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Recursive utility models that feature investor concerns about the
intertemporal composition of risk are used extensively in applied
research in macroeconomics and asset pricing. These models rep-
resent preferences as the solution to a nonlinear forward-looking
difference equation with a terminal condition. In this paper we
study infinite-horizon specifications of this difference equation in
the context of a Markov environment. We establish a connection
between the solution to this equation and to an arguably simpler
Perron–Frobenius eigenvalue equation of the type that occurs in
the study of large deviations for Markov processes. By exploiting
this connection, we establish existence and uniqueness results.
Moreover, we explore a substantive link between large deviation
bounds for tail events for stochastic consumption growth and
preferences induced by recursive utility.

Recursive utility models of the type suggested by ref. 1 and
featured in the asset-pricing literature by ref. 2 and others

represent preferences as the solution to a nonlinear forward-
looking difference equation with a terminal condition. Such pref-
erences are used in economic dynamics because seemingly simple
parametric versions provide a convenient device to change risk
aversion while maintaining the same elasticity of intertemporal
substitution. In this paper we explore infinite-horizon specifi-
cations in the context of a Markov environment. Even under the
Markov specification, establishing the existence of a solution to
this forward-looking recursion used to depict preferences can be
challenging. (See ref. 3 for a recent thorough analysis of exis-
tence and uniqueness of continuation value processes, but the
sufficient conditions given there impose restrictions that pre-
clude some of the parametric models used in practice.) In this
paper we establish a connection between the solution to this
equation and to an arguably simpler eigenvalue equation of the
type that occurs in the study of large deviations for Markov
processes (4–6).
The remainder of the paper is organized as follows. First, we

state formally the recursive utility problem and a related Perron–
Frobenius eigenvalue problem. We use the latter problem to
construct a change in probability that plays a central role in our
analysis. Under this change of measure, we establish several in-
equalites leading up to our main analytical result. We conclude
the paper by expanding on some of the ramifications of our
analysis and linking our results to the study of large deviations
applied to a Markov process.

Two Related Problems
Consider a discrete-time specification of recursive preferences of
the type suggested by refs. 1 and 2. We use the homogeneous-of-
degree-one aggregator specified in terms of current period con-
sumption Ct and the continuation value Vt,

Vt ¼
h
ðζCtÞ1−ρþ expð−δÞ½RtðVtþ1Þ�1−ρ

i 1
1−ρ
; [1]

where

RtðVtþ1Þ ¼
�
E
h
ðVtþ1Þ1−γ

���F t

i� 1
1−γ

adjusts the continuation value Vtþ1 for risk. With these prefer-
ences, 1

ρ is the elasticity of intertemporal substitution and δ is
a subjective discount rate. The parameter ζ does not alter pref-
erences, but gives some additional flexibility, and we select it in
a judicious manner.
Next exploit the homogeneity-of-degree-one specification of

the aggregator Eq. 1 to obtain

�
Vt

Ct

�1−ρ
¼ ζ1−ρ þ expð−δÞ

�
Rt

�
Vtþ1

Ctþ1

Ctþ1

Ct

��1−ρ
: [2]

Applying the aggregator requires a terminal condition for the
continuation value. In what follows we consider infinite-horizon
limits. Thus, we explore the construction of the continuation
value Vt as a function of Ct;Ctþ1;Ctþ2; . . ..
Consider now a Markov specification in discrete time. Let

ðX ;Y Þ ¼ fðXt;YtÞg be an underlying Markov process, and sup-
pose the following:
Assumption 1.

a) The joint distribution of ðXtþ1;Ytþ1Þ conditioned on ðXt;YtÞ
depends only on Xt.

b) Consumption dynamics evolve as

log Ctþ1 − log Ct ¼ κðXtþ1;Ytþ1;XtÞ:
In light of this restriction, we may view X alone as a Markov
process and Y does not “cause” X in the sense of ref. 7. As
suggested by a referee, the process Y can be viewed as an in-
dependent sequence conditioned on the entire process X where
the conditional distribution of Yt depends only on Xt and Xt−1.
[The referee noted that an argument given on p. 1616 of ref. 8
may be extended to demonstrate this conditional independence
and that we may view fðXt;Xt−1;YtÞg as a “hidden-state Markov
chain” with hidden state fðXt;Xt−1Þg. In our analysis Xt is treated
as directly observable, and we defer the study of hidden states in
this setting to future research.]
When the joint process ðX ;Y Þ is stationary, the logarithm of

consumption has stationary increments and the level process for
consumption displays stochastic geometric growth. For conve-
nience we normalize C0 ¼ 1. Given our assumed homogeneity in
preference, it is straightforward to allow for more general initial
conditions. (In the special case in which κ does not depend on
Yt+1, the consumption process is what is called a multiplicative
functional in the applied mathematics literature.) This specifi-
cation allows us to feature the process X in our analysis while

Author contributions: L.P.H. and J.A.S. designed research, performed research, and wrote
the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: joses@princeton.edu.

www.pnas.org/cgi/doi/10.1073/pnas.1200237109 PNAS | July 24, 2012 | vol. 109 | no. 30 | 11967–11972

EC
O
N
O
M
IC

SC
IE
N
CE

S

mailto:joses@princeton.edu
www.pnas.org/cgi/doi/10.1073/pnas.1200237109


allowing for some additional flexibility. Generally, we may think
of this as a convenient specification of consumption that could
emerge from a model in which consumption is determined
endogenously.
Given the Markov dynamics, we seek a solution:

�
Vt

Ct

�1−ρ
¼ f ðXtÞ; f ≥ 0:

Writing α ¼ 1− γ
1− ρ and for f ≥ 0; Uf ¼ ζ1−ρ þ expð−δÞðE½ f ðXtþ1Þα

exp½ð1− γÞκðXtþ1;Ytþ1;XtÞ�jXt ¼ x�Þ1α; we can express Eq. 2 as

f̂ ðxÞ ¼ Uf̂ ðxÞ: [3]

Remarkably, the solution to the fixed-point problem Eq. 3 is
closely related to a Perron–Frobenius eigenvalue equation of the
type analyzed by ref. 9 in their study of risk–return relations and
risk pricing over long-term investment horizons. The eigenvalue
problem studied in ref. 9 is also closely related to an eigenvalue
equation that occurs in the study of large deviations. Consider
the mapping:

Tf ðxÞ ¼ E½exp½ð1− γÞ κ ðXtþ1;Ytþ1;XtÞ� f ðXtþ1ÞjXt ¼ x�:
The eigenvalue equation of interest is

TeðxÞ ¼ expðηÞ eðxÞ [4]

for e> 0. In many specifications this equation has multiple pos-
itive solutions with eigenfunctions that are not equal up to a
scale factor.

Changing the Probability Measure
We use a Perron–Frobenius eigenfunction to change the prob-
ability measure. Associated with each such eigenfunction is a
positive random variable

Mtþ1 ¼ exp½ð1− γÞ κ ðXtþ1;Ytþ1;XtÞ� eðXtþ1Þ
eðXtÞ expð−ηÞ

that has conditional expectation equal to unity. We use this var-
iable to define a change of measure for the transition probability
of the Markov process, via

~E½ϕðXtþ1;Ytþ1ÞjXt ¼ x;Ytþ1 ¼ y�
¼ E½Mtþ1ϕðXtþ1;Ytþ1ÞjXt ¼ x�

for any Borel measurable function ϕ with the appropriate domain.
This change in the transition probability preserves the Markov
property and the restrictions imposed by Assumption 1. Only one
of the eigenfunctions induces a change of measure that is sto-
chastically stable in the sense of the following (uniqueness is es-
tablished in ref. 9 for a continuous-time Markov specification, but
their result has a direct counterpart for discrete-time):
Assumption 2. Under the change of probability measure,

lim
t→∞

~E½ϕðXt;YtÞjX0 ¼ x� ¼ ~E½ϕðXt;YtÞ�

for any bounded Borel measurable function ϕ. The expectation on
the right-hand side uses a stationary distribution implied by the
change in the transition distribution. We require that the conver-
gence applies for almost all Markov states x under this stationary
distribution.
There is an extensive literature that gives sufficient conditions

for stochastic stability.
To apply this change in measure, we use a multiplicative

scaling of functions:

gðxÞ ¼ f ðxÞ eðxÞ− 1
α:

The transformed counterpart to Eq. 3 is

ĝðxÞ ¼ ÛĝðxÞ;
where

ÛgðxÞ ¼ ζ1−ρeðxÞ−1
α þ expð−ξÞ

�
~E½ gðXtþ1ÞαjXt ¼ x�

�1
α
;

and ξ ¼ δ− η
α. Note that this altered recursion uses the change of

measure to absorb the stochastic component to growth. Moreover,

ÛgðxÞ≥ ζ1−ρeðxÞ−1
α : [5]

We also consider an alternative recursion defined via an opera-
tor V̂ defined on nonnegative functions h given by

V̂h ¼
h
Û
	
h

1
α

iα

:

That is,

V̂hðxÞ ¼
h
ζ1−ρeðxÞ− 1

α þ expð−ξÞ
�
~E½hðXtþ1ÞjXt ¼ x�

�1
α
iα
:

In particular there is a one-to-one correspondence between fixed
points of Û and fixed points of V̂ and inequality Eq. 5 implies
that V̂hðxÞ≥ ζ1−γeðxÞ−1 if α> 0. (Ref. 3 constructs L∞ spaces
weighted by scale factors that depend on time, including factors
with geometric decay as a featured case. The L∞ structure pre-
sumes processes with bounded support, although the support can
increase over time because of the scale factors that they in-
troduce. In contrast, we exploit heavily a Markov structure and
use the Perron–Frobenius eigenvalue embedded in our change
of probability measure to accommodate geometric growth and
other convenient forms of stochastic growth in consumption. The
recursion, Û, maps into the special case of the recursions in ref. 3
for α< 0 and 1< α≤ 1; and the recursion, V̂, maps into a special
case when α> 0 except that we feature L1 spaces instead of
L∞ spaces.)
To maintain discounting in the presence of stochastic growth,

we assume the following:
Assumption 3. ξ> 0.
In terms of the initial parameters, Assumption 3 implies

δ >
1− ρ

1− γ
η: [6]

For typical parameterizations, η< 0: Thus, when γ > 1, this bound
on δ is positive for ρ< 1 and negative when ρ> 1. (It is possible
that η is positive, which alters the parameter restrictions.)

Some Useful Inequalities
In this section we establish inequalities that we use to show the
existence of fixed points to Û and V̂: We consider alternative
operators with fixed points that are easier to characterize. These
alternative fixed points provide bounds for the fixed points that
interest us. Starting from these bounds we construct monotone
sequences that converge to candidate fixed points of Û and V̂:
We also show when the two constructed fixed points coincide.
Recall that we have the flexibility to set ζ> 0 in an arbitrary
fashion. We exploit this convenience by setting ζ ¼ ½1−
expð−ξÞ� 1

1−ρ:

Inequalities for Û. Suppose that α< 0 and apply Jensen’s in-
equality to obtain
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~E½ gðXtþ1ÞαjXt ¼ x�≥
�
~E½ gðXtþ1ÞjXt ¼ x�

�α
: [7]

Because 1
α< 0,

ð~E½ gðXtþ1ÞαjXt ¼ x�Þ1α ≤ ~E½ gðXtþ1ÞjXt ¼ x�: [8]

When 0< α< 1, relation Eq. 7 holds with the reverse inequality
and raising both sides to the 1

α power preserves inequality Eq. 8.
When α≥ 1, relation Eq. 7 holds and raising both sides to the power
1
α gives us inequality Eq. 8 with the reverse sign. Thus, we have

ÛgðxÞ ≤ ~UgðxÞ α< 0
ÛgðxÞ ≤ ~UgðxÞ 0< α< 1
ÛgðxÞ ≥ ~UgðxÞ α≥ 1;

where

~UgðxÞ ¼ ½1− expð−ξÞ�eðxÞ−1
α þ expð−ξÞ~E½ gðXtþ1ÞjXt ¼ x�:

A sufficient condition to obtain a fixed point for ~U is the
following:
Assumption 4. ~E

h
eðxÞ−1

α

i
<∞:

In this case

~gðxÞ ¼ ½1− expð−ξÞ�
X∞
t¼0

expð− tξÞ ~E
h
eðXtÞ−

1
α

���X0 ¼ x
i

is in L1 (using the ~· stationary distribution) and is a fixed point
for ~U: In addition, under Assumption 4, if α≤ 1; because in-
equality Eq. 8 holds, Û maps L1

þ into L1
þ:

Inequalities for V̂. Suppose again that α< 0 and apply Jensen’s
inequality to obtain

½1− expð−ξÞ�eðxÞ−1
α þ expð−ξÞ

�
~E½hðXtþ1ÞjXt ¼ x�

�1
α

≥
h
½1− expð−ξÞ�eðxÞ−1 þ expð−ξÞ

�
~E½hðXtþ1ÞjXt ¼ x�

�i1
α
:

[9]

Raising both sides to the power α reverses the inequality
and thus�

½1− expð−ξÞ�eðxÞ− 1
α þ expð−ξÞ

�
~E½hðXtþ1ÞjXt ¼ x�

�1
α
�α

≤ ½1− expð−ξÞ�eðxÞ−1 þ expð−ξÞ
�
~E½hðXtþ1ÞjXt ¼ x�

�
:

For 0< α< 1, the inequality in Eq. 9 remains the same and
raising both sides to power α does not reverse this inequality. For
α≥ 1 the inequality in Eq. 9 is reversed and raising both sides to
the power α does not reverse the inequality. Thus

V̂hðxÞ ≤ ~VhðxÞ α< 0
V̂hðxÞ ≥ ~VhðxÞ 0< α< 1
V̂hðxÞ ≤ ~VhðxÞ α≥ 1;

where

~VhðxÞ ¼ ½1− expð−ξÞ�eðxÞ−1 þ expð−ξÞ~E½hðXtþ1ÞjXt ¼ x�:
A sufficient condition to obtain a fixed point for ~V is the
following:
Assumption 5. ~E½eðxÞ−1�<∞:
In this case,

~hðxÞ ¼ ½1− expð−ξÞ�
X∞
t¼0

expð−tξÞ~E
h
eðXtÞ−1

���X0 ¼ x
i

[10]

is a fixed point for ~V:

A consequence of Jensen’s inequality is that Assumption 4
implies Assumption 5 when 0< α< 1 and conversely for α≥ 1.
For α< 0, they are not comparable. We can apply Jensen’s in-
equality to rank fixed points of the operators:

~hðxÞ1α ≤ ~gðxÞ α< 0
~hðxÞ1α ≤ ~gðxÞ 0< α< 1
~hðxÞ1α ≥ ~gðxÞ α≥ 1:

Candidate Fixed Points for Û and V̂. We use monotonicity to con-
struct candidate fixed points for Û and V̂. We consider three
cases associated with three different intervals for α.
α< 0. When Assumption 5 is satisfied, V̂~hðxÞ≤ ~V~hðxÞ ¼ ~hðxÞ; and
thus

�
V̂ j~h

�
is a decreasing sequence of functions. This sequence

converges pointwise to a function ĥ. We establish below that this
limit is a fixed point for V̂:
When Assumption 4 is satisfied, we use ĝ; the pointwise limit

of the decreasing sequence
�
Û j
~g
�
; as a candidate fixed point for

Û: Because ~h
1
α ≤ ~g,

	
V̂ j~h


1
α ¼ Û j	~h1

α


≤ Û j

~g: Taking limits as j tends

to infinity, ĥ
1
αðxÞ≤ ĝðxÞ when Assumptions 4 and 5 are both

satisfied.
0<α< 1. In this case we impose the more restrictive Assumption
4 and use Û to construct a fixed point. Note that

V̂~h≤
h
~U
	
~h

1
α

iα

≤
	
~U~g


α¼ ~gα:

Applying V̂ to both sides,

V̂2~h ≤ V̂
h
~U
	
~h

1
α

iα ¼h

Û~U
	
~h

1
α

iα

≤
h
~U2	~h1

α

iα

≤
	
~U2
~g

α ¼ ~gα:

Repeating this argument, we see that V̂ j~h≤ ~gα:
Because V̂~h≥ ~V~h ¼ ~h; fV̂j~hg is an increasing sequence of

functions that is bounded from above. This sequence converges
pointwise to a function ĥ.
Because ~h

1
α ≤ ~g,

	
V̂ j~h


1
α ¼ Û j	~h1

α


≤ Û j

~g: Taking limits as j tends
to infinity, ĥðxÞ1α ≤ ĝðxÞ:
α≥ 1. In this case we impose the more restrictive Assumption 5
and use V̂ to construct a decreasing sequence bounded below by
a strictly positive function and thus converging pointwise to a
positive function ĝ. We use Û to construct an increasing sequence
that is bounded from above by a positive function. This sequence

converges to a function ĥ with ĥ
1
α ≥ ĝ.

Extending the Domain of Convergence.We constructed fixed points
by iterating operators starting from a specific function, say ~g, and
converging to a limit point, say ĝ, where ĝ≤ ~g. Consider a func-

tion g such that ĝ ≤ g≤ ~g. Then ĝ ¼ Û
j
ĝ≤ Û

j
g≤ Û

j
~g: Because

fÛ jg converges to ĝ, fÛ j
gg also converges to ĝ. At least in this

specific sense, the candidate fixed points are “stable.”

Main Result
We now state and prove a result on the existence of recursive
utilities in a Markov setting. The proposition collects interme-
diate results proved earlier and shows that the candidate fixed
points are actual fixed points and that they coincide if α> 0.
Proposition 6. Suppose (a) ðX ;Y Þ is a Markov process satisfying

Assumption 1, (b) e is a solution to the Perron–Frobenius Eq. 4
satisfying Assumption 2 with expðηÞ the associated eigenvalue, and
(c) the subjective rate of discount satisfies δ > η

α (Assumption 3).
Then for alternative ranges of α we have the following results:
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i) If α< 0, ĥ
1
α is a fixed point of Û provided that Assumption 5 is

satisfied, and ĝ is a fixed point of Û provided that Assumption 4

is satisfied. When both assumptions are satisfied, ĥ
1
α ≤ ĝ.

ii) If 0< α< 1, ĥ
1
α ¼ ĝ is a fixed point of Û provided that Assump-

tion 5 is satisfied.
iii) If α≥ 1, ĥ

1
α ¼ ĝ is a fixed point of Û when Assumption 4 is

satisfied. Moreover, ĝ is the unique fixed point with a finite α
moment under the ~· stationary distribution.

Whereas the proposition features Û, fixed points of V̂ are ob-
tained by raising the fixed points of Û to power α. Solutions for Vt

Ct
are given by multiplying fixed points of Û by the eigenfunction
e
1
α and raising the product to the power 1

1−ρ.
We first show that the limits we constructed above are actually

fixed points.

Existence of Fixed Points. To prove existence, we again treat three
cases, depending on the magnitude of α.
α< 0. If Assumption 5, holds then ~h∈L1

þ and V̂ j~h is a dominated
sequence of L1

þ functions converging pointwise to ĥ: The dom-
inated convergence theorem guarantees that limj→∞~E



V̂j~h

ðXtþ1ÞjXt ¼ x
� ¼ ~E



ĥðXtþ1ÞjXt ¼ x

�
; with ~· measure one. Hence

ĥ is a fixed point of V̂:
If Assumption 4 holds, then, as we showed above, ~g∈L1

þ and
Û maps L1

þ into L1
þ. Because ½1− expð−ξÞ�eðxÞ− 1

α ≤ Û j
~g≤ ~gðxÞ,

where the first inequality follows from bound Eq. 5, the domi-
nated convergence theorem assures us that ĝ∈L1

þ and is the

strictly positive (with probability 1) L1 limit of Û j
~g. From in-

equality Eq. 8 it follows that for each j, ~E
	

Û j
~gðXtþ1


�αjXt ¼ x


is

finite. Let A ¼ fx : supj ~E
	

Û j
~gðXtþ1


�αjXt ¼ x


<∞g. Because

α< 0,
	
Û jþ1

~g

α ≥ 	

Û j
~g

α
: Beppo Levi’s monotone convergence

theorem thus implies that for x∈ A; ~E
	

Û j
~gðXtþ1Þ

�αjXt ¼
x


→ ~E

	

ĝðXtþ1Þ

�αjXt ¼ x


; and as a consequence �gðxÞ ¼ limj→∞

Û jþ1
~gðxÞ ¼ ÛĝðxÞ; for x∈ A: If x∉ A, then ~E

	

Û j
~gðXtþ1Þ

�αjXt ¼
x


→∞ and ĝðxÞ ¼ ½1− expð−ξÞ�eðxÞ−1

α ≤ ÛgðxÞ; for g∈ L1
þ: Be-

cause ĝ≤ Û j
~g and Û is monotone, Ûĝ≤ ĝ, and thus for x∉ A;

we also have ÛĝðxÞ ¼ ĝðxÞ:
0<α< 1. If Assumption 4 holds, ~g∈ L1

þ and V̂ j~h is a sequence of
L1
þ functions dominated by gα ∈ L1

þ: The remainder of the proof
is as above.
α> 1. If Assumption 5 holds, the proof for α< 0 applies.
We next show that when α> 0, the constructed fixed points are

actually the same. Again we treat separately the cases 0< α< 1
and α≥ 1.
Consider first the case in which 0< α< 1. For s> 0 the function

ψðrÞ ¼
h
sþ expð−ξÞr1α

iα
is convex for r> 0: Consequently for

each fixed x, V̂ is a convex function of h> 0: A subgradient for
this convex function at h1 is the linear map that maps a k∈L1

þ
into dðxÞ~E½kðXtþ1ÞjXt ¼ x� and a simple calculation shows that
0< dðxÞ< 1: Thus, if h1 ≥ h2 are nonnegative fixed points of V̂;

h2ðxÞ− h1ðxÞ ¼ V̂h2ðxÞ− V̂h1ðxÞ
≥ dðxÞ~E½ðh2 − h1ÞðXtþ1ÞjXt ¼ x�:

By the law of iterated expectations,

~E½h2ðXtþ1Þ− h1ðXtþ1Þ�≥ ~EðdðXtÞðh2 − h1ÞðXtþ1ÞÞ:
Because 0< dðxÞ< 1, h1 and h2 coincide in a set with ~· measure
1. In particular, ĝα ¼ ĥ:
Next consider the case in which α≥ 1. We view ð~E½ gðXtþ1Þαj

Xt ¼ x�Þ1α as a conditional norm. As a consequence, if g1 ≥ 0 and
g2 ≥ 0 are fixed points of Û;

jg1ðxÞ− g2ðxÞj ¼
��Ûg1ðxÞ− Ûg2ðxÞ

��
≤ expð−ξÞ

h
ð~E½jg1ðXtþ1Þ− g2ðXtþ1ÞjαjXt ¼ x�Þ1α

i
;

where the last inequality follows from the (reverse) triangle
inequality. Next raise both sides to the power α and then in-
tegrate with respect to the ~· stationary distribution. By the
law of iterated expectations, E½jg1ðXtþ1Þ− g2ðXtþ1Þjα�≤ expð−ξÞ
E½jg1ðXtþ1Þ− g2ðXtþ1Þjα�; provided that g1 and g2 have finite
α-moments under the ~· stationary distribution. Thus, g1 and g2
must be equal with ~· probability 1.
Because ĝα ≤ ĥ≤ ~h; under Assumption 5 ĝ and ĥ

1
α have finite

α-moments under the ~· stationary distribution. Therefore, ĝ and
ĥ

1
α coincide. In addition, ĝ is the unique fixed point of Û with a

finite α-moment under the ~· stationary distribution.

Three Interesting Extensions
Limiting Version of Asset Valuation. Ref. 10 characterizes asset-
pricing implications in the limiting case ξ≈ 0 by interpreting the
eigenvalue problem as the limit of a utility recursion. As is well
known in the asset-pricing literature, one-period stochastic dis-
count factors provide a convenient way to depict the “shadow
prices” of one-period claims that would clear hypothetical
competitive markets. See, for instance, refs. 11 and 12. The
valuation of multiperiod claims can then be obtained by re-
peatedly applying the formula for valuation of one-period claims.
The stochastic discount factor S for the recursive utility
model satisfies

Stþ1

St
¼ expð−δÞ

�
Ctþ1

Ct

�−γ� Vtþ1=Ctþ1

RtðVtþ1=CtÞ
�ρ−γ

: [11]

Using the implied one-period stochastic discount factor, the date
t valuation of a claim that pays f ðXtþ1Þ at tþ 1 is ℙf ðxÞ ¼
E
h
Stþ1
St
f ðXtþ1ÞjXt ¼ x

i
. Iterating the ℙ operator extends pricing to

claims with a longer payoff horizon. (Stochastic growth may be
introduced into this valuation while preserving the same math-
ematical structure as in ref. 9.)
The formula for the stochastic discount factor remains well

defined in the limiting case. The limit operator V̂ is given by
V̂hðxÞ ¼ ~E½hðXtþ1ÞjXt ¼ x�. Any positive constant is a fixed point
of V̂. One such constant is given by the limit solution to ref. 10
as ξ tends to zero, ~h ¼ ~E



eðxÞ−1�. This constant corresponds to�

Vt
Ct

�1−γ
¼ eðXtÞ~E

h
eðxÞ−1

i
. [This mathematical characterization is

very similar to that of Runolfsson (13), who studies ergodic risk-
sensitive control problems using eigenfunction methods. In
contrast to our analysis, Runolfsson abstracts from stochastic
growth, and the change of probability measure that we apply is
not part of his analysis.]
Setting δ to its limit value given in Eq. 6 or equivalently ξ ¼ 0,

and normalizing S0 ¼ 1;

St ¼ expð−ηtÞ
�
Ct

C0

�− γ�eðXtÞ
eðX0Þ

�ρ−γ
1−γ

:

When the process X is stationary, the long-term decay of this

stochastic discount factor is dominated by ~St ¼ expð−ηtÞ	Ct
C0


−γ
;

which is the stochastic discount factor for a model in which
preferences are depicted by a time-separable power utility func-
tion with power 1− γ. An equivalent depiction of the power
utility specification is achieved by setting ρ ¼ γ. The extra con-
tribution of recursive utility is captured by the Perron–Frobenius
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eigenfunction e, via the term Ŝt ¼
h
eðXtÞ
eðX0Þ

iρ−γ
1−γ
: Applying methods

developed in refs. 9 and 10 uses such representations to char-
acterize permanent and transitory contributions to asset valua-
tion and to make formal comparisons of recursive utility to
power utility models of consumer preferences.

Unitary Elasticity of Substitution. So far we have abstracted from
the case ρ ¼ 1. When ρ ¼ 1, we may use the recursion

ÛgðxÞ ¼ η expð−δÞ
1− γ

− ½1− expð−δÞ�log eðxÞ

þ expð−δÞ
1− γ

~Eðexp½ð1− γÞgðXtþ1Þ�jXt ¼ xÞ;

where we no longer restrict g to be positive. This recursion is
a special case of the so-called “risk-sensitive recursion” studied
in refs. 14 and 15, where discounting is included in the manner
suggested by ref. 16. Let

~UgðxÞ ¼ η expð−δÞ
1− γ

− ½1− expð−δÞ�log eðxÞ

þ expð−δÞ~E½gðXtþ1ÞjXt ¼ x�:
Then Ûg≤ ~Ug and ~U has a fixed point ~g if ~E½log eðXtÞ� is finite.
We may use our previous arguments to show that fÛ j

~gg is a
decreasing sequence, but we do not have an obvious lower bound
on these iterations. When they converge to a finite valued
function ĝ, this function is a fixed point of Û.

Different Starting Point. Our analysis takes as given the con-
sumption dynamics in contrast to stochastic growth economies
such as those studied in ref. 17. The change of probability
measure we use is determined by the multiplicative martingale
component for consumption raised to a power as discussed in
refs. 9 and 10. Some stochastic growth economies with pro-
duction have a balanced growth path relative to some stochas-
tically growing technology. In such economies, the value of η and
the change of measure may be deduced before solving the model.
In particular, we may check the restriction δ> 1− ρ

1− γη by solving for
η using the exogenously specified technology and the balanced-
growth restriction. This restriction on δ may be viewed as an
extension of ref. 18’s analysis of subjective discount rates in
stochastic growth economies for models with power utility
ðγ ¼ ρÞ. The eigenfunction e, which is also restricted in our
analysis, will depend on a conjectured equilibrium solution for
consumption, however.

Relation to Large Deviations
The authors of ref. 4 and others use principal eigenvalue prob-
lems as a device for computing large deviation bounds. Although
their analysis allows for the construction of large deviation bounds
for a large class of events, we consider bounding a rather simple
set of tail events.
Following the work of ref. 19, we explore the probabilities that

consumption growth will be below some growth threshold at a
given date. (Ref. 19 actually investigates the behavior of port-
folios over long investment horizons whereas we look at con-
sumption growth.)
Consider the following threshold probability:

Prflog Ct − log C0 ≤ − rtjX0 ¼ xg
¼ Prf−log Ct þ log C0 − rt≥ 0jX0 ¼ xg: [12]

This probability is the “value at risk” that the growth rate of
consumption will be less than − r. As we will eventually make the

time horizon t tend to infinity, adding a constant to the threshold
in Eq. 12 will be inconsequential. This computation is similar to
but distinct from calculations for a class of ruin problems initi-
ated by Cramer and Lundberg. See ref. 20 for a more refined use
than what we describe here of large deviation theory to compute
asymptotic ruin probabilities.
To bound the probability in Eq. 12, we follow the usual ap-

proach to large deviations by constructing a family of functions
that dominate the indicator function

xθ ≥ 1flog x≥0g

for any θ≥ 0. An implication of this domination expressed in
terms of logarithms of probabilities scaled by 1

t is

−θr þ 1
t
log E

"�
Ct

C0

�−θ�����X0 ¼ x

#

≥
1
t
log Prflog Ct − log C0 þ rt≤ 0jX0 ¼ xg;

where we scaled by t. This bound holds for all θ> 0, which leads
us to minimize the left-hand side with respect to θ. We study the
limiting result as the time horizon becomes large. The optimized
θ depends on the growth rate r used in constructing the threshold
of interest. We link the choice of θ to the preference parameter
γ − 1, and, as a consequence, the inverse problem is of interest to
us. Given θ, for what value of the growth rate r will this θ be the
best choice for constructing a large-deviation bound?
The large t approximation to the left-hand side is

−θr þ ηðθÞ; [13]

where ηðθÞ is the Perron–Frobenius eigenvalue obtained
by solving

Eðexp½−θκðXtþ1;Ytþ1;XtÞ�eðXtþ1ÞjXt ¼ xÞ ¼ exp½ηðθÞ�eðxÞ:
To construct the best possible asymptotic bound we minimize
Eq. 13 with respect to θ≥ 0 or, equivalently

ξðrÞ ¼ sup
θ≥0

½rθ− ηðθÞ�;

which is a Legendre transform. The function η can be shown
to be convex in θ as is the Legendre transform ξ. With this
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Fig. 1. Thresholds and decay rates in tail probabilities. The horizontal axis
depicts values of θ. The solid blue curve plots the implied threshold r for each
value of θ with units depicted on the left vertical axis. The dot-dashed red
curve gives the implied decay rate in the probabilities for each value of θ
with units depicted on the right vertical axis. The decay rates are annualized.
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construction, the decay rate in the probabilities for threshold r is
ξðrÞ. The first-order conditions are:

r ¼ η′ðθÞ ¼ − ~E½κðXtþ1;Ytþ1;XtÞ�
provided that η is differentiable and the distorted distribution
is evaluated at the optimized value of θ. This same change in
probability distribution is commonly used to verify that the upper
bound just computed is also the best possible bound.
So far we have taken r to be specified and we solve for θ. To

build a connection to our earlier analysis of intertemporal utility
functions, we now consider the inverse problem by computing
a threshold r that solves the optimization problem for a given θ.
Suppose that γ > 1 and let θ ¼ γ − 1. For each such value of γ, we
compute a threshold for which the power specification for ter-
minal consumption gives the best probability bound.
We illustrate these calculations using a specification from ref.

21 of a “long-run risk” model for consumption dynamics featured
in ref. 22. The authors of ref. 22 use historical data from the
United States to motivate their choice of parameters. Their model
includes predictability in both conditional means and conditional
volatility. We use the continuous-time specification from ref. 21
because the resulting model of stochastic volatility is more trac-
table. Our analysis assumes a discrete-time model. Because a
continuous-time Markov process X observed at interval points in
time remains a Markov process in discrete time, we use the im-
plied discrete-time specification to construct preferences and an-
alyze implications. In so doing we exploit the continuous-time
quasi-analytical formulas given by ref. 10 for ηðθÞ as an important
input into our calculations.
We explore the consequences of changes in θ and implicitly

for γ in Fig. 1, which depicts two curves. One curve plots the
threshold r for the which the value of θ on the horizontal axis is

optimal. The threshold is computed as rðθÞ ¼ η′ðθÞ. The un-
conditional mean of log Ctþ1 − log Ct is 0.0015, and this is equal
to − rð0Þ. We expect this outcome because the distribution of the
growth rate (in logarithms) of consumption, after adjusting for
mean growth rate and scaling by 1ffiffiffi

T
p , obeys a central limit theo-

rem. Positive values of θ imply larger values of r, which corresponds
to movements to the left tail of the distribution of log Ct − log C0.
Fig. 1 also plots the implied decay rates in the probabilities of
consumption over a horizon t exceeding the threshold −rðθÞt. This
decay rate increases in θ because the implied threshold r is getting
larger. For instance, when rðθÞ ¼ −0:00075, the decay rate is
0.0104 per annum and when rðθÞ ¼ 0, the decay rate is 0.0408 per
annum. The zero threshold rðθÞ ¼ 0 occurs when θ ¼ 4:51 or
equivalently γ ¼ 5:51.
In summary, the same Perron–Frobenius problem that we use

as a device to analyze the infinite-horizon recursive valuation
also gives an explicit link between the preference parameter γ
and large-deviation bounds for the tail behavior of the growth
rate in consumption.

Conclusions
We use Perron–Frobenius theory applied to valuation operators
to (i) establish existence of the infinite-horizon value function for
specifications of recursive utility that are commonly used in the
study of economic dynamics, (ii) provide a limiting character-
ization of asset valuation that features the beliefs of economic
agents about macroeconomic growth and uncertainty, and (iii)
illustrate a connection between our analysis and research on
large-deviation bounds for Markov processes.
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