst-case
mean v according to (25), the minimizing player will usually make some other choice. But making the choice (25) feasible
ends up altering the robust decision rule in a way that produces caution.
15 Briefly consider the case ξu ¼ �β=α which implies that

κxþβuþαv¼ ðκþαξxÞx;
which means that now u shows up only in the penalty term (28). The best response for the u-setting player is to set u to be arbitrarily large, making (25) a
very unattractive choice for the v-setting player.
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We now assume that the decision maker wants to explore, among other things, the consequences of parameter changes
that reside within a restricted class with the form:

ðξxxþξuuþξ0Þ2r ½1 x u�H
1
x

u

264
375: ð29Þ

Parameters that satisfy this restriction can be time varying in ways about which the decision maker is unsure. To
accommodate this type of specification concern, we adjust the entropy penalty by using a new operator S1 defined as

S1V
h i

x;u;θ
� �¼ T1

h i
x;u;θ
� ��θ

2
1 x u½ �H

1
x
u

264
375

where H is a positive semidefinite matrix and where we now denote the explicitly the dependence on θ. To find a robust
decision rule we now solve the Bellman equation:

V x;θ
� �¼max

u
�1
2
x2þexp �δ

� �
S1V
h i

x;u;θ
� �

: ð30Þ

We now guess a value function of the form:

V x;θ
� �¼ �ν2ðθÞ

2
x2�ν1 θ

� �
x�ν0ðθÞ

2

The first-order condition for u implies that

�exp �δ
� � βθν2

ðθ�ν2α2Þ


 �
κxþβu
� ��exp �δ

� �
θ 0 0 1½ �H

1
x

u

264
375¼ 0:

which implies a robust decision rule

u¼ F x;θ
� �¼ � ν2ðθÞβκþ θ�ν2ðθÞα2

� �
h32

ν2ðθÞβ2þ θ�ν2ðθÞα2
� �

h33

" #
x� ν1ðθÞβþ θ�ν2ðθÞα2

� �
h31

ν2ðθÞβ2þðθ�ν2ðθÞα2Þh33

" #
; ð31Þ

where hij is entry (i,j) of the matrix H. The value function satisfies

V x;θ
� �¼ �1

2
x2þexp �δ

� �
T1V
h i

x; F x;θ
� �

;θ
� ��θ

2
1 x F x;θ

� �� �
H

1
x

FðX;θÞ

264
375:

6.1. Robustness expressed by value function bounds

To describe the sense in which decision rule (31) is robust, it is useful to construct two value function bounds.

6.1.1. Two preliminary bounds
Given a decision rule u¼ FðxÞ and a positive probability distortion mðwjx;uÞ with

R
mðwjx;uÞψ ðwÞdw¼ 1, we construct

fixed points of two recursions. The fixed point ½U1ðm; FÞ�ðxÞ of a first recursion

U1 m; Fð Þ
h i

xð Þ ¼ �1
2
x2þexp �δ

� � Z
m w x; F xð Þ

�� ÞU1 m; F½ � κxþβF xð Þþαw
� �

ψ wð Þ dw
�

equals discounted expected utility for a given decision rule F and under a given probability distortion m. The fixed point
½U2ðm; FÞ�ðxÞ of a second recursion

U2 m; Fð Þ
h i

xð Þ ¼
Z

m½wjx; F xð Þ�logm½w x; F xð Þ
�� �ψ wð Þ dw�1

2
1 x u½ �H

1
x

u

264
375

þexpð�δÞ
Z

m½wjx; FðxÞ�U2½m; F�½κxþβFðxÞþαw�ψ ðwÞ dw; ð32Þ

equals discounted expected relative entropy net of the adjustment for concern about the particular misspecifications m of
the type (29). The probability distortion m implies an altered state evolution: given a current state x and a control u, the
density for Xtþ1 ¼ xn is

1
α
m

xn�κx�βu
α


 �
ψ

xn�κxþβu
α


 �
:
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Thus,m alters how the control u influences next period's state. As a particular example, the density for Xtþ1 could be normal
with mean

ðκþαξxÞxþðβþαξuÞu
and variance α2. Whenever inequality (29) is satisfied

U2ðm; FÞ�ðxÞr0 ð33Þ
for all x.

Of course, in general we allow for a much richer collection of m's than the one in this example. Inequality (29) holds for
each (x,u), but there will be other m's that are statistically close to these deviations for which inequality (33) is also satisfied.
Inequality (33) makes comparisons in terms of conditional expectations of discounted sums or relative entropies, which are
weaker than the term-by-term comparisons featured in inequality (29):

Z
m½w x; F xð Þ

�� �log m½w x; F xð Þ
�� �ψ wð Þ dw�1

2
1 x u½ �H

1
x

u

264
375r0:
6.1.2. Value function bound
We now study the max–min problem used to construct V. Using the operators U1 and U2,

½U1ðm; FθÞ�ðxÞZVðx;θÞ
for all m and x such that

½U2ðm; FθÞ�ðxÞr0

where FθðxÞ ¼ Fðx;θÞ is a robust control law associated with θ. To make the lower bound Vðx;θÞ as large as possible, we solve

V ðxÞ ¼max
θ

Vðx;θÞ:

For a given initial condition x, we let F denote the robust control law associated with the maximizing θ. Then

½U1ðm; F Þ�ðxÞZV ðxÞ
for all m and x such that

½U2ðm; F Þ�ðxÞr0:

By the Lagrange multiplier theorem

½U1ðm; F Þ�ðxÞ ¼ V ðxÞ;
which indicates that the bound is sharp at x¼ x. In this way, we have produced a robustness bound for the decision rule F .16

Our max–min construction means that decision rules other than F cannot provide superior performance in terms of the
robustness inequalities. For instance, consider some other control law F̂ . Solve the fixed point problem:

V̂ x;θ
� �¼ �1

2
x2þexp �δ

� �
S1V̂
h i

x; F̂ xð Þ;θ
h i

:

Let θ̂ solve

max
θ

V̂ ðx;θÞ:

Then by the Lagrange multiplier theorem, V̂ ðx; θ̂Þ is the greatest lower bound on ½U1ðm; F̂ Þ�ðxÞ over m's for which

½U2ðm; F̂ Þ�ðxÞr0:
16 In this robustness analysis, we have chosen to feature one initial condition X0 ¼ x . Alternatively, we could use an average over an initial state or
include an additional date zero term in the maximization over θ. For instance we could compute

min
qZ0;

R
q ¼ 1

Z
qððxÞVðx;θÞþθ

Z
½log qðxÞ� log qðxÞ� dx

for a give baseline density q and use
R ½U1ðm; FθÞ�ðxÞqðxÞ dx in place ½U1ðm; FθÞ�ðxÞ andZ

½U2ðm; FθÞ�ðxÞqðxÞþ
Z

log qðxÞ� log qðxÞ� �
dx

in place of ½U2ðm; FθÞ�ðxÞ in the robustness inequalities.
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Since

V̂ ðx; θ̂ÞrVðx; θ̂ÞrV ðxÞ;
the worst-case utility bound for F̂ is lower than that for the robust control law F .

In constructing U2, we considered only time invariant choices of m. It is straightforward to show that time varying
parameter changes are also allowed provided that

Z
mt ½wjx; F xð Þ�logmt ½wjx;u�ψ wð Þ dw�1

2
1 x u½ �H

1
x

u

264
375r0

for all nonnegative integers t and all pairs (x,u).

6.2. A caveat

By using a min–max theorem to verify that it is legitimate to exchange orders of maximization and minimization, it is
sometimes possible to provide an ex post Bayesian interpretation of a robust decision rule.17 In our analysis of the
“structured uncertainty” contained in this section of our paper, we have not been able to proceed in this way: we have not
shown that a robust decision rule is a best response to one of the distorted models under consideration. While a min–max
theorem does apply to our analysis for a fixed θ, it does so in a way that is difficult to interpret because of the direct impact
through the term

1
2
1 x u½ �H

1
x

u

264
375

of u on the allowable relative entropy.

6.3. Capturing doubts expressed through ξua0

Consider the special case ξx ¼ ξ0 ¼ 0 that in the spirit of Friedman expresses uncertainty about the coefficient β on the
control U in the law of motion (1). With these settings of ξx; ξ0 in (25), we focus on

ðξuÞ2rη

for some η. The robust decision rule that attains the right side of Bellman equation (30) is

F x;θ
� �¼ � ν2βκ

ν2β
2þðθ�ν2α2Þη

" #
x; ð34Þ

which has the same form as the Friedman rule (7), except that here

ðθ�ν2α2Þη
ν2

plays the role that σ2 played in rule (7).
By way of comparison, suppose that η¼ 0. Then decision rule (34) becomes

F xð Þ ¼ � κ
β

� 	
x

which is the original rule (3) that emerges from model (1) without model uncertainty and β a known constant.

6.4. A numerical example

Consider the following numerical example:

Xtþ1 ¼ :8XtþUtþ :6Wtþ1;

which implies that the stationary distribution of Xt is a standard normal. Let h33 ¼ :09 and the other entries of the H matrix
be zero.

As suggested in our robustness analysis, we can impose a constraint on adjusted entropy by computing θ to solve

max
θ

Vðx;θÞ;
17 For example, see Hansen and Sangent (2008, Chapter 7).
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subject to the appropriate discounted intertemporal version of our adjusted relative entropy constraint. Fig. 6 shows an
example of Vðx;θÞ. The maximizing value of θ is approximately 2.36 when the initial value x¼ 1. There is in fact very little
dependence on x as is shown in Fig. 7. Fig. 8 compares three decision rules. Fig. 9 plots stationary distributions under three
decision rules under the baseline model (1).

7. Concluding remarks

We hope that readers will accept our analysis in the spirit we intend, namely, as hypothetical examples, like Friedman
(1953), in which the sensitivities of policy recommendations to details of a model's stochastic structure can be examined.18

Friedman's finding that caution due to model specification doubts translates into “doing less” as measured by a response
coefficient in a decision rule linking an action u to a state x depends on the structure of the baseline model that he assumed.
Even within single-agent decision problems like Friedman's but ones with different structures than Friedman's, we know
other examples in which “being cautious” translates into “doing more now and picking up the pieces later.” (For example,
see Sargent, 1999; Tetlow and von zur Muehlen, 2001; Cogley et al., 2008; Barlevy, 2009). So the “do-less” flavor of some of
our results should be taken with grains of salt.
18 For example, the “no-increase in caution” finding of Section 5 depends on our having set up the objective function to make it a “targetting problem”.
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In more modern macroeconomic models than Friedman's, it is essential that there are multiple agents. Refining rational
expectations by imputing specification doubts to agents inside or outside a model opens interesting channels of caution
beyond those appearing in the present paper. A model builder faces choices about to whom to impute model specification
doubts (e.g., the model builder himself or people inside the model) and also what those doubts are about. Early work in
multi-agent settings appears in Hansen and Sangent (2012, 2008, Chapter 15) and Karantounias (2013).
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