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Abstract We construct shock elasticities that are pricing counterparts to impulse response
functions. Recall that impulse response functions measure the importance of next-period
shocks for future values of a time series. Shock elasticities measure the contributions to the
price and to the expected future cash flow from changes in the exposure to a shock in the next
period. They are elasticities because their measurements compute proportionate changes.
We show a particularly close link between these objects in environments with Brownian
information structures.
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Markov dynamics · Malliavin derivative

There are several alternative ways in which one may approach the impulse problem
.... One way which I believe is particularly fruitful and promising is to study what
would become of the solution of a determinate dynamic system if it were exposed to
a stream of erratic shocks that constantly upsets the continuous evolution, and by so
doing introduces into the system the energy necessary to maintain the swings Ragnar
Frish [11].
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1 Introduction

Impulse response functions characterize the impact of “a stream of erratic shocks” on dynamic
economic models. They measure the consequences of alternative shocks on the future vari-
ables within the dynamical system. These methods are routinely used in linear time series
analysis, and they can be generalized to nonlinear environments. See [12,19], and [13] for
nonlinear extensions.

Models of asset valuation assign prices to the “stream of erratic shocks” that Frisch ref-
erences. Macroeconomic shocks by their nature are not diversifiable, and as a consequence,
exposure to them requires compensation. The familiar impulse response methods have coun-
terparts in the study of valuation of stochastic cash flows within dynamic economic models.
[5,16] and [14] study dynamic asset pricing through altering the cash-flow exposure to shocks.
Changing this exposure alters the riskiness of the cash flow and an economic model of the
stochastic discount factor gives the implied compensation. Formally, these methods con-
struct shock-exposure and shock-price elasticities to characterize valuation as it depends on
investment horizons. The elasticities are responses obtained by conveniently normalizing the
exposure changes and studying the impact on the logarithms of the expected returns. These
are the ingredients to risk premia, and they have a “term structure” induced by the changes
in the investment horizons.

As we will show, there is a close mathematical and conceptual link between what we
call shock elasticities and impulse response functions commonly used to characterize the
behavior of dynamical systems. In effect the shock-price elasticities are the pricing counter-
parts to appropriately scaled impulse response functions. We connect these two concepts by
interpreting impulse response functions and shock elasticities as changes of measure for the
next-period shock.

In addition to delineating this connection, we show how continuous-time formulations with
Brownian motion information structures provide additional simplicity obtained by exploit-
ing local normality building on the Haussmann–Clark–Ocone representation of a stochastic
integral of responses to past shock depicted as Brownian increments.

2 Basic setup

Let X be a Markov diffusion in R
n :

d Xt = μ(Xt )dt + σ(Xt )dWt (1)

with initial condition X0 = x . Here, μ(x) is an n-dimensional vector and σ(x) is an n × k
matrix for each vector x in R

n . In additon W is a k-dimensional Brownian motion. We use
this underlying Markov process to construct an additive functional Y via:

Yt = Y0 +
∫ t

0
β(Xu)du +

∫ t

0
α(Xu) · dWu (2)

where β(x) is a scalar and α(x) is a k-dimensional vector.1 Thus Yt depends on the initial
conditions (X0, Y0) = (x, y) and the innovations to the Brownian motion W between dates
zero and t . Let {Ft : t ≥ 0} be the (completed) filtration generated by the Brownian motion.
In what follows we will not explore the consequences of the initial condition Y0 = y, and

1 Notice that our definition of additive functional allows for processes of unbounded variation.
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we will drop reference to y in our notation. The shock elasticities that we will formulate do
not depend on this initialization.

When building models of economic time series, researchers typically work in logarithms.
We think of Y as such a model, which by design can capture arithmetic growth that is
stochastic in nature. Our interest in asset pricing will lead us to study exponentials of additive
functionals. We call the process M

.= exp(Y ) a multiplicative functional and use it to model
levels of cash flows and stochastic discount factors.

To construct an impulse response function, consider for the moment a discrete-time coun-
terpart indexed by the length of the time period τ

X τ
t+τ − X τ

t = μ
(
X τ

t

)
τ + σ

(
X τ

t

)
�Wt+τ

Y τ
t+τ − Y τ

t = β
(
X τ

t

)
τ + α

(
X τ

t

)
�Wt+τ . (3)

where �Wt+τ
.= Wt+τ − Wt and t ∈ {0, τ, 2τ, . . .}. For convenience we may think of

τ = 2− j as a sequence of embedded refinements for a continuous-time approximation
realized when j becomes arbitrarily large. Whenever we use the time index t in a discrete-
time model with period length τ , we have in mind t ∈ {0, τ, 2τ, . . .}.

3 Impulse response functions in discrete time

An impulse response quantifies the impact of a shock, �Wτ = w, on future values of Yt .
One way to construct the impulse response function is to compute

�(t, x, w) = E [φ(Yt )|X0 = x,�Wτ = w] (4)

for alternative functions φ of Yt and explore the consequences of changing a basic distribution
Q(w) to a “perturbed” distribution Qη(w). That is, we evaluate:∫

�(t, x, w)Qη(dw|x) −
∫

�(t, x, w)Q(dw). (5)

The multiplicative functional M is one example of a function φ (·), and we will denote the
conditional expectation (4) for such a multiplicative functional as �m .

While the baseline distribution, Q, for the initial shock is normal with mean zero and
covariance matrix τ I , we may, for example, construct the perturbed distribution Qη to explore
implications of mean shifts. In this case Qη is a normal distribution with mean η(x), which
is very similar to the suggestion of [12]. Changing η reveals the sensitivity of the predicted
response to changes in the different components of �Wτ .2

Alternatively we may condition on �Wτ = η(x) and study the response

�(t, x, η(x)) −
∫

�(t, x, w)Q(dw). (6)

This follows an approach proposed by [19] and corresponds to measuring the response of
� to the new information contained in the realization η(x) of the shock �Wτ and exploring

2 Gallant et al. [12] consider an impulse to the state variable, say X0, but we can construct an analog using
an impulse to the initial period shock. For a shock η, they construct

�(t, x, w + η) − �(t, x, w),

and in much of their analysis, they form averages as in (5) except that they also integrate over the initial state
x .
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changes in η(x). Mathematically, this calculation is equivalent to letting Qη assign probability
one to a single value w = η (x). That is, Qη(dw|x) = δ [w − η(x)] where δ(·) is the Dirac
delta function.

The impulse response defined in (5) generally does not scale linearly with the magnitude
of η(x), so the magnitude of the impulse matters. This leads us to construct a marginal
response. Consider a family of Qη

r (dw|x) of distributions indexed by the scalar parameter r,
where Qη

r is normal with mean rη(x). We construct a marginal response by differentiating
with respect to r:

d

dr

∫
�(t, x, w)Qη

r (dw|x)

∣∣∣∣
r=0

= η(x) ·
∫

�(t, x, w)wQ(dw). (7)

which is linear in the direction η(x).
With any of these approaches, by freely altering φ, we trace out distributional responses

of Yt to a change in the distribution of the shock �Wτ , which is consistent with suggestions
in [13].3 Our interest lies in the continuous-time formulation. We show that in this case, the
three constructed responses (5)–(7) coincide.

4 Shock elasticities in discrete time

In understanding how economic models assign values to exposures to uncertainty, we con-
struct elasticities to changes in shock exposures. While modeling stochastic growth in terms
of logarithms of economic time series is common and convenient, our interest is in asset
valuation, and this leads us to an alternative but related formulation. Let G be a stochastic
growth process typically representing a cash flow to be priced and S a stochastic discount fac-
tor process. We construct log G and log S in the same manner as our generic construction of
the additive functional Y described previously in Eq. (2). The processes G and S are referred
to as multiplicative as they are exponentials of additive functionals. They model stochastic
compounding in growth and discounting in ways that are mathematically convenient. They
have a common mathematical structure as does their product.

We consider both shock-exposure elasticities and shock-price elasticities. These measure
the consequences of changing the exposure to a shock on hypothetical asset payoffs and
prices over alternative investment horizons. As we will see, these shock elasticities resemble
closely impulse response functions, but they are different in substantively important ways.

4.1 Changing the exposure

First, we explore the impact of changing the risk exposure by letting Y = log G and intro-
ducing the random variable

Hτ = exp

[
η(X0) · �Wτ − 1

2
|η(X0)|2τ

]
. (8)

This random variable has conditional mean one conditioned on X0. Note that

Gt Hτ = exp

[
log Gt + η(X0) · �Wτ − 1

2
|η(X0)|2τ

]
.

3 Gourieroux and Jasiak [13] propose a formula similar to (5) and suggest other impulses than mean shifts,
including changes in the volatility of the initial-period shock. See their formula in the middle of page 11, and
the second last paragraph of their Sect. 3.2.
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We thus use Hτ to increase the exposure of the stochastic growth process G to the next-
period shock �Wτ in the direction η (X0). The direction vector is normalized to satisfy
E

[|η (X0)|2
] = 1.

Our interest lies in comparing expected cash flows for cash flow processes with different
exposures to risk. Motivated by the construction of elasticities, we focus on the proportional
impact of changing the exposure expressed in terms of the ratio

E [Gt Hτ | X0 = x]

E [Gt | X0 = x]

or expressed as the difference in logarithms

log E [Gt Hτ | X0 = x] − log E [Gt | X0 = x] .

For a marginal counterpart of this expression, we localize the change in exposure by
considering a family of random variables parameterized by a ‘perturbation’ parameter r:

Hτ (r) = exp

[
rη(X0) · �Wτ − 1

2
r2|η(X0)|2τ

]
. (9)

Following [4] we construct the derivative

d

dr
log E [Gt Hτ (r) | X0 = x]

∣∣∣∣
r=0

= η(x) · E [Gt�Wτ | X0 = x]

E [Gt | X0 = x]

that represents the proportional change in the expected cash flow to a marginal increase in
the exposure to the shock �Wτ in the direction η (x). This leads us to label this derivative
a shock-exposure elasticity for the cash flow process G. This elasticity depends both on the
maturity of the cash flow t as well as on the current state X0 = x .

4.1.1 A change of measure interpretation

The construction of the shock-exposure elasticity has a natural interpretation as a change of
measure that provides a close link to the impulse response functions that we delineated in
Sect. 3. Multiplication of the stochastic growth process G by the positive random variable
Hτ constructed in (8) prior to taking expectations is equivalent to changing the distribution
of �Wτ from a normal Q with mean zero and covariance τ I to a normal Qη with mean η(x)

and covariance τ I . As a consequence,

E [Gt Hτ |X0 = x] =
∫

�gh(t, x, w)Q(dw)

= E [E [Gt | �Wτ ; X0 = x] Hτ |X0 = x] =
∫

�g(t, x, w)Qη(dw|x)

(10)

where the function �g is defined as in (4) with φ(Yt ) = exp(Yt ) = Gt . The first row in
expression (10) uses the baseline Q distribution for �Wτ . On the other hand, in the second
row of (10) we use the perturbed distribution Qη distribution as a computational device to
alter the risk exposure of the process G.

Expression (10) relates the shock-exposure elasticity to the nonlinear impulse response
functions. We compute shock elasticities by altering the exposure of the stochastic growth
process G to the shock �Wτ , or, equivalently, by changing the distribution of this shock.
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Since we are interested in computing the effects of a marginal change in exposure, we use
the family Hτ (r) from Eq. (9) to define a family of measures Qη

r as in (7). The shock-exposure
elasticity can then be computed as

d

dr
log

∫
�g(t, x, w)Qη

r (dw|x)

∣∣∣∣ = η(x) ·
∫

�g(t, x, w)wQ(dw)∫
�g(t, x, w)Q(dw)

. (11)

4.1.2 A special case

Linear vector-autoregressions (VARs) are models (3) with parameters that satisfy

μ (x) = μ̄x σ (x) = σ̄

β (x) = β̄ · x α (x) = ᾱ

X is a linear vector-autoregression with autoregression coefficient μ̄τ + I and shock exposure
matrix σ̄ . Let η(x) = η̄ where η̄ is a vector with norm one. The impulse response function
of Yt where t = jτ for the linear combination of shocks chosen by the vector η̄ is given by

E [Yt | X0 = x,�Wτ = η̄] − E [Yt | X0 = x] = κ̄ j · η̄. (12)

where

κ̄ j+1 = κ̄ j + τ β̄ζ̄ j

ζ̄ j+1 = (I + τ μ̄) ζ̄ j

with initial conditions ζ̄1 = σ̄ and κ̄1 = ᾱ. Thus

ζ̄ j = (I + τ μ̄) j−1 σ̄

κ̄ j = ᾱ +
(
μ̄−1

[
(I + τ μ̄) j−1 − I

]
σ̄
)′

β̄.

The first term, ᾱ · η̄, represents the “instantaneous” impact arising from the current shock,
while the second term captures the subsequent propagation of the shock through the dynamics
of the model.

Now consider the shock elasticity for the multiplicative functional G = exp(Y ). Using
the formula for the expectation of a log-normal random variable, we have

�g(t, x, w)∫
�g(t, x, v)Q(dv)

= exp

(
−1

2
|κ̄ j |2 + κ̄ j · w

)
.

Using formula (11), we obtain the shock-exposure elasticity for G:

η̄ ·
∫

w√
2πn

exp

(
−1

2
|κ̄ j |2 + κ̄ j · w

)
exp

(
−1

2
w′w

)
= η̄ · κ̄ j

Thus for a linear model, our shock-exposure elasticity for G coincides with the linear impulse
response function for Y = log G, with the direction vector η̄ selecting a particular combina-
tion of shocks in �Wτ .

4.2 Pricing the exposure

Given our interest in pricing we are led to the study of the sensitivity of expected returns
to shocks. We will utilize the family of cash flows Gt Hτ (r) indexed by the perturbation
parameter r and construct a local measure of this sensitivity as the pricing counterpart of the
shock-exposure elasticity (11).
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A stochastic discount factor S is a stochastic process that represents the valuation of payoffs
across states and time. Therefore, the value at time zero of a cash flow Gt Hτ (r) maturing at
time t (or cost of purchasing an asset with such a payoff) is E [St Gt Hτ (r) | X0 = x]. Since
we assume that S and G are multiplicative functionals, so is their product SG.

The logarithm of the expected return for the cash flow Gt Hτ (r) maturing at time t is

log E [Gt Hτ (r)|X0 = x] − log E [St Gt Hτ (r)|X0 = x] .

log expected payoff log cost

Since both components of the expected return are distorted by the same random variable
Hτ (r), we can write the (log) expected return on cash flow Gt Hτ (r) as

log
∫

�g(t, x, w)Qη
r (dw|x) − log

∫
�sg(t, x, w)Qη

r (dw|x).

We localize the change in exposure by computing the derivative of this expression with
respect to r and evaluating this derivative at r = 0. This calculation yields the discrete-time
shock-price elasticity

η(x) ·
∫

�g(t, x, w)wQ(dw)∫
�g(t, x, w)Q(dw)

− η(x) ·
∫

�sg(t, x, w)wQ(dw)∫
�sg(t, x, w)Q(dw)

. (13)

The shock-price elasticity is the difference between a shock-exposure elasticity and a
shock-cost elasticity. Locally, the impulse response for both components of the shock-price
elasticity is given by the covariance of the impulse response � with the shock �Wτ . In
what follows we will show how a continuous-time formulation gives us an alternative way
to localize shock exposures in a convenient way.

The shock-price elasticity for the one-period horizon has particularly simple representation
and is given by:

η(x) · αg (x) − η(x) · [
αg(x) + αs(x)

] = η(x) · [−αs(x)] .

In this formula the entries of −αs(x) give the vector of “prices” assigned to exposures of
each of the entries of �Wτ . These entries are often referred to as the (local) price of risk. Our
shock-price elasticity function captures the term structure of the price of risk, in the same
way as an impulse response function captures the dynamic adjustment of an economy over
time in response to a shock.

In the special case of a log-normal model discussed in Sect. 4.1.2, we can construct a
model of the stochastic discount factor S = exp(Y ). In this case, the linearity of the results
implies that the shock-price elasticity (13) will correspond to the impulse response function
for − log S.

5 Returning to continuous time

By taking continuous-time limits, we achieve some simplicity given the Brownian motion
information structure. In this section, we proceed informally to provide economic intuition.
A more formal treatment follows in Sect. 6.

Given a Markov diffusion X such as (1), the Malliavin derivative D0 Xt allows us to
examine the contribution of a shock dW0 to the value of that diffusion at time t > 0. We
calculate the Malliavin derivative recursively by computing what is called the first variation
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process associated to the diffusion.4 The first variation process for X is an n×n -dimensional
process Z x that measures the impact of the change in initial condition X0 = x on future values
of the process X :

Z x
t = ∂ Xt

∂x ′ .

This process solves a linear stochastic differential equation obtained by differentiating the
coefficients:

d Z x
t =

[
∂

∂x ′ μ(Xt )

]
Z x

t dt +
k∑

i=1

(
∂

∂x ′ [σ (Xt )]·i
)

Z x
t dWi,t (14)

where [σ (x)]·i is the i-th column of σ (x) and Wi is the i-th component of the Brown-
ian motion. The initial condition for the first variation process is Z x

0 = In . The Malliavin
derivative satisfies

D0 Xt = Z x
t σ (x) ,

since σ (x) gives the impact of the shock dW0 on d X0.
The construction of the Malliavin derivative can be extended to the additive functional

Y . Since (X, Y ) form a Markov diffusion, and the coefficients in this Markov diffusion are
independent of Y , we obtain a 1 × n process Z y that satisfies:

d Z y
t =

[
∂

∂x ′ β(Xt )

]
Z x

t dt +
k∑

i=1

(
∂

∂x ′ αi (Xt )

)
Z x

t dWi,t (15)

with initial condition Z y
0 = 01×n . Consequently, the Malliavin derivative of Y is an 1 × k

vector given by

D0Yt = Z y
t σ (x) + α (x)′

where α (x) represents the initial contribution of the shock η(x) ·dW0 to Yt and Z y
t σ (x) η(x)

captures the propagation of the shock through the dynamics of the state vector X .
When conditional mean coefficients (μ, β) are linear in state vector, the exposure coef-

ficients (σ, α) on the Brownian increment are constant, and the η vector is constant, then
the Malliavin derivatives only depend on the date zero state and not on the Brownian incre-
ments that follow. In this case the Malliavin derivative calculations will yield the continuous
time counterpart to the calculations in Sect. 4.1.2. More generally, the Malliavin derivatives
depend on the Brownian increments. We could compute the “average” responses using

�y(t, x) = η(x) · E [D0Yt | X0 = x]

for t ≥ 0 which still depends on the initial state x but not on the Brownian increments.
We have featured η as a device for selecting which (conditional) linear combination of

increments to target for the response function �y . In fact, Malliavin derivatives are typically
computed by introducing drift distortions for the Brownian increment vector dW0. Thus an
equivalent interpretation of the role of η in computation of �y is that of a date zero drift
distortion, the counterpart to the mean shift for a normally distributed random vector that we
used in our discrete-time constructions.

4 See e.g. Property P2 on page 395 of [10]. Fournié et al. [10] assume that the diffusion coefficients have
bounded derivatives, which is not verified in this example. A precise justification would require extending
their theorem to our setup.
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Since we are interested in the process M = exp(Y ), averaging the random responses of
log M will not be of direct interest in our analysis of elasticities. This leads us to modify our
calculation of average responses.

The Malliavin derivative of the function of a process Ut = φ(Yt ) is well defined provided
the function φ is sufficiently regular. In this case we may use a “chain-rule,”

DuUt = φ′(Yt )DuYt .

The function φ = exp is of particular interest to us since M = exp(Y ). For the shock
η(x) · dW0,

D0 Mtη(x) = exp(Yt )D0Ytη(x)

gives the date t distributional response of Mt to the date zero shock η(x) · dW0.
Next we construct a nonlinear counterpart to a moving-average representation, which for a

continuous-time diffusion is the Haussmann–Clark–Ocone representation. The Haussmann–
Clark–Ocone representation uses Malliavin derivatives to produce a “moving-average” rep-
resentation of M with state-dependent coefficients and is typically expressed as:

Mt =
∫ t

0
E [Du Mt | Fu] · dWu + E[Mt ]. (16)

Many of the random variables we consider depend on X0 = x along with the Brownian
motion W , including random variables on both sides of (16). We hold X0 = x fixed for the
calculation of the Malliavin derivatives, and rewrite Eq. (16) as:

Mt =
∫ t

0
E [Du Mt | Fu, X0 = x] · dWu + E[Mt | X0 = x]. (17)

The notation E[ · | X0 = x] should remind readers that the computation of the expectation
over the function of the Brownian motion depends on the choice of initial conditions.

This convenient result represents Mt as a response to shocks with “random coefficients”
E [Du Mt | Fu, X0 = x] that are adapted to Fu whereas in linear time series analysis these
coefficients are constant. With representation (17), a continuous-time analogue to the impulse
response functions computed in Sect. 3 measures the impact on φ(Yt ) of a “shock” dW0:

�m(t, x) = η(x) · E
[
exp(Yt )D0Yt | X0 = x

]
, (18)

for t ≥ 0. The term D0Yt can be computed using the recursive calculations outlined above.
The weighting by the nonstationary process M = exp(Y ) may be important, because M
grows or decays stochastically over time.

Next we consider shock elasticities in continuous time. In this paper we build these elas-
ticities in a way that is consistent with those given in [5], but we derive them in a more direct
way.5 In Sect. 6 we will show that the elasticities of interest can be expressed as

5 Borovička et al. [5] consider responses over finite investment intervals and introduce a separate parameter
that localizes the risk exposure. Similarly, [4] use a discrete time economic environment and again introduce a
parameter that localizes the risk. Here we avoid introducing an additional parameter by letting the continuous-
time approximation localize the risk exposure over arbitrarily short time intervals. In Sect. 8 we elaborate on
the connection between calculation in this paper and our previous work [5].
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ε(t, x) = η(x) · E
[
exp(Yt )D0Yt | X0 = x

]
E

[
exp(Yt ) | X0 = x)

(19)

where Y = log G in the case of a shock-exposure elasticity and Y = log S + log G in
the case of a shock-cost elasticity. The numerator is the same as the impulse response for
exp(Yt ) given in (18). Consistent with our interest in elasticities, we divide by the conditional
expectation of exp(Yt ). In accordance with this representation, the elasticities we justify are
weighted averages of the impulse responses for Y weighted by exp(Y ). Asymptotic results
for t → ∞ can be obtained using a martingale decomposition of the multiplicative functional
M analyzed in [15].

A shock-price elasticity is given by the difference between an exposure elasticity and a
cost elasticity:

η(x) · E
[
Gt (D0 log Gt ) | X0 = x

]
E [Gt | X0 = x]

− η(x) · E
[
St Gt (D0 log St + D0 log Gt ) | X0 = x

]
E [St Gt | X0 = x]

.

(20)

In a globally log-normal model D0 log Gt and D0 log St depend on t but are not random,
and the weighting by either Gt or by St Gt is of no consequence. Moreover, in this case
the shock-price elasticities can be computed directly from the impulse response function
for − log S to the underlying shocks since the expression in (20) is equal to −D0 log St . The
resulting elasticities are the continuous time limits of the results from the log-normal example
introduced in Sect. 4.1.2.

Instead of computing directly the Malliavin derivatives, there is a second approach that
sometimes gives a tractable alternative to computing the coefficients of the Haussmann–
Clark–Ocone representation for M . This approach starts by computing E [Mt | X0 = x] and
then differentiating with respect to the state:

σ (x)′
∂

∂x
E [Mt | X0 = x] .

The premultiplication by σ (x)′ acts as a measure of the local response of X to a shock. As
in [5] expression (19) can be written as6

ε(t, x) = η(x) ·
[
α (x) + σ (x)′

∂

∂x
log E [Mt | X0 = x]

]
. (21)

This result separates the ‘instantaneous’ effect of the change in exposure, α (x), from the
impact that propagates through the nonlinear dynamics of the model, expressed by the second
term in the bracket. In case of the shock-price elasticity, α (x) corresponds to the local price
of risk.

6 Formal construction of shock elasticities

To construct the elasticities that interest us, we “perturb” the cash flows in alternative ways.
Let N τ be

N τ
t =

∫ τ∧t

0
η(Xu) · dWu .

6 For example see the formulas (5) and (6) and the discussion in Sect. 4 provided in [5].
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The process N τ alters the exposure over the interval [0, τ ] and remains constant for t ≥ τ .
We impose

E
[|η(X0)|2

] = 1

when X is stationary and X0 is initialized at the stationary distribution. While the finite second
moment condition is a restriction, our choice of unity is made as a convenient normalization.
We impose this second moment restriction to insure that N τ has a finite variance τ for t ≥ τ .
We use the vector η to select alternative risk exposures. Let E(N τ ) denote the stochastic
exponential of N τ :

H τ
t = Et (N τ ) = exp

(
N τ

t − 1

2
[N τ , N τ ]t

)

= exp

[∫ τ∧t

0
η(Xu) · dWu − 1

2

∫ τ∧t

0
|η(Xu)|2du

]
.

Our assumption that X is stationary with a finite second moment guarantees that the process
H τ as constructed is a local martingale. We will in fact assume that the stochastic exponentials
of the perturbations N τ are martingales. This normalization will be of no consequence for
our shock-price elasticity calculations, but it is a natural scaling in any event.

Form the perturbed payoff G H τ . This payoff changes the exposure of the payoff G by
altering the shock exposure of log Gt to be∫ t

0
αg(Xu) · dWu +

∫ τ

0
η(Xu) · dWu

for τ < t . This exposure change is small for small τ . Construct the logarithm of the expected
return:

εp(τ, t, x) = log E
[
Gt H τ

t |X0 = x
] − log E

[
St Gt H τ

t |X0 = x
]
.

log expected payoff log cost

Note that

εp(τ, t, x) = εe(τ, t, x) − εc(τ, t, x)

where

εe(τ, t, x) = log E
[
Gt H τ

t |X0 = x
]

εc(τ, t, x) = log E
[
Gt St H τ

t |X0 = x
]
.

We will calculate derivatives of εe and εc to compute a shock-price elasticity. The first of
these derivatives is a shock-exposure elasticity.

We use H τ to change the exposure to uncertainty. Since H τ is a positive martingale with
a unit expectation, equivalently it can be used as a change in probability measure. Under this
interpretation, think of η(Xt ) as being a drift distortion of the Brownian motion W . Then

dWt =
{

η(Xt )dt + dW̃t 0 ≤ t ≤ τ

dW̃t t > τ

where W̃ is a Brownian motion under the change of measure. This gives an alternative inter-
pretation to our calculations and a formal link to Malliavin differentiation. Bismut [3] uses the
change of measure to perform calculations typically associated with Malliavin differentiation.

In what follows we will shrink the interval [0, τ ] to focus on the instantaneous change
in exposure, which we can think of equivalently as an instantaneous drift distortion in the
Brownian motion.
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6.1 Haussmann–Clark–Ocone formula

To characterize the derivatives of interest, we apply the Haussmann–Clark–Ocone formula
(17) to M = G or M = SG and represent Mt as a stochastic integral against the underlying
Brownian motion. The vector of state dependent impulse response functions for Mt for the
date zero Brownian increment is E [D0 Mt |X0 = x] when viewed as a function of t . This
averages over the random impacts in the future but still depends on X0 = x .

We will also use the following result that is a consequence of Proposition 5.6 in [22]:

Du E (Mt |Fτ , X0 = x) = E (Du Mt |Fτ , X0 = x) 1[0,τ ](u). (22)

6.2 Computing shock elasticities

Fix X0 = x and τ ≤ t. The Haussmann–Clark–Ocone formula (17) implies that:

E
[
E(Mt |Fτ , X0 = x)H τ

t |X0 = x
] = E

[
H τ

τ

∫ t

0
E (Du E(Mt |Fτ )|Fu, X0 = x)

× dWu |X0 = x]

+E
[
H τ

τ E(E(Mt |Fτ )|X0 = x)|X0 = x
]
.

Hence, using Eq. (22),

E
(
Mt H τ

t |X0 = x
) = E

[
H τ

τ

∫ τ

0
E (Du Mt |Fu, X0 = x) · dWu |X0 = x

]
+E (Mt |X0 = x)

for t ≥ τ . Under the change of measure implied by H τ ,

E
(
Mt H τ

t |X0 = x
) = Ẽ

[∫ τ

0
Zu · η(Xu)du|X0 = x

]
+ E (Mt |X0 = x)

where Ẽ is the expectation under the change in probability measure and

Zu = E (Du Mt |Fu, X0 = x) .

We compute the derivative with respect to τ at τ = 0 by evaluating:

lim
τ↓0

1

τ
E

[
H τ

τ

∫ τ

0
E (Du Mt |Fu, X0 = x) · dWu |X0 = x

]

= lim
τ↓0

1

τ
Ẽ

[∫ τ

0
Zu · η(Xu)du|X0 = x

]

= Z0 · η(x)

= E (D0 Mt |X0 = x) · η(x)

= E
[
Mt (D0 log Mt ) |X0 = x

] · η(x)

where the last line follows from the formula:

D0 Mt = MtD0 log Mt .

For globally log-normal models D0 log Mt depends only on t and not on random outcomes,
but more generally D0 log Mt is random.
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Since our aim is to compute elasticities, the actual differentiation that interests us is the
derivative of the logarithm of the conditional expectation:

εm(t, x) = η(x) ·
(

E
[
Mt (D0 log Mt ) |X0 = x

]
E [Mt |X0 = x]

)
.

Thus the elasticities are weighted averages of D0 log Mt weighted by Mt .

Remark 6.1 While our focus has been on shock elasticities and impulse response functions,
there is also a nice connection to a temporal dependence measure suggested by [24]. His
predictive dependence measure is based on the expected consequences of changing shock
distributions through a coupling. His measure is constructed in discrete time, but the L2

version of the continuous-time analog for the stochastic formulation we use is

ω(τ) =
√

2E
[|D0 log Mt |2

]
. (23)

It is perhaps best to think of [24]’s analysis as directly applying to the X process. But his
aim is to use these measures to study when central limit approximations are appropriate.
In fact the additive functional log M will often obey a Central Limit Theorem and the finite
limiting behavior of ω(τ) as τ → ∞ in (23) suggests that standard martingale approximation
methods are applicable.

7 Example: Persistent components in consumption dynamics

We illustrate the construction of shock elasticities using an example featured in [5]. We outline
two calculations. First, we utilize the construction of the Malliavin derivative D0 Mt for the
multiplicative functionals of interest using the recursive calculations outlined in Sect. 5.
Then we show how to compute the shock elasticities using semi-analytical formulas for the
conditional expectations of the multiplicative functional.

We assume the date t state vector takes the form X ′
t =

(
X ′

1,t , X2,t

)
where X1,t is an

n-dimensional state vector and X2,t is a scalar. The dynamics of X in (1) are specified by

μ (x) = μ̄(x − ι) σ (x) = √
x2σ̄

where

μ̄ =
[

μ̄11 μ̄12

0 μ̄22

]
σ̄ =

[
σ̄1

σ̄2

]
, (24)

μ̄11 and μ̄12 are n × n and n × 1 matrices, μ̄22 a scalar, and σ̄1 and σ̄2 are n × k and 1 × k
matrices, respectively. In this model, X1,t represents predictable components in the growth
rate of the multiplicative functional, and X2,t captures the contribution of stochastic volatility.
The vector ι is specified to be the vector of means in a stationary distribution. We set the
mean of X2 to be one in our calculations. The parameters of the additive functional Y in (2)
are:

β(x) = β̄0 + β̄1 · (x − ι) α(x) = √
x2ᾱ. (25)

In the illustrative economic models, the parameters (αc, βc) governing the evolution of the
logarithm of consumption log C and (αs, βs) governing the evolution of the logarithm of the
stochastic discount factor log S have the functional form of (α, β) specified for Y above. We
choose the shock selection vector η(x) to be η(x) = √

x2η̄. The vector η̄ has unit norm and,
for instance, can be a coordinate vector.
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7.1 Construction of shock elasticities

The recursive construction of the Malliavin derivative applies formulas (14)–(15):

d Z x
t = μ̄Z x

t dt + 1

2
√

X2,t
(σ̄dWt ) Z x

2,t

d Z y
t = β̄ ′

1 Z x
t dt + 1

2
√

X2,t
Z x

2,t (ᾱ · dWt ) .

Recall that X2,t is the last entry of Xt . Accordingly, the row vector Z x
2,t is the last row of

the first variation matrix Z x
t . The initial conditions are Z x

0 = I and Z y
0 = 0. The Malliavin

derivative for each t ≥ 0 is the 1 × k vector:

D0Yt = √
x2

(
Z y

t σ̄ + ᾱ′) .

In the state dynamics, the X2 process does not feedback onto the X1 process. The stochastic
differential equation for the X2 process can thus be solved without simultaneously solving for
the X1 process. It follows from this “triangular” structure that the first n elements of the vectors
Z x

2,t and Z y
t are zero. Consequently, the first n elements of the first variation process Z y are

deterministic functions of time. In contrast to a log-linear environment, the last columns of
processes Z x and Z y used to construct the Malliavin derivatives now depend on the Brownian
motion because of the role of the stochastic volatility in the state dynamics. One strategy for
computation is to simulate simultaneously (X, Y, Z x , Z y) and to approximate conditional
expectations using Monte Carlo techniques.7

For this parameterization the other approach mentioned in Sect. 5 is tractable because we
know the functional form for E [Mt | X0 = x] in formula (21). Results from [8] and [14]
show that under appropriate parametric restrictions

log E [Mt | X0 = x] = θ0 (t) + θ1 (t) · x1 + θ2 (t) x2 (26)

where the coefficients θi (t) satisfy a set of ordinary differential equations given in
Appendix 1. Given this formula, we may directly compute the coefficients for the Haussman–
Clark–Ocone representation, and thus

ε (x, t) = η (x) · [
σ̄ ′

1θ1 (t) + σ̄ ′
2θ2 (t) + ᾱ

] √
x2. (27)

7.2 Comparing two example economies

We compare two specifications of investors’ preferences. The first specification (BL) endows
the representative investor with time-separable, constant relative risk aversion utility as in
[6] and [21]. The stochastic discount factor for the investor is given by

d log St = −δdt − γ d log Ct = − [
δ + γβc (Xt )

]
dt − γαc (Xt ) · dWt (28)

where δ is the time-preference coefficient and γ is the risk aversion parameter. The stochastic
discount factor is thus a multiplicative functional with parameters βBL

s (x) and αBL
s (x)

specified in (25).

7 For longer investment horizons, it would likely be beneficial to change probability measures using, for
instance, the martingale featured in [15]. Such an approach could better center the simulations. It could build
on methods for rare event simulation, which could be valuable here because the M process grows or decays
asymptotically at an exponential rate.
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The second model of investors’ preferences (EZ) is the recursive utility specification of the
[20] and [9] type, analyzed in continuous time by [7]. These preferences allow the separation
of risk aversion to intratemporal bets from intertemporal elasticity of substitution (IES). We
will focus on the special case of unitary IES as this case allows us to derive semi-analytical
solutions.8 In this case,

d log St = −δdt − d log Ct + d log S̃t = βE Z
s (Xt ) dt + αE Z

s (Xt ) · dWt (29)

where S̃ is a multiplicative martingale satisfying

d S̃t

S̃t
= √

X2,t (1 − γ )
(
ᾱc + σ̄ ′

1v̄1 + σ̄ ′
2v̄2

) · dWt

with coefficients v̄1, v̄2 derived in Appendix 1. This martingale is the additional contribution
coming from the continuation value for recursive utility. Equivalently, it can be interpreted
as a change of measure and can be motivated as a robustness adjustment for model misspec-
ification as suggested by [1]. Under plausible parameterizations, the Brownian motion W
has a negative drift under the change of measure, reflecting the risk adjustment arising from
recursive-utility or a concern for model misspecification.

A similar specification of the consumption dynamics coupled with the recursive preference
structure was utilized by [2,18] and others to generate large and volatile prices of risk. We
adopt the parameterization from [17] used in [5] and summarized in the caption of Figure 1.
The stationary distribution for the process X2 is a gamma distribution, which allows us to
compute quartiles for shock elasticities (27) in a semi-analytical form.

Figure 1 plots the shock-exposure elasticity functions for the consumption process C
and shock-price elasticity functions for the same process in the BL and EZ models.9 We
parameterize the vectors σ̄1, σ̄2 and ᾱc as orthogonal, so that each component of the Brownian
motion W corresponds to an orthogonal shock to the processes X1, X2 and C , respectively.

The zero-horizon limits of the shock elasticity functions correspond to what is known as
infinitesimal exposures and infinitesimal prices of risk. The shock-exposure elasticities are
equal to zero at t = 0 except for the consumption exposure elasticity because shocks to the
growth rate and volatility processes impact the consumption process only indirectly, through
changes in the levels of the processes X1 and X2. While a current shock to the processes X1

or X2 will have a persistent effect on these processes which will accumulate to a nontrivial
impact on the future values of the consumption process C , the infinitesimal contribution to
C is zero.

The same logic applies to the shock-price elasticities for the BL model, since the stochastic
discount factor (28) for this model merely scales the consumption process by the negative
of the risk aversion, −γ , and the investor thus only fears risk embedded in the consumption
process that is contemporaneous with the maturity of the cash flow. On the other hand, the EZ
model leads to nonzero shock-price elasticities even at the zero horizon. When an investor
endowed with EZ preferences evaluates the risk embedded in the consumption process, she
also fears the impact of the current shock on the consumption process beyond her investment
horizon. The recursive nonseparable preference structure (29) of the EZ model, explained in

8 Numerical calculations confirm that for this endowment economy, the shock elasticities are not very sensitive
to the choice of the IES parameter.
9 The shock-price elasticity for this parameterization of the consumption dynamics ceases to exist for long
investment horizons for risk aversion coefficients γ > γ̄ BL ∼ 20 in the BL model due to the non-existence
of the conditional expectation E[St Ct | X0 = x]. Similarly, the shock-price elasticity function does not exist
in the EZ model for γ > γ̄ E Z ∼ 24 due to the non-existence of the continuation value for the recursive
preference structure. For details, see Appendix 1.
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Fig. 1 Shock elasticities for the long-run risk model. Thick lines correspond to shock elasticities conditional
on X2,0 = 1, the shaded areas capture quartiles for the shock elasticities under the stationary distribution of X2.
In the top right panel, the shock-price elasticities for the BL and EZ models coincide. Parameters are calibrated
to monthly frequency, and the elasticities are annualized. The parameterization is β̄c,0 = 0.0015, β̄c,1 = 1,
β̄c,2 = 0, μ̄11 = −0.021, μ̄12 = μ̄21 = 0, μ̄22 = −0.013, ᾱc = [0.0078 0 0]′, σ̄1 = [0 0.00034 0],
σ̄2 = [0 0 − 0.038], ι1 = 0, ι2 = 1, δ = 0.002, γ = 10

detail in Appendix 1, leads to a compensation for risk over an infinitesimal horizon induced
by fluctuations in future consumption realizations. The growth-rate and volatility shocks thus
generate nonzero infinitesimal price elasticities through their impact on future consumption
levels.

The consumption exposure elasticity measures the sensitivity of expected consumption to
a direct shock to the consumption process. The elasticity function is flat, reflecting the fact
that ᾱc ·dWt is an iid growth shock to the consumption process. The shaded area represents the
quartiles of the stationary distribution of the elasticity function, and captures the dependence
of the magnitude of the response on the current volatility level x2.

On the other hand, the growth-rate exposure elasticity, which represents the shock to the
process X1, builds up over time as the perturbation of the persistent growth rate accumulates
in the level of the consumption process. For the volatility exposure elasticity, the negative

123



Math Finan Econ (2014) 8:333–354 349

coefficient in σ̄2 implies that a positive shock reduces the volatility of the consumption process
and, because of Jensen inequality, decreases the expected level of future consumption.

The right column in Fig. 1 displays the shock-price elasticity functions for the BL and EZ
models. As explained before, the shock-price elasticities for the BL model approximately
correspond to the shock-exposure elasticities for the consumption process scaled by the risk
aversion coefficient γ . Moreover, the consumption price elasticities coincide for the BL and
EZ models. Consequently, the differences in asset pricing implications of the two models
must arise from exposure to the growth-rate and volatility shocks, which have predictable
components. The nonseparability in the EZ preference specification is inconsequential for
iid growth rate shocks.

The EZ model produces shock-price elasticity functions that are roughly flat and converge
to long-term limits that are lower than those for the BL model with the same value of the risk
aversion parameter. The flatness is caused by the fact that the martingale component (29) in
the EZ stochastic discount factor is the dominant source of its volatility. The long-horizon
shock elasticities in the two models coincide in the limit as the time preference coefficient δ

declines to zero. In the EZ model, the volatility of the stochastic discount factor depends on
the magnitude of the continuation values, and a decline in time discounting magnifies these
continuation values so that shock-price elasticities increase.

8 Implications for changes over finite horizons

Our earlier work, [14] and [16], took a different limit. We considered “small” exposures over
an entire interval. We investigate again this formulation and study the relationship between
these approaches.

Consider

N τ
t (r) = r

∫ τ∧t

0
η(Xu) · dWu

and the stochastic exponential:

H τ
t (r) = Et

(
N τ (r)

)
.

This is a generalization of the perturbation H τ
t introduced in Sect. 6. The scalar r parameter-

izes the magnitude of the exposure. For t ≥ τ write heuristically,

E
(
Mt H τ

t (r) | X0 = x
) = E

[
Mt

∫ τ

0
H τ

u (r)
(

d H τ
u (r)

H τ
u (r)

)
| X0 = x

]
.

Apply Law of Iterated Expectations and first compute

lim
v↓0

1

v

{
E

[
Mt H τ

u+v (r)
Mu H τ

u (r)
| Xu

]
Mu H τ

u (r) − E
[
Mt H τ

u (r) | Xu
]}

= rεm(t − u, Xu)E [Mt | Fu] H τ
u (r) . (30)

Thus

E
(
Mt H τ

t (r) X0 = x
) = rE

[
Mt

∫ τ

0
εm(t − u, Xu)H τ

u (r) du | X0 = x

]
. (31)
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Instead of localizing τ , [16] differentiate the logarithm of the expression on the right-hand
side with respect to r and evaluate the derivative at r = 0. This results in:

E
[
Mt

∫ τ

0 εm(t − u, Xu)du | X0 = x
]

E [Mt | X0 = x]

consistent with the formula given in [5]. The resulting shock price elasticity is:

E
[
Gt

∫ τ

0 εg(t − u, Xu)du | X0 = x
]

E [Gt | X0 = x]
− E

[
St Gt

∫ τ

0 εs+g(t − u, Xu)du | X0 = x
]

E [St Gt | X0 = x]
.

Thus we have shown that the implied interval τ elasticity is constructed from weighted
averages of integrals of the continuous-time elasticities when we localize the risk over this
interval by making r small.

9 Conclusion

Impulse response functions are commonly used in economic dynamics. They measure the
impact of shocks on endogenously determined and exogenously specified processes in a
dynamical system. We study continuous-time, nonlinear counterparts by building on the
state-dependent moving average representations implied by the Haussmann–Clark–Ocone
formula.

Structural models of macroeconomics typically include a stochastic discount factor
process used to represent asset valuation. In this paper we studied pricing counterparts to
impulse response functions. We call these counterparts shock elasticities. Exposure elastic-
ities measure how responsive future expected cash flows are to shocks and price elasticities
measure how responsive expected returns are to shocks. The shock elasticities reveal impli-
cations of stochastic equilibrium models for asset valuation. They inform us which shocks
command the largest shock prices at alternative investment horizons.

By imposing a continuous-time Brownian information structure, we localize exposures
and establish connections between impulse response functions and shock elasticities. It is
of interest to explore information structures that accommodate a more general class of Lévy
processes. In previous work, [5], we have initiated this analysis for special cases of jump
processes. In defining elasticities we may need to adopt convenient ways to normalize the
quantity of risk other than using the standard deviation.

Acknowledgments We would like to thank the referee for useful comments.

Appendix

Derivations for the model with predictable consumption dynamics

Model with persistent components in consumption dynamics

To derive the recursion for the parameters in the conditional expectation (26), guess a solution

E [Mt | X0 = x] = exp [θ0(t) + θ1(t) · x1 + θ2(t)x2] .

To derive equations of interest, differentiating the right-hand side with respect to time should
agree with the infinitesimal generator applied to the conditional expectation on the left-
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hand side viewed as a function of x . This relationship implies the following set of ordinary
differential equations, each with initial condition θi (0) = 0:

d

dt
θ1(t) = β̄1 + (μ̄11)

′θ1(t)

d

dt
θ2(t) = β̄2 + (μ̄12)

′θ1(t) + μ̄22θ2(t) + 1

2

∣∣ᾱ′ + θ1(t)
′σ̄1 + θ2(t)σ̄2

∣∣2

d

dt
θ0(t) = β̄0 − (ι1)

′ [β̄1 + (μ̄11)
′θ1(t)

] − ι2
[
β̄2 + (μ̄12)

′θ1(t) + μ̄22θ2(t)
]
. (32)

For the case when X1 is scalar, we have

θ1 (t) = β̄1

μ̄11

(
eμ̄11t − 1

)
.

Given the solution for θ1 (t), the ODE for θ2 (t) is a Riccati equation

d

dt
θ2(t) = q0 (t) + q1 (t) θ2 (t) + q2 (t) [θ2 (t)]2

for known parameter functions q0, q1 and q2. Substituting

θ2 (t) = − 1

q2 (t) u (t)

d

dt
u (t)

yields a second-order linear differential equation

0 = d2

dt2 u (t) + R1 (t)
d

dt
u (t) + R0 (t) u (t) (33)

with

R1 (t) = −μ̄22 − (
ᾱ′ + θ1 (t) σ1

)
σ ′

2

R0 (t) = 1

2
|σ2|2

(
β2 + μ̄12θ1 (t) + 1

2

∣∣ᾱ′ + θ1 (t) σ1
∣∣2

)

While this equation does not have a closed form solution, the coefficients R1 (t) and R0 (t)
converge to constants R∞

1 and R∞
0 , respectively, as t → ∞ , because θ1 (t) → −β̄1/μ̄11.

We can therefore characterize the asymptotic behavior of the differential equation (33). The
characteristic equation for the local behavior of this ODE as t → ∞ is

0 = z2 + R∞
1 z + R∞

0 .

The solution to the conditional expectation E [Mt | X0 = x] will then exist only if there is a
real solution to this equation.

Value function for recursive utility

We choose a convenient choice for representing continuous values. Similar to the discussion
in [23], we use the counterpart to discounted expected logarithmic utility.

dVt = μv,t dt + σv,t · dWt

The local evolution satisfies:

μv,t = δVt − δ log Ct − 1 − γ

2
|σv,t |2 (34)
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When γ = 1 this collapses to the discounted expected utility recursion.
Let

Vt = log Ct + v(Xt )

and guess that

v (x) = v̄0 + v̄1 · x1 + v̄2x2

We may compute μv,t by applying the infinitesimal generator to log C + v(X). In addition,

σv,t = αc (Xt ) + σ (Xt )
′ ∂

∂x
v (Xt ) .

Substituting into (34) leads to a set of algebraic equations

δv̄0 = β̄c,0 − (ι1)
′ (β̄c,1 + μ̄11v̄1

) − ι2
(
β̄c,2 + μ̄12v̄1 + μ̄22v̄2

)
δv̄1 = β̄c,1 + μ̄′

11v̄1

δv̄2 = β̄c,2 + μ̄′
12v̄1 + μ̄22v̄2 + 1

2
(1 − γ )

∣∣ᾱc + σ̄ ′
1v̄1 + σ̄ ′

2v̄2
∣∣2

which can be solved for the coefficients v̄i . The third equation is a quadratic equation for v̄2

that has a real solution if and only if

D =
[
μ̄22 − δ + (1 − γ )

(
ᾱc + σ̄ ′

1v̄1
)′

σ̄ ′
2

]2 −

− 2 (1 − γ ) |σ̄2|2
(

βc,2 + μ′
12v̄1 + 1

2
(1 − γ )

∣∣ᾱc + σ̄ ′
1v̄1

∣∣2
)

≥ 0.

In particular, the solution will typically not exist for large values of γ . If the solution exists,
it is given by

v̄2 =
−

[
μ̄22 − δ + (1 − γ )

(
ᾱc + σ̄ ′

1v̄1
)′

σ̄ ′
2

]
± √

D

(1 − γ )
∣∣σ̄ ′

2

∣∣2 . (35)

We choose the solution with the minus sign and justify the choice in the next subsection.

Stochastic discount factor

The stochastic discount factor has two components: one that is the intertemporal marginal
rate of substitution for discounted log utility and the other is a martingale constructed from
the continuation value

d log St = − log δ − d log Ct + d log S̃t

where S̃ is a martingale given by

d log S̃t =
√

X2,t (1 − γ )
(
ᾱc+σ̄ ′

1v̄1+σ̄ ′
2v̄2

)′
dWt − 1

2
X2,t (1 − γ )2

∣∣ᾱc+σ̄ ′
1v̄1+σ̄ ′

2v̄2
∣∣2

dt.

This martingale can be interpreted as a change of measure. The time-0 price of a payoff Gt

maturing at time t satisfies

E [St Gt | F0] = Ẽ

[
exp (−δt)

(
Ct

C0

)−1

Gt | F0

]
.
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Under the change of measure induced by S̃, there exists a standard Brownian motion W̃ such
that

dW̃t = dWt − √
X2,t (1 − γ )

(
ᾱc + σ̄ ′

1v̄1 + σ̄ ′
2v̄2

)
dt.

Substituting this relationship for the law of motion of X2 in (24) yields

d X2,t = μ̃22

(
X2,t − μ̄22

μ̃22

)
dt + √

X2,t σ̄2dW̃t

where the mean-reversion coefficient satisfies

μ̃22 = μ̄22 + (1 − γ ) σ̄2
(
ᾱc + σ̄ ′

1v̄1 + σ̄ ′
2v̄2

) = δ ± √
D.

Therefore, the solution for v̄2 in Eq. (35) with the minus sign leads to μ̃22 < 0, which implies
stable dynamics for X2. Hansen and Scheinkman [15] provide a rigorous general justification
of this choice.
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