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In this article we study a class of econometric models that imply a set of multiperiod conditional moment restrictions. These
restrictions depend on an unknown parameter vector. We construct an extensive class of consistent, asymptotically normal
estimators of this parameter vector and calculate the greatest lower bound for the asymptotic covariance matrices of estimators
in this class. In so doing, we extend results reported by Hansen (1985) and Stoica, S6derstrom, and Friedlander (1985), by
allowing for more general forms of nonlinearities and temporal dependence. Many dynamic econometric models imply that
the expectation of a function of a currently observed data vector and an unknown parameter vector conditioned on information
available at some point in the past is 0. We focus on models in which the conditioning information is lagged more than one
time period, as in the models considered by Barro (1981), Dunn and Singleton (1986), Eichenbaum and Hansen (1987),
Eichenbaum, Hansen, and Singleton (1988), Hansen and Hodrick (1983), Hansen and Singleton (1988), and Hall (1988). Hence
we consider econometric models that imply multiperiod conditional moment restrictions that depend on an unknown parameter
vector. Within the context of these models, it is possible to estimate the parameter vector without simultaneously estimating
the law of motion for the entire set of observable variables. The basic idea is to use the conditional moment restrictions to
deduce a set of unconditional moment restrictions. Then estimators of the parameter vector can be obtained by using sample
counterparts to the unconditional moment restrictions as described by Sargan (1958) and Hansen (1982). Such estimators are
referred to as generalized method of moments (GMM) estimators. For most applications the conditional moment restrictions
imply an extensive set of unconditional moment restrictions. As a consequence, there is a vast array of GMM estimators that
can be used to estimate consistently the parameter vector of interest. Each member of this set of estimators is constructed
using a distinct collection of the unconditional moment restrictions. Hence it is of interest to compare the performances of the
alternative GMM estimators. For tractability we investigate only the asymptotic distributions of the estimators in question.
More precisely, we use a method suggested by Hansen (1985) for calculating a greatest lower bound for the asymptotic covariance
matrices of the alternative GMM estimators, that is, an efficiency bound. We compute the efficiency bound for a rich collection
of time series models that imply multiperiod conditional moment restrictions. Hansen (1985) illustrated this method for a time
series model with conditionally homoscedastic moving-average disturbance terms for which the moving-average polynomial is
invertible. Stoica et al. (1985) calculated efficiency bounds for GMM estimators for autoregressive parameters in autoregressive
moving-average models without unit roots. They established that the efficiency bound for GMM estimators of the autoregressive
parameters coincides with the asymptotic covariance matrix of the Gaussian maximum likelihood estimators. The models
considered by Hansen (1985) in his illustrative example and by Stoica et al. (1885) can be viewed as special cases of the models
considered in this article. Although we do not make any direct comparisons to maximum likelihood, we do allow for moving-

average disturbances that are conditionally heteroscedastic and moving-average lag polynomials that cannot be inverted.
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1. INTRODUCTION

The plan of the article is as follows: In Section 2 we
describe the admissible data-generation processes and the
martingale approximation that is used to obtain central
limit results. In Section 3 we specify the econometric model
under consideration and construct a class of generalized
method of moments (GMM) estimators. In Section 4 we
characterize a lower bound for the asymptotic covariance
matrices of the GMM estimators and give conditions under
which this bound is the greatest lower bound. In Section
5 we provide two examples of the calculation of this ef-
ficiency bound. The first displays the calculation in the
presence of an explicit form of conditional heteroscedas-
ticity; the second displays the calculation when the mov-
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ing-average polynomial of an autoregressive moving-av-
erage (ARMA) model can have a unit root. Finally, we
make some concluding remarks in Section 6.

2. DATA GENERATION AND
MARTINGALE APPROXIMATION

Let (2, A, Pr) denote an underlying probability space.
Associated with this space is a transformation § mapping
Q onto () that determines the law of motion for states of
the world over time.

Assumption 1. The transformation S is one-to-one,
measurable, measure-preserving, and ergodic, and S ! is
measurable.

Suppose that x is a random vector and x(w) is a measure-
ment vector when the state of the world is w. Then x in
conjunction with S generates a stochastic process via x,()
= x[S%(w)], where S’ is interpreted as the transformation
S applied ¢ times. Since S is one-to-one, x, is also well-
defined for negative values of ¢. The stochastic process so
generated is strictly stationary and ergodic; conversely,
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any stationary stochastic process can be constructed in this
manner (e.g., see Doob 1953, pp. 452-457). Throughout
this article we find it convenient to index stochastic pro-
cesses constructed in this fashion by the random vector x
used in conjunction with S to generate the stochastic pro-
cess. Equivalently, x can be viewed as the time-zero com-
ponent of the stochastic process, since S is the identity
transformation.

Let y be a particular random vector that is observable
at time 0 and B, be the sigma algebra generated by y,, y,_;,
.. .. Then{B, : —o <t<}isanondecreasing sequence
of sigma algebras. The sigma algebra B, summarizes the
information available at date ¢.

Following Gordin (1969) we approximate stochastic pro-
cesses by martingale difference sequences. The stochastic
processes to be approximated are multiperiod forecast er-
rors relative to {B, : —» <t < +}. More precisely, we
consider random vectors in the space X, where

X = {x : x is a k-dimensional random vector that is
measurable with respect to By, ||x|| < «, and
E(x|B_,) = 0}, 2.1)

llxll = [E(x'x)]"? and s is a fixed positive integer. For
each x in X, there is a corresponding random vector M(x)
= 20 [E(x, | By) — E(x,| B_,)] that generates a mar-
tingale difference sequence. The random vector M(x) is
measurable with respect to B, and satisfies | M(x)|| < o
and E[M(x) | B_,] = 0. Define Py(x) = (1/T)"2 2L, x,.
It is straightforward to show that limy., [|P7[x — M(x)]|
= 0 (e.g., see Gordin 1969; Hansen 1985). We apply
Billingsley’s (1961) central limit theorem for martingales
to show that {P;[M(x)] : T = 1} converges in distribution
to a normally distributed random vector with mean 0 and
covariance matrix E[M(x)M(x)']. It then follows that
{P7(x) : T = 1} has the same limiting distribution. Fur-
thermore, for any x and x* in X,

E[M(x)M(x*)'] = lim E[P(x)P(x*)']

s—1
> E(xx}').
T=-5+1
3. ECONOMETRIC MODEL AND
GMM ESTIMATORS

Let ¢ denote a function specified a priori, mapping the
random vector y and the unknown k-dimensional param-
eter vector f, into an n-dimensional disturbance term.

2.2)

Assumption 2. ¢(-, p) is Borel measurable for all § in
a neighborhood of f§, and ¢(r, -) is continuously differ-
entiable in the same neighborhood of f, for all vectors of
real numbers r in the support set of y.

Assumption 2 ensures that the disturbance e = ¢(y, ;)
is a vector of random variables, the entries of the n X k
matrix d = d¢(y, fy)/3p are random variables, and

mod(d) = Sup lo¢(y, B)/3p — a(y, p)/oBl (3.1)

is a random variable for sufficiently small values of 8. The
matrix norm |c| in (3.1) is defined as tr(cc’)"2.
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The remaining assumptions in this section are stated in
terms of positive numbers ¢ and # in the interval [2, ).
The number ¢ is used to restrict moments of the distur-
bance vector; # is used in the construction of a class of
GMM estimators. Different values of (e, #) are associated
with different sets of assumptions.

The disturbance vector is assumed to have finite eth
moments and to be a multiperiod forecast error.

Assumption 3. E[|e]] < « and E(e | B_;) = 0, where
s > 0 is fixed.

The second requirement given in Assumption 3 is a con-
ditional moment restriction that is used to identify and
estimate the parameter vector f,. This type of conditional
moment restriction is often implied by a variety of eco-
nomic models (e.g., see Barro 1981; Dunn and Singleton
1986; Eichenbaum and Hansen 1987; Eichenbaum, Han-
sen, and Singleton 1988; Hall 1988; Hansen and Hodrick
1983; Hansen and Singleton 1988).

We construct estimators of f, as follows: Let z be an n
X k matrix of random variables that are measurable with
respect to the time —s information set, B_,. In addition,
suppose that E|z|" is finite; then E(z'e) = 0. We refer to
a consistent estimator {br : T = 1} of §, for which {P{z’'¢(y,
br)] : T = 1} is 0,(1) (converges in probability to 0) as a
GMM estimator with index z. Such an estimator can also
be viewed as an M estimator and as an instrumental-vari-
ables estimator, where z’ is a matrix of instrumental vari-
ables.

Since there is great flexibility in the selection of z, a rich
class of estimators of f is at our disposal. We find it con-
venient to introduce an index set for a family of such
estimators. Let 4 be a random vector that is measurable
with respect to B_;, B* be the subsigma algebra of B_;
that is generated by A, h_,, . . . , h_,, and

Z"={z : zis n X k matrix of random variables
that are measurable with respect to B* and
E(|z") < }. (3.2)

Indexes in the space Z are constructed using functions of
the current and 7 lags of the vector A.

For each 7 the index set is a closed linear subspace of
the Banach space consisting of all » X k matrices z of
random variables for which E(|z|") is finite. The norm on
the Banach space is given by E(|z|7)'", and we let L"(Pr)
denote this Banach space for general specifications of 7,
k, and n.

The specification of the finite lag 7 is both arbitrary and
inconvenient. For this reason, we consider the larger index
set Z = U;_, Z*. This index set is also a linear subspace
of L"(Pr), but it is not necessarily closed. Associated with
this index set is the sigma algebra B*, where B* = \/=_,
B*. Note that B* C B_,. Analogously we define B}
Vi.1Bf, where Bf is the sigma algebra generated by 4;,
hio1y oo By,

It is convenient to introduce an even larger index set:
Z* ={z:zisann X k matrix of random variables

that are measurable with respect to B* and
E(|z]") < =},

(3.3)
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The space Z* is just the L"(Pr) closure of Z. In this article
we do not formally consider estimators with indexes in Z*
that are not simultaneously in Z. Such estimators are more
problematic to construct in practice because they must
depend, at least asymptotically, on the infinite past of 4.
By not considering such estimators, the efficiency bound
we calculate often is not attained, but can only be ap-
proximated by members of the index set Z.

In deriving the asymptotic distribution of the estimators
indexed by the set Z, we require z'e to have a finite second
moment. One way to ensure this is to restict ¢ and # as
follows:

Assumption 4. 1/e + 1/p = 1/2.

When Assumption 4 is imposed, we can use the Holder
inequality to verify that E(z'ee’z) is well-defined and fi-
nite.

An alternative way to guarantee that z'e has a finite
second moment is to restrict e to be conditionally homo-
scedastic.

Assumption 4'.  E(ee; | B*) is constant almost surely
for all j.

In this case E(|z'ee’z|) = E(|zPe’) = E[E(|z]el* | B*)]
= E(|z))E(le) < . Assumption 4’ restricts all of the
conditional autocovariances of e to be constant.

Our next assumption restricts the matrix d* = E(d | B*)
of random variables.

Assumption 5. E(|d*|") < ® and E[ljz<sd*'d*] is
nonsingular for 1/¢ + 1/p = 1 and some 6 > 0.

The first restriction imposed in Assumption 5 guarantees
via the Holder inequality that |z’d*| has a finite moment
for any index z in Z*. By the law of iterated expectations,
it follows that E(z'd*) = E(z'd) for any z in Z* because
the entries of z are measurable with respect to B*. The
second restriction imposed by Assumption 5 ensures the
existence of at least one consistent estimator in Z. When
n = 2, Assumption 5 implies that |d*| has a finite second
moment. In this case, the additional restriction on d* is
equivalent to a requirement that E(d*'d*) be nonsingular.

The derivation of the asymptotic distribution of the GMM
estimators in Z uses the familiar approach relying on the
mean-value theorem. To apply this approach we impose
a local domination condition.

Assumption 6. E[mod(d)°] < « for 1/6 + 1/ = 1
and for some ¢ > 0.

This assumption implies that

E[ sup |z0¢(y, B)/of — z0¢(y, fo)/opl] <= (3.4)
18- pol<s

for some ¢ > 0, which in turn implies the first-moment
continuity restriction used by Hansen (1982) to derive the
asymptotic distributions for GMM estimators.

For each z in Z* either Assumption 4 or 4’ implies that
Z'eis in X. It is convenient to define a matrix inner prod-
uct:

s—1
(z|z*)= D E(z'ee.z}).

T=—s+1

(3.5)
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Using this notation, {P(z'e) : T = 1} converges in dis-
tribution to a normally distributed random vector with
mean 0 and covariance matrix (z | z). Lemma 3.1 follows
from analysis in Hansen (1982).

Lemma 3.1. Suppose that Assumptions 1-3, 6, and
either 4 or 4’ are satisfied, {b; : T = 1} converges in prob-
ability to fy, and {P{z'¢(y, br)] : T = 1} is 0,(1). Then
{E(z'd*)[T"(br — Po)] — Pr(ze) : T = 1} is 0,(1).

When E(z'd*) is nonsingular, Lemma 3.1 implies that
{TY(by — py) : T = 1} is asymptotically equivalent to
{{E(z'd*)]"'P(ze) : T=1}.Inthiscase {TV2(br —f) : T
= 1} has a limiting normal distribution with asymptotic
covariance matrix

cov(z) = [E(z'd")] "4z | DEE'd*)]

4. EFFICIENCY BOUND
41 General Analysis

(3.6)

In Section 3 we described a class of GMM estimators
that can be infinite dimensional. The estimators in this
class are indexed by members of the set Z. Relation (3.6)
gives a mapping cov from the index set Z into the collec-
tion, PSD, of k X k positive semidefinite matrices aug-
mented by the point infinity. The set PSD can be partially
ordered as follows: The inequality ¢ = c* is satisfied for
c and ¢* in PSD if ¢* — cis in PSD. When c* is infinite,
the inequality ¢ = c* is satisfied for any c in PSD. Let LB
be the subset of PSD containing all matrices c that satisfy

4.1)

The efficiency bound inf(Z) is defined to be the maximal
element of LB assuming such a maximal element exists.
Hansen (1985) derived a set of sufficient conditions for
inf(Z) to exist and suggested a general method for cal-
culating this matrix. In this section we apply that method
to the estimation problem described in Section 3.

Our first step in calculating inf(Z) is to find an alter-
native representation for (- | -) by using a conditional coun-
terpart to the forward filter suggested by Hayashi and Sims
(1983). Let

U={u:u=@w) e+ 1) e+ - + (V) - e for
some positive integer 7 and some random vectors v/
that are measurable with respect to B* and bounded}.

(4.2)

The members of U have finite eth moments and satisfy the
conditional moment restriction

E(u|B*) =0, (4.3)

since the elements of v/ are measurable with respect to
B*. Let U* denote the mean-square (L?) closure of U,
and let

c =<cov(z) forallzinZ.

(4.4)

where proj(- | U*) denotes the least squares projection
operator onto U*.

The forward filtering in (4.4) has two desirable features.
First, it preserves the orthogonality of the resulting dis-

e* = e — proj(e | U”),
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turbance vector with the members of Z, since (4.3) and
Assumption 3 guarantee that E(e* | B*) = 0. Second,
forward filtering results in a disturbance vector e* that
generates a conditionally serially uncorrelated stochastic
process (as will be shown in Lemma 4.1). In general, the
process generated by e* will not be a martingale difference
sequence. Thus forward filtering is used in characterizing
inf(Z), but it cannot be used to establish central limit
results vid martingale difference approximations. The pro-
jection error e* is restricted as follows:

Assumption 7. E(e*e*' | B*) = ®* is nonsingular al-
most surely.

Let ®* be an n X n matrix of random variables that
are measurable with respect to B* and satisfy (®*)~! =
®*'P*. We define et = d*e*. Then e* is a conditional
linear function of e*, where the conditional weighting ma-
trix ®@* is chosen so that E(e*e*’ | B*) = I. Since ®* is
measurable with respect to B*, E(e* | B*) = 0. A con-
ditional moving-average representation for e in terms of
e* is given by the following lemma.

Lemma 4.1.
satisfied. Then

Suppose that Assumptions 1-3 and 7 are

s—1
e = 20 ()(e"), (4.5)
i
where A/ is an n X n matrix of random variables that are
measurable with respect to B* and have finite second mo-
ments for 0 < j < s — 1, 1° is nonsingular almost surely,
and E(e*e’ | B*) = 0for allj # 0 and 4}(w) = V[SX(w)].
If in addition Assumption 4' is satisfied, 1%, A, . . ., 2!
can be chosen to be constant (nonrandom).

All proofs of lemmas and theorems not reported in the
text are given in the Appendix.

We now construct two operators using {A/ : 0 = j <s
— 1}. Let D* be the set of all n X k matrices of random
variables that are measurable with respect to B*. Define

s—1 s—1
A(2) = 3 E[(H)z| B*] and A~(z) = 3 (M)'z
j=0 j=0
(4.6)

for any z in D* with finite second moments. Notice that
E[(4)z; | B*] is well defined because both 4/ and z; have
finite second moments and that A(z) and y~(z) are in
D*.

We use the operators A and A~ to represent (- | -).

Lemma 4.2. Suppose that Assumptions 1-4 and 7 are
satisfied. Then for any z and z* in Z*, (z | z*) =
E[A~(2)'A~(z*)] = E{z'A[A(z*)]}. The same implica-
tions are obtained when Assumption 4’ is used in place of
Assumption 4.

Our strategy for calculating the bound is essentially the
same as that used for solving minimum norm problems in
Hilbert spaces. The basic idea is to find an n X k matrix
d* of random variables with finite second moments that
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satisfies the first-order conditions
E(z'd*) = E[A~(2)'d*] forallzin Z. (4.7)

Lemma 4.3. Suppose that Assumptions 1-3 and 5 are
satisfied. If E[|[d*] < « and d* satisfies (4.7), then
E(d*'d*) is nonsingular.

A lower bound for inf(Z) turns out to be [E(d*'d *)] .
This fact can be established as follows: Consider any z in
Z such that E(z'd*) is nonsingular. Let a = [E(z'd*)]!
A~(z)' — [E(d*'d*)]"'d*'. Then it follows from (3.6),
Lemma 4.2, and E(aa’) = 0 that [E(d*'d*)]"! =< cov(z).

To obtain a candidate for d*, we construct two oper-
ators whose inverses are A and A-, respectively. Let y°
= () and y/ = —(2%)" Ty (A )y ) forj = 1,
where A/ = 0 for j = 5. Notice that y’ is measurable with
respect to B* for all j = 0. Let D be the subset of D* for
which E[(y))z; | B*] is well defined for each j and

¥(z) = X Ely))z | B*] (4.8)
j=0

converges in L*(Pr). Similarly, let D~ be the subset of D*

for which

¥ () =2 (¥)'z- (4.9)
j=0

converges in L"(Pr). Then D is the domain of the operator

¥, and D~ is the domain of the operator ¥~. By con-

struction, A and A~ are inverses of ¥ and ¥ ~, respectively.

Lemma 4.4. Suppose that Assumptions 1-4 and 7 are
satisfied. If z is in D, then A[¥(z)] = z. If zisin D™,
then A~[¥~(z)] = z. The same implications are obtained
when Assumption 4’ is used in place of Assumption 4.

With the following extra assumption, ¥(d*) is a can-
didate for d*.

Assumption 8. d* isin D.

Theorem 4.1. Suppose that Assumptions 1-8 are sat-
isfied. Then inf(Z) exists and {E[¥(d*)' ¥ (d*)]} ' < inf(Z).
The same implications are obtained when Assumption 4
is used in place of Assumption 4.

This theorem gives a nontrival lower bound for the
asymptotic covariance matrices. For this bound to be sharp,
there must exist a sequence {z/ : j = 1} in Z such that
{A=(2)) : j = 1} converges in L*(Pr) to ¥(d*). The fol-
lowing additional restriction guarantees the convergence.

Assumption 9. ¥(d*) is in the L*Pr) closure of
A (ZY).

Theorem 4.2. Suppose that Assumptions 1-9 are sat-
isfied. Then {E[¥(d*)'¥(d*)]}~" = inf(Z). The same im-
plication is obtained when Assumption 4’ is used in place
of Assumption 4.

Proof. By Assumption 9, there exists a sequence {z’ : j
= 1} in Z* such that {A~(2/) : j = 1} converges to ¥(d*)
in L*(Pr). The sequence {z’ : j = 1}, however, is not nec-
essarily in Z. In the Appendix we show how to approxi-
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mate [L"(Pr)] members of this sequence by elements in Z.
This approximation entails taking expectations condi-
tioned on B for sufficiently large values of 7. In this man-
ner we can construct GMM estimators with asymptotic
covariance matrices that are arbitrarily close to the effi-
ciency bound.

A convenient sufficient condition for Assumption 9 is
that y(d*) be in D~. In this case, ¥~ [¥(d*)] is in Z*,
implying that ¥(d*) is in A~(Z*). Hence the following
corollary to Theorem 4.2 is immediate.

Corollary 4.1. Suppose that Assumptions 1-8 are sat-
isfied and ¥(d*) is in D~. Then {E[¥(d*)'¥(d*)]}"! =
inf(Z). The same implication is obtained when Assump-
tion 4’ is used in place of Assumption 4.

When s = 1, there is additional flexibility in the con-
struction of the index set. For instance, Z* could be used
in place of Z for any nonnegative integer  and B* modified
accordingly. In this case, ¥(d*) = w°E(d | B*) so that
the bound is just [E(d*'y "y °d*)]! = {E[d*' (®*)"'d*]},
where ®* is now the covariance matrix of e conditioned
on B*. This bound is the time series counterpart to the
bound reported by Amemiya (1977) and Jorgenson and
Laffont (1974), modified to accommodate conditional het-
eroscedasticity.

4.2 Conditional Homoscedasticity
With Unit Roots

In this section we explore further implications when
Assumption 4’ is used instead of Assumption 4. Assump-
tion 4’ was imposed in an illustration of Hansen (1985,
sec. 5), Hansen and Sargent (1982), Hayashi and Sims
(1983), and Stoica et al. (1985). [All references to Hansen
(1985) in this section refer only to the analysis in sec. 5 of
that article and not to the more general analysis in earlier
sections of that article.]

Under Assumption 4', the coefficients A/ can be chosen
to be constant. In fact, the representation e = 2_g(A))e*
implied by Lemma 4.1 is a forward version of a Wold

decomposition.
It is of interest to study the spectral density of the pro-
cess generated by e. Consider the function E({) = 22,

() of a complex variable {. When Assumption 7 is
satisfied, it is necessarily true that the rank of E({) is n
for all [{| < 1 (e.g., see Rozanov 1967, p. 63). Hansen
(1985), Hayashi and Sims (1983), and Stoica et al. (1985)
maintained the assumption that the spectral density func-
tion of the process generated by e has rank n at all fre-
quencies. This implies that Z({) is nonsingular on {{ : [{|
= 1} as well. We relax that assumption by allowing E(¢)
to be singular at isolated points in {¢ : || = 1} or, equiv-
alently, the spectral density function of e to be singular at
a finite number of frequencies. Hence we allow for (pos-
sibly complex) unit roots in the moving-average represen-
tation for the disturbance vector.

In Hansen (1985) Assumption 8 was implied by the more
primitive assumptions imposed. This is no longer true when
unit roots are permitted. The presence of unit roots means
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that the sequence of coefficients {y’ : j = 0} will not con-
verge to 0 and in fact may display polynomial growth. It
is still possible, however, for the sequence {E(d* | B*) : j
= 1} to converge in L%(Pr) to O sufficiently rapid so that
d* is in D. Hence by only imposing Assumption 8, we are
able to extend the results of Hansen (1985).

When there are unit roots present in the moving-average
representation, ¥(d*) cannot be in D~ because the se-
quence of coefficients {y’ : j = 0} does not converge to
Oand E[¥(d*)"¥(d*)] is nonsingular. Consequently, Cor-
ollary 4.1 is not applicable; however, Assumption 9 can
still be satisfied. To see this suppose that the following
restriction is satisfied.

Assumption 9'.  The spectral density for each column
of W(d*) is essentially bounded.

Note that the Wold decomposition theorem for covariance
stationary processes implies that there exists a sequence
of n X n matrix polynomials {I" : j = 1}
‘ NG)
L) = % y(¢) (4.10)
=0

such that
lim(1/2x) f " Diexp(i6)]E[exp(i6)] — IF d6 = 0,
joe -

(4.11)

because e* is the mean-square limit of a sequence of finite
linear combinations of current and future values of e. Let

N(j)
AN(z) = yivz_,. (4.12)
=0
Since Assumption 9’ is satisfied, it follows that
{A-(AT¥(d*)]) : j = 1} converges in L*(Pr) to ¥(d). Hence
we have the following second corollary to Theorem 4.2.

Corollary 4.2. Suppose that Assumptions 1-3, 4’, 5-
8, and 9’ are satisfied. Then {E[¥(d*)'"¥(d*)]}"! = inf(Z).

To accommodate conditional heteroscedasticity in Sec-
tion 2 we used a sigma algebra to build Z* and hence Z.
When the forecast error e is conditionally homoscedastic,
we can use an alternative linear space construction for the
index set. For example, we can use the space, J*, which
is the mean-square closure of the space of random vari-
ables that are finite linear combinations of current and
past values of h. We then replace expectations conditional
on B* with least squares projections onto J*. All of our
analysis applies to this alternative index set as well.

5. APPLICATIONS
51 Application 1

The first example is derived from a continuous-time
financial economics model examined by Grossman, Mel-
ino, and Shiller (1987), Hall (1988), and Hansen and Sin-
gleton (1988) and from the martingale taxation model ex-
amined by Barro (1981). In this model there is a two-
period conditional moment restriction that results from
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time averaging the underlying continuous-time processes
and then sampling these averages.

Consider a g-dimensional random vector x that gener-
ates a Gaussian process. Let w denote a g-dimensional
random vector that generates a process that is fundamental
for x in the sense of linear prediction theory (e.g., see
Rozanov 1967). For notational convenience, we define y’
= [x', x;]. The two-period conditional moment restric-
tions apply to a linear combination u = [1 §, 0]x, where
o is a scalar parameter to be estimated. In particular, E(u
| B_;) = 0and E(pu? — uu_,| B_,) = 0, where p is known
a priori and determined by the assumed form of time av-
eraging. These two conditional moment restrictions can
then be used to estimate the parameter 5.

To map this model into the notation of Section 2, let

_ [150]x
o(y, B) = [,;([1 B01x)? — ([1 8 0]x)([1 ﬁO]x_l)]
(5.1)

so that n = 2 in this example. The conditional moment
restrictions take the form E(e | B_,) = 0, where e = ¢(y,
Bo)- Notice that the model is nonlinear in both the param-
eters and the variables even though the underlying process
generated by x is Gaussian. Finally, let B* = B_, and 5
be any positive number greater than 2. The magnitude of
n affects the size of the index set Z; however, the efficiency
bound turns out to be insensitive to the choice of 7.

Although u is conditionally homoscedastic, it turns out
that the second entry of e induces conditional heterosce-
dasticity of a known form. It is straightforward to char-
acterize the form of this heteroscedasticity, A° and A!, and
y/forj = 0,1, ... (see Heaton and Ogaki 1988).

Calculation of W(d*) requires evaluating expectations
of y/d; conditioned on B* forj = 0, 1, . . . . Heaton and
Ogaki (1988) show how to perform these computations in
the special case in which x has a state-space representation:
Y=AY_,+ Cwandx = H'Y, where Yisap X 1 state
vector, A is a p X p matrix with eigenvalues that have
moduli that are less 1, and C and H are p X q matrices
of real numbers. In this case ¥(d*) is given by

*) — Q-Y,
\p(d ) B |:R1 + W,_2R2Y_2 + Y,_2R3Y_2 ’ (5.2)

where Q is a p-dimensional vector of real numbers, R, is
a scalar real number, and R, and R; are p X p matrices
of real numbers. The efficiency bound is then given by 1/
E[¥(d*)'¥(d*)].

In this example it is also possible to estimate f, using
just the conditional moment restriction E(u | B*) = 0 and
not E(pu* — uu_, | B*) = 0. There is a corresponding
loss in asymptotic efficiency, since the resulting efficiency
bound is the reciprocal of the second moment of the first
entry of ¥(d*).

5.2 Application 2
The second example is an ARMA model:

Yy =PFoy-1 + vw + viw_y, (5.3)
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where y and w are scalar random variables, |f,| < 1, and
v and v, are real numbers. We assume that w is funda-
mental for y, which in turn implies that |v| = |v/| (e.g.,
see Rozanov 1967, p. 63). Let B* = B_,. We assume that
E(w|B_;)) = 0and Ew?| B_)) = 1.

We focus exclusively on estimating 8, via GMM (or in-
strumental variables) as suggested by Stoica et al. (1985).
In terms of the notation given in Section 3, e = yw +
ViW_1, ¢(y’ ﬁ) =)y - ﬂy—l, d= —Y-1,n=1ands =
2. Let n be any positive number greater than 2. Again,
the efficiency bound will not depend on the choice of 7.

A forward factorization for e, as given in Lemma 4.2,
ise = ve* + vief. Thus in this example, A(z) = vz +
viE[z, | B*] and ¥(z) = 27, (vo) (= wi/w)E[z; | B*]. It
is straightforward to show that ¥(d*) = —[1/(v, +
v1Bo)l(Boy -2 + viw_,). This calculation is applicable even
when |v| = |v| and there is a unit root in the moving-
average polynomial. In other words, Assumption 8 is al-
ways satisfied as long as || < 1. It is also straightforward
to show that the spectral density function of ¥(d*) is con-
tinuous and hence bounded, so Assumption 9’ is also sat-
isfied. Consequently, Corollary 4.2 is applicable. The ef-
ficiency bound in this case is just

inf(Z) = (vo + Bov1)*(1 — B3/ (Bovo + v)>.  (5.4)

This efficiency bound agrees with that calculated by Han-
sen (1985) and Stoica et al. (1985) when the ratio |v,/v|
is less than 1. Bound (5.4), however, also applies to cases
in which [v;/v| is equal to 1. Note that for a fixed |v,| > 0
and || < 1, the efficiency bound is continuous as v,/v,
tends to 1 or —1.

If y has a nonzero mean and a constant term appears
on the right side of (5.3), then the column of ¥(d*) cor-
responding to the constant term will not converge in L*(Pr)
when |v| = |v|. Even in this case, the efficiency bound
for the GMM estimators of f, can be calculated by the
same method. It is straightforward to show that estimation
of a constant term has no impact on the estimation of f,
as long as an additional moment restriction that E(e) =
0 is used in estimation.

6. CONCLUDING REMARKS

An advantage of the GMM estimators is that they allow
for the estimation of the parameter vector of interest with-
out simultaneously estimating the auxiliary parameters that
determine the law of motion for the vector of state vari-
ables. Calculation of the bound reported here requires
knowledge of the auxiliary parameters as well;, however,
given estimates of these parameters, it is often straight-
forward to compute an estimate of the efficiency bound.
Efficiency losses can be assessed by computing the esti-
mated efficiency bound to the estimated covariance matrix
from a GMM estimator that uses an ad hoc choice of an
index. [For examples of these types of calculations, see
Hansen and Singleton (1988).] If the loss in asymptotic
efficiency is quite small and an ad hoc index estimator has
reasonable small-sample properties, then it may not be
desirable to construct more complicated estimators that
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are asymptotically efficient [see Tauchen (1986) for a Monte
Carlo analysis of GMM estimators].

As in Chamberlain (1987), when L"(Pr) is separable it
is possible to approximate the efficiency bound as follows:
First, find a basis sequence {z/ : j = 1} for Z* that is in
Z. All members of Z* are then L"(Pr) limits of finite
combinations of this basis. Then for each j, use the meth-
ods of Hansen (1982) and Sargan (1958) to attain a bound
for the finite-dimensional set of indexes of the form
2}=1c,~z", where ¢, ¢;, . . ., ¢, are k X k matrices of real
numbers. The sequence of finite-dimensional efficiency
bounds indexed by t will converge to inf(Z). This con-
ceptual exercise illustrates how to approximate the effi-
ciency bound, but it allows for too much flexibility to be
of use in empirical work.

Although we delineated the sense of approximation re-
quired for sequences of GMM estimators to get arbitrarily
close to the efficiency bound, we did not show how to
construct estimators that actually attain the efficiency
bound. Procedures along the lines of Newey (1987) and
Robinson (1987a,b) that accommodate conditional het-
eroscedasticity could possibly be extended to the model
considered here. Stoica et al. (1985) suggested a method
for attaining the bound for linear, conditional homosce-
dastic examples like the one considered in Section 5.2.
Their approach relies on filtering some of the time series
data using the inverse of the moving-average filter. When
there are unit roots in the moving-average polynomial,
their approach breaks down. It would be of interest to
devise methods for attaining the bound that apply more
generally for models like those considered in Sections 4.2
and 5.2.

When the index set Z is constructed using a sigma al-
gegra B* = B_;, we conjecture that the efficiency bound
calculated in this article will apply to a much richer class
of estimators. Demonstrating this entails extending Cham-
berlain’s (1987) analysis of efficiency bounds implied by
conditional moment restrictions to time series contexts.
Such an extension could exploit methods developed by
Begun, Hall, Huang, and Wellner (1983), Levit (1975),
and Stein (1956). Following Stein (1956) we could examine
the set F of alternative finite-dimensional parameteriza-
tions of the true law of motion for the dynamic system
subject to the conditional moment restrictions. For each
parameterization in F, there corresponds an asymptotic
covariance matrix for a maximum likelihood estimator of
fo- Let sup(F) be the least upper bound of these asymptotic
covariance matrices. In light of results in Chamberlain
(1987) and Levit (1975), we conjecture that inf(Z) = sup(F)
in these circumstances. Hence our methods may provide
an alternative way to calculate the semiparametric effi-
ciency bound sup(F).

APPENDIX: PROOFS OF LEMMAS AND THEOREMS

Proof of Lemma 4.1. Let U° denote the orthogonal comple-
ment of U* relative to U*,. Our first task is to obtain a convenient
representation of U¢. Let u be any element of U_,. Then,
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u=(vh) e+ @) e+ -+ @) e, (A1)

for some t and some random vectors v’ that are bounded and

measurable with respect to B*. Since (v3) - ¢, + - + (Vi) -
[ is in U*,
proj(u | U*) = proj[(v)) - & | U*]

+ @) e+ o+ (Vi) e (A2)

Hence u — proj(u | U*) = (v' - e) — proj[(v) - e | U*].

Using results of Hansen and Richard (1987) (see their lemmas
A.2 and A.3 and especially the proof of theorem A.2), it can be
shown that proj[(v') - e | U*] = (v') - proj(e | U*). Therefore,
U« is the mean-square closure of the set of all random variables
that can be expressed as (v) - e*, where v is a random vector
that is bounded and measurable with respect to B*. Taking a
mean-squared Cauchy sequence of the form {(v’) - e*: j = 1} and
using the definition of ®*, it can be shown that

U¢ C {v - e*: v is an n-dimensional random vector that is mea-
surable with respect to B* and satisfies E [v* < «}. '

(A.3)

To show that the right side of (A.3) is a subset of U¢, let u*
=yp-e* = v'(®*) 'e* be an element in the set on the right side
of (A.3). Then u/ = 1j,/@+)-1yv'(P*)'e* is an element of U-.
Note that [w/ — u*]> = (u*)* and E[(u*)?] < . Hence by the
dominated convergence theorem, lim..E(ju/ — u*])) = 0 and
u* is in U°.

Our second task is to use this characterization of U° to rep-
resent e. Note that each entry of e is in U*, and that

UL =U@QUi® - @ U, @ U (A.4)

Since (A.4) gives an orthogonal decomposition of U*, and e is
in U*,,

s—1
e = 2, proj(e | Us) + proj(e | UY). (A.5)
=0
Also, note that proj(e | U¥) = 0, since
E(viee') = E[E(viee' | B.-,)]
= E[v'E(e.| B,.,)e'l =0 (A.6)

for any 7 = s and any random vector v that is bounded and
measurable with respect to B*. Representation (A.5) combined
with (A.4) implies (4.5).

Our third task is to prove that A° is nonsingular. Since as-
sumption 7 is satisfied, A%* = proj(e | U°) = e* = (P*) 'e*.
Since E(e*e* | B*) = Iissatisfied, A°%4” = (®*)~(®+"')~. There-
fore, A° is nonsingular.

Our fourth task is to prove that E(e*e;’ | B*) = 0 for all
j # 0. The arguments of Hansen and Richard (1987) show that
E(v'e*et.' | B*,) = 0for any random vector v that is measurable
with respect to B* and has a finite second moment and any 7 >
0. The claim follows immediately for j > 0. For the case when
Jj < 0, suppose to the contrary that E(e*e;’ | B*) # 0. Then there
exists a bounded random vector v* that is measurable with re-
spect to B* such that at least one entry of v*'E(e*e;’ | B*) is
nonnegative and strictly positive with positive probability. Hence
E[v*'E(e*et' | B*) | B¥] = E(v*'e+et’ | Bf) # 0, which is a
contradiction.

Our final task is to show that the A”’s can be chosen to be
constant when Assumption 4’ is satisfied. Arguments of Hansen
and Richard (1987) can be used to demonstrate that the forward
Wold representation for e is a conditional forward moving-av-
erage representation for e.
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Proof of Lemma 4.2. Using repeated applications of the law
of iterated expectations and Lemma 4.1, it can be shown that

s—1 2 s—-1
Elz'e[] = E[ z' Y, Alef ] =D E[lZAP. (A7)
i=o i=0
Relation (A.7) in turn implies that |z'A/| has a finite second

moment for any zin Z* andanyj = 0,1, ...,s — 1. Substituting
for e and e; from (4.5), if follows that

Ao = B2 (3 xe)(3 wen) ] @)

Now z'(A)e; is in U¢ and {U: : —» < t < +oo} is a sequence
of mutually orthogonal linear spaces. Hence for0 =j =s — 1,

s—-1
E[z’ > i:(i;“f)’z;"]
t=j

E[(z'e)(e/z1)]

s—1
E{z’E[E A(A) 'z | B*]}, (A9)

t=j
since E(e*e* | B*) = [ is satisfied. Using the fact that S is
measure-preserving gives

E[(z'e)(e/z})] = EI:S:S; (z’_f)l’(/l"’)'z;"_,]. (A.10)

Performing a similar calculation for s — 1 = j < 0 and summing
(A.9) and (A.10) across j gives the result.

Next we establish an intermediate result that is used in proving
Lemma 4.3 and Theorem 4.1.

Lemma A.1. Assumption 3 implies that there exists a z in Z
for which E(z’ d*) is nonsingular.

Proof. Define d' = 1,4’ Then |d/| is dominated by / and
E(d"d") = E(d"d*) is nonsingular. Now |E(d | B)| is dominated
by /and E(d’| B") is a member of the index set Z: for any positive
integer t. Also, {E(d' | BY) : = = 1} converges in L¥Pr) to d'.
Hence a subsequence {E(d' | B*?) : j = 1} must converge almost
surely to d'. Since |d| has a finite first moment, |d*| also has a
finite first moment. It follows that {E[E(d' | B'*")'d*] : j = 1}
converges to E(d"d*). Consequently, there exists a j such that
E[E(d' | B*")'d*] is nonsingular. Note that E(d' | B*?) is in Z.

Proof of Lemma 4.3. Choose z* in Z such that E(z*'d*) is
nonsingular (see Lemma A.1). Then z* = z*[E(d*'z*)] ' is also
in Z. To prove that E(d*'d*) is nonsingular, we suppose to the
contrary that this matrix is singular. Then there is a k X k matrix
of real numbers, not all 0, such that cd*’ is 0 almost surely. Now
E(z*'d*c") = ¢'. Substituting z* for z into the right side of (4.7)
gives E(z*'d*c") = E[A(z*)'d*c'] = 0, which is a contradiction.

Proof of Lemma 4.4. First, we prove that A[¥(z)] = z for
any z in D. Note that the form of the y’s implies that
j
2
=0

Jwit =1 ifj=0

=0

(A.11)
Recall that {Z]_,E(yjz; | B*¥) : | = 1} converges to ¥(z) in
L*(Pr) and that each of the 4”s has finite second moments. Hence
for each 7, {i: 2i_) E(},.z.. | B¥) : I < 1} converges in L'(Pr)
to A‘[‘I’(z)],, implying that {E[2: 2 EW}iezi1. | BY)| B*] :
1} converges in L'(Pr) to E{A{¥(z)]. | B*}. Therefore,
{A( -0 ¥fz;)) : 1 = 1} converges in L'(Pr) to A[¥(z)]. Now,

if j > 0.
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AZvin] - S B3 Bt 182112

=§ {i’l

=0 t=1

I+
-7z +Z/I‘ > vtz |B*}

j=l+1

I rz IB*}’

where the second term on the right side converges in L!(Pr) to
Oas/— o,

Second, we can prove that A-[¥~(z)] = z for any z in D~ by
an analogous argument, once we find the relation that parallels
(A.11). Fix any j = 0, and let

s~ I+
D> E{,lT > v

=1 j=l+1

(A.12)

B A vl i v/
F=10 2 - X', G=]0 ! wit .
0 0 A 0 0 e

(A.13)

Then (A.11) implies that FG = I. Hence F = G~' and GF =
L. Multiplying the first row partition of G by the last column
partition of F gives the relation we need:
i
R

dr=1 ifj=0

=0 ifj>0. (A.14)

Proof of Theorem 4.1. Lemma 4.4 guarantees that E(z'd*)
= E{z'A[¥(d*)]} for any z in Z. By mimicking the proof of
Lemma 4.2, we can show that E{z'A[¥(d*)]} = E[A~(2)'¥(d*)].
It follows that [E(W(d*)'¥(d*))] ! is a lower bound as shown in
Section 4.1.

Next, we prove the existence of inf(Z) by applying lemma 4.3
of Hansen (1985). To apply this lemma we must verify that Z
satisfies Hansen’s properties 3.1-3.5. It is straightforward to
show that Z satisfies properties 3.1, 3.2, and 3.4, and Lemma
A.1 shows that Z satisfies property 3.3. To show that property
3.5 is satisfied, let {z/ : j = 1} be any sequence in Z for which
{(z7| z7) : j = 1} converges to 0. Then Lemma 4.2 implies that
{E[JA-(z)] : j = 1} converges to 0. By the Cauchy-Schwarz
inequality, |[E[A~(z)'d*]| = E[|d*[]"2E[|A-(z))]}]">. 1t follows
from (4.7) that {E(z/'d*) : j = 1} converges to 0, which establishes
that Z satisfies property 3.5.

Proof of Theorem 4.2. The proof is complete once we show
that for any z in Z*, there is a sequence {z' : [ = 1} in Z that
converges in L"(Pr) to z. The sequence {E(z | BY) : t = 1} is in
Z and converges in L*(Pr) to z. Hence a subsequence converges
almost surely to z. In the special case in which |z| is essentially
bounded, the same bound applies to E(z | B*) for r = 1. Hence
the dominated convergence theorem guarantees that a subse-
quence of {E(z | B") : © = 1} converges in L"(Pr) to z. In the
general case we can first construct a sequence {z/ : j = 1} in Z*
such that every member of the sequence is essentially bounded
and the sequence converges in L"(Pr) to z. For instance, let z
= 1y,<3z. Then we can approximate the z”’s as previously sug-
gested.

[Received December 1985. Revised February 1988.]
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