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1 Introduction

Generalized Method of Moments (GMM) refers to a class of estimators which are constructed
from exploiting the sample moment counterparts of population moment conditions (some-
times known as orthogonality conditions) of the data generating model. GMM estimators
have become widely used, for the following reasons:

• GMM estimators have large sample properties that are easy to characterize in ways
that facilitate comparison. A family of such estimators can be studied a priori in ways
that make asymptotic efficiency comparisons easy. The method also provides a natural
way to construct tests which take account of both sampling and estimation error.

• In practice, researchers find it useful that GMM estimators can be constructed without
specifying the full data generating process (which would be required to write down the
maximum likelihood estimator.) This characteristic has been exploited in analyzing
partially specified economic models, in studying potentially misspecified dynamic mod-
els designed to match target moments, and in constructing stochastic discount factor
models that link asset pricing to sources of macroeconomic risk.

Books with good discussions of GMM estimation with a wide array of applications in-
clude: Cochrane (2001), Arellano (2003), Hall (2005), and Singleton (2006). For a theoretical
treatment of this method see Hansen (1982) along with the self contained discussions in the
books. See also Ogaki (1993) for a general discussion of GMM estimation and applications,
and see Hansen (2001) for a complementary entry that, among other things, links GMM
estimation to related literatures in statistics. For a collection of recent methodological ad-
vances related to GMM estimation see Ghysels and Hall (2002). While some of these other
references explore the range of substantive applications, in what follows we focus more on
the methodology.

2 Setup

As we will see, formally there are two alternative ways to specify GMM estimators, but
they have a common starting point. Data are a finite number of realizations of the process
{xt : t = 1, 2, ...}. The model is specified as a vector of moment conditions:

Ef(xt, βo) = 0

where f has r coordinates and βo is an unknown vector in a parameter space P ⊂ Rk. To
achieve identification we assume that on the parameter space P

Ef(xt, β) = 0 if, and only if β = βo. (1)

The parameter βo is typically not sufficient to write down a likelihood function. Other pa-
rameters are needed to specify fully the probability model that underlies the data generation.
In other words, the model is only partially specified.

Examples include:
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i) linear and nonlinear versions of instrumental variables estimators as in Sargan (1958),
Sargan (1959), Amemiya (1974);

ii) rational expectations models as in Hansen and Singleton (1982), Cumby et al. (1983),
and Hayashi and Sims (1983)

iii) security market pricing of aggregate risks as described, for example, by Cochrane (2001),
Singleton (2006) and Hansen et al. (2007);

iv) matching and testing target moments of possibly misspecified models as described by,
for example, Christiano and Eichenbaum (1992) and Hansen and Heckman (1996).

Regarding example iv, many related methods have been developed for estimating correctly
specified models, dating back to some of the original applications in statistics of method-
of-moments type estimators. The motivation for such methods was computational. See
Hansen (2001) for a discussion of this literature and how it relates to GMM estimation. With
advances in numerical methods, the fully efficient maximum likelihood method and Bayesian
counterparts have become much more tractable. On the other hand, there continues to be an
interest in the study of dynamic stochastic economic models that are misspecified because
of their purposeful simplicity. Thus moment matching remains an interesting application for
the methods described here. Testing target moments remains valuable even when maximum
likelihood estimation is possible (for example, see Bontemps and Meddahi (2005)).

2.1 Central Limit Theory and Martingale approximation

The parameter dependent average

gN(β) =
1

N

N∑
t=1

f(xt, β)

is featured in the construction of estimators and tests. When the Law of Large Numbers
is applicable, this average converges to the Ef(xt, β). As a refinement of the identification
condition: √

NgN(β0) =⇒ Normal(0, V ) (2)

where =⇒ denotes convergence in distribution and V is a covariance matrix assumed to be
nonsingular. In an iid data setting, V is the covariance matrix of the random vector f(xt, βo).
In a time series setting:

V = lim
N→∞

NE [gN(βo)gN(βo)
′] , (3)

which is the long run counterpart to a covariance matrix.
Central limit theory for time series is typically built on martingale approximation. (See

Gordin (1969) or Hall and Heyde (1980)). For many time series models, the martingale
approximators can be constructed directly and there is specific structure to the V matrix.
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A leading example is when f(xt, βo) defines a conditional moment restriction. Suppose that
xt, t = 0, 1, ... generates a sigma algebra Ft, E [|f(xt, β0)|2] < ∞ and

E [f(xt+`, β0)|Ft] = 0

for some ` ≥ 1. This restriction is satisfied in models of multi-period security market pricing
and in models that restrict multi-period forecasting. If ` = 1, then gN is itself a martingale;
but when ` > 1 it is straightforward to find a martingale mN with stationary increments
and finite second moments such that

lim
N→∞

E
[|gN(β0)−mN(β0)|2

]
= 0,

where | · | is the standard Euclidean norm. Moreover, the lag structure may be exploited to
show that the limit in (3) is1

V =
`−1∑

j=−`+1

E [f(xt, β0)f(xt+j, β0)
′] . (4)

When there is no exploitable structure to the martingale approximator, the matrix V is the
spectral density at frequency zero.

V =
∞∑

j=−∞
E [f(xt, β0)f(xt+j, β0)

′]

2.2 Minimizing a Quadratic Form

One approach for constructing a GMM estimator is to minimize the quadratic form:

bN = arg min
β∈P

gN(β)′WgN(β)

for some positive definite weighting matrix W . Alternative weighting matrices W are asso-
ciated with alternative estimators. Part of the justification for this approach is that

β0 = arg min
β∈P

Ef(xt, β)′WEf(xt, β).

The GMM estimator mimics this identification scheme by using a sample counterpart.
There are a variety of ways to prove consistency of GMM estimators. Hansen (1982)

established a uniform law of large numbers for random functions when the data generation
is stationary and ergodic. This uniformity is applied to show that

sup
β∈P

|gN(β)− E [f(xt, β)]| = 0

1The sample counterpart to this formula is not guaranteed to be positive semidefinite. There are a variety
of ways to exploit this dependence structure in estimation in constructing a positive semidefinite estimate.
See Eichenbaum et al. (1988) for an example.
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and presumes a compact parameter space. The uniformity in the approximation carries over
directly the GMM criterion function gN(β)′WgN(β). See Newey and McFadden (1994) for
a more complete catalog of approaches of this type.

The compactness of the parameter space is often not ignored in applications, and this
commonly invoked result is therefore less useful than it might seem. Instead the compactness
restriction is a substitute for checking behavior of the approximating function far away from
βo to make sure that spurious optimizers are not induced by approximation error. This tail
behavior can be important in practice, so a direct investigation of it can be fruitful. For
models with parameter separation:

f(x, β) = Xh(β)

where X is a r × m matrix constructed from x and h is a one-to-one function mapping P
into subset of Rm, there is an alternative way to establish consistency. See Hansen (1982) for
details. Models that are either linear in the variables or models based on matching moments
that are nonlinear functions of the underlying parameters can be written in this separable
form.

The choice of W = V −1 receives special attention, in part because

NgN(β)′V −1gN(β) =⇒ χ2(r).

While the matrix V is typically not known, it can be replaced by a consistent estimator
without altering the large sample properties of bN . When using martingale approximation,
the implied structure of V can often be exploited as in formula (4). When there is no such
exploitable structure, the method of Newey and West (1987b) and others can be employed
that are based on frequency-domain methods for time series data.

For asset pricing models there are other choices of a weighting matrix motivated by
considerations of misspecification. In these models with parameterized stochastic discount
factors, the sample moment conditions gN(β) can be interpreted as a vector of pricing errors
associated with the parameter vector β. A feature of W = V −1 is that if the sample moment
conditions (the sample counterpart to a vector pricing errors) happened to be the same for
two models (two choices of β), the one for which the implied asymptotic covariance matrix
is larger will have a smaller objective. Thus there is a reward for parameter choices that
imply variability in the underlying central limit approximation. To avoid such a reward, it is
also useful to compare models or parameter values in other ways. An alternative weighting
matrix is constructed by minimizing the least squares distance between the parameterized
stochastic discount factor and one among the family of discount factors that correctly price
the assets. Equivalently, parameters or models are selected on the basis of the maximum
pricing error among constant weighted portfolios with payoffs that have common magnitude
(a unit second moment). See Hansen and Jagannathan (1997) and Hansen et al. (1995) for
this and related approaches.
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2.3 Selection Matrices

An alternative depiction is to introduce a selection matrix A that has dimension k × r and
to solve the equation system:

AgN(β) = 0

for some choice of β, which we denote bN . The selection matrix A reduces the number of
equations to be solved from r to k. Alternative selection matrices are associated with alter-
native GMM estimators. By relating estimators to their corresponding selection matrices, we
have a convenient device for studying simultaneously an entire family of GMM estimators.
Specifically, we explore the consequence of using alternative subsets of moment equations
or more generally alternative linear combinations of the moment equation system. This ap-
proach builds on an approach of Sargan (1958, 1959) and is most useful for characterizing
limiting distributions. The aim is to study simultaneously the behavior of a family of esti-
mators. When the matrix A is replaced by a consistent estimator, the asymptotic properties
of the estimator are preserved. This option expands considerably the range of applicability,
and, as we will see, is important for implementation.

Since alternative choices of A may give rise to alternative GMM estimators, index alter-
native estimators by the choice of A. In what follows, replacing A by a consistent estimator
does not alter the limiting distribution. For instance, the first-order conditions from min-
imizing a quadratic form can be representing using a selection matrix that converges to a
limiting matrix A. Let

D = E

[
∂f(xt, βo)

∂β

]
.

Two results are central to the study of GMM estimators:
√

N (bN − βo) ≈ −(AD)−1A
√

NgN(β0) (5)

and
1√
N

gN(bN) ≈ [
I −D(AD)−1D

]√
NgN(β0). (6)

Both approximation results are expressed in terms of
√

NgN(β0), which obeys a Central Limit
Theorem, see (2). These approximation results are obtained by standard local methods.
They require the square matrix AD to be nonsingular. Thus for there to exist a valid
selection matrix, D must have full column rank k. Notice from (6) that the sample moment
conditions evaluated at bN have a degenerate distribution. Premultiplying by A makes the
right-hand side zero. This is to be expected because linear combinations of the sample
moment conditions are set to zero in estimation.

In addition to assess the accuracy of the estimator (approximation (5)) and to validate
the moment conditions (approximation (6)), Newey and West (1987a) and Eichenbaum et al.
(1988) show how to use these and related approximations to devise tests of parameter re-
strictions.2

2Their tests imitate the construction of the likelihood ratio, Lagrange multiplier and the Wald tests
familiar from likelihood inference methods.
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Next we derive a sharp lower bound on the asymptotic distribution of a family of GMM
estimators indexed by the selection matrix A. For a given A, the asymptotic covariance
matrix for a GMM estimator constructed using this selection is:

cov(A) = (AD)−1AV A′(D′A′)−1,

A selection matrix in effect over-parameterizes a GMM estimator, as can be seen from this
formula. Two such estimators with selection matrices of the form A and BA for a nonsingular
matrix B imply

cov(BA) = cov(A)

because the same linear combinations of moment conditions are being used in estimation.
Thus without loss of generality we may assume that AD = I. With this restriction we may
imitate the proof of the famed Gauss-Markov Theorem to show that

D′V −1D ≤ cov(A) (7)

and that the lower bound on left is attained by any Ã such that Ã = BD′V −1 for some
nonsingular B. The quadratic form version of a GMM estimator typically satisfies this
restriction when WN is a consistent estimator of V −1. This follows from the first-order
conditions of the minimization problem.

To explore further the implications of this choice, factor the inverse covariance matrix
V −1 as V −1 = Λ′Λ and form ∆ = ΛD. Then

V −1D(D′V −1D)−1D′V −1 = Λ′[∆(∆′∆)−1∆′]Λ

The matrices ∆(∆′∆)−1∆′ and I −∆(∆′∆)−1∆′ are each idempotent and

[
[I −∆(∆′∆)−1∆′]

∆(∆′∆)−1∆′

]√
NΛgN(β0) −→ Normal

([
0
0

]
,

[
I −∆(∆′∆)−1∆′ 0

0 ∆(∆′∆)−1∆′

])
.

The first coordinate block is an approximation for
√

NΛgN(bN) and the sum of the two
coordinate blocks is

√
NΛgN(βo). Thus we may decompose the quadratic form

N [gN(βo)]
′V −1gN(βo) ≈ N [gN(bN)]′V −1gN(bN)+N [gN(βo)]

′V −1D(D′V −1D)−1D′V −1gN(βo).
(8)

where the two terms on the right-hand side are distributed as independent chi-square. The
first has r degrees of freedom and the second one has r − k degrees of freedom.

3 Implementation using the Objective Function Cur-

vature

While the formulas just produced can be used directly using consistent estimators of V and
D in conjunction with the relevant normal distributions, looking directly at the curvature of
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the GMM objective function based on a quadratic form is also revealing. Approximations
(5) and (6) give guidance on how to do this.

For a parameter vector β let VN(β) denote an estimator of the long run covariance matrix.
Given an initial consistent estimator bN , suppose that VN(bN) is a consistent estimator of V
and

DN =
1

N

N∑
t=1

∂f(xt, bN)

∂β
.

Then use of the selection AN = DN
′[VN(bN)]−1 attains the efficiency bound for GMM estima-

tors. This is the so-called two step approach to GMM estimation. Repeating this procedure,
we obtain the so-called iterative estimator.3 In the remainder of this section we focus on a
third approach resulting in what we call the continuous-updating estimator. This is obtained
by solving:

min
β∈P

LN(β)

where
LN(β) = N [gN(β)]′[VN(β)]−1gN(β).

Let bN denote the minimized value. Here the weighting matrix varies with β.
Consider three alternative methods of inference that look at the global properties of the

GMM objective LN(β):

a) {β ∈ P : LN(β) ≤ C} where C is a critical value from a χ2(r) distribution.

b) {β ∈ P : LN(β)− LN(bN) ≤ C} where C is critical value from a χ2(k) distribution.

c) Choose a prior π. Mechanically, treat −1
2
LN(β) as a log-likelihood and compute

exp
[−1

2
LN(β)

]
π(β)∫

exp
[−1

2
LN(β)

]
π(β̃)dβ̃

.

Method a) is based on the left-hand side of (8). It was suggested and studied in Hansen
et al. (1995) and Stock and Wright (2000). As emphasized by Stock and Wright, it avoids
using a local identification condition (a condition that the matrix D have full column rank).
On the other hand, it combines evidence about the parameter as reflected by the curvature of
the objective with overall evidence about the model. A misspecified model will be reflected
as an empty confidence interval.

Method b) is based on the second term on right-hand side of (8). By translating the ob-
jective function, evidence against the model is netted out. Of course it remains important to
consider such evidence because parameter inference may be hard to interpret for a misspeci-
fied model. The advantage of b) is that the degrees of freedom of the chi-square distribution
are reduced from r to k. Extensions of this approach to accommodate nuisance parameters

3There is no general argument that repeated iteration will converge.
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were used by Hansen and Singleton (1996) and Hansen et al. (1995). The decomposition on
the right-hand side of (8) presumes that the parameter is identified locally in the sense that
D has full column rank, guaranteeing that the D′V −1D is nonsingular. Kleibergen (2005)
constructs an alternative decomposition based on a weaker notion of identification that can
be used in making statistical inferences.

Method c) was suggested by Chernozhukov and Hong (2003). It requires an integrability
condition which will be satisfied by specifying a uniform distribution π over a compact
parameter space. The resulting histograms can be sensitive to this choice of this set or more
generally to the choice of π. All three methods explore the global shape of the objective
function when making inferences.4

4 Backing off from Efficiency

In what follows we give two types of applications that are not based on efficient GMM
estimation.

4.1 Calibration-Verification

An efficient GMM estimator selects the best linear combination among a set of moment
restrictions. Implicitly a test of the over-identifying momment conditions examines whatever
moment conditions are not used in estimation. This complicates the interpretation of the
resulting outcome. Suppose instead there is one set of moment conditions for which we have
more confidence and are willing to impose for the purposes and calibration or estimation. The
remaining set of moment conditions are used for the purposes of verification or testing. The
decision to use only a subset of the available moment conditions for purposes of estimation
implies a corresponding loss in efficiency. See Christiano and Eichenbaum (1992) and Hansen
and Heckman (1996) for a discussion of such methods for testing macroeconomic models.

To consider this estimation problem formally, partition the function f as:

f(x, β) =

[
f [1] (x, β)
f [2] (x, β)

]

where f [1] has r1 coordinates and f [2] has r − r1 coordinates. Suppose that r1 ≥ k and that
β is estimated using an A matrix of the form:

A =
[
A1 0

]
.

and hence identification is based only on

A1Ef [1](xt, β) = 0.

This is the so-called calibration step. Let bN be the resulting estimator.

4The large sample justification remains local, however.
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To verify or test the model we check whether g
[2]
N (bN) is close to zero as predicted by the

moment implication:
Ef [2](xt, β0) = 0.

Partition the matrix D of expected partial derivatives as:

D =

[
D1

D2

]

where D1 is r1 by k and D2 is r− r1 by k. Here we use limit approximation (6) to conclude
that √

Ng
[2]
N (bN) ≈ [−D2(A1D1)

−1A1 I
]√

NgN(β0),

which has a limiting normal distribution. A chi-square test can be constructed by building
a corresponding quadratic form of r − r1 asymptotically independent standard normally
distributed random variables.5

4.2 Sequential Estimation

Sequential estimation methods have a variety of econometric applications. For models of
sample selection see Heckman (1976) and related methods with generated regressors see
Pagan (1984). For testing asset pricing models see Cochrane (2001) (chapters 12 and 13).

To formulate this problem in a GMM setting, partition the parameter vector as β =

[
β[1]

β[2]

]

where β[1] has k1 coordinates. Partition the function f as:

f(x, β) =

[
f [1]

(
x, β[1]

)
f [2] (x, β)

]

where f [1] has r1 coordinates and f [2] has r− r1 coordinates. Notice that the first coordinate
block only depends on the first component of the parameter vector. Thus the matrix d is
block lower triangular:

D =

[
D11 0
D21 D22

]

where

Dij = E

[
∂f [i] (xt, βo)

∂β[j]

]
.

A sequential estimation approach exploits the triangular structure of the moment conditions
as we now describe. The parameter β

[1]
o is estimable from the first partition of moment

conditions. Given such an estimator, b
[1]
N , β

[2]
o is estimable from the second partition of

5When r1 exceeds k it is possible to improve the asymptotic power by exploiting the long-run covariation
between f [2](xt, βo) and linear combination of f [1](xt, βo) not used in estimation. This can be seen formally
by introducing a new parameter γo = E

[
f [2](xt, β)

]
and using the GMM formulas for efficient estimation of

βo and γo.
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moment conditions. Estimation error in the first stage alters the accuracy of the second
stage estimation as I now illustrate.

Assume now that r1 ≥ k1. Consider a selection matrix that is block diagonal:

A =

[
A11 0
0 A22

]

where A11 has dimension k1 by r1 and A22 has dimension k− k1 by r− r1. It is now possible
to estimate β

[1]
o using the equation system:

A11g
[1]
N (β[1]) = 0

or a method that is asymptotically equivalent to this. Let b
[1]
N be the solution. This initial

estimation may be done for simplicity or because these moment conditions are embraced
with more confidence. Given this estimation of β

[1]
o , we seek an estimator b

[2]
N of β

[2]
0 by

solving:

A22g
[2]
N

(
b
[1]
N , β[2]

)
= 0.

To proceed, we use this partitioning and apply (5) to obtain the limiting distribution for the

estimator b
[2]
N . Straightforward matrix calculations yield,

√
N

(
b
[2]
N − β[2]

o

)
≈ − (A22D22)

−1 A22

[−D21(A11D11)
−1A11 I

]√
NgN(β0). (9)

This formula captures explicitly the impact of the initial estimation of β
[1]
o on the subsequent

estimation of β
[2]
0 . When D21 is zero an adjustment is unnecessary.

Consider next a (second best) efficient choice of selection matrix A22. Formula (9) looks
just like formula (5) with A22 replacing A, D22 replacing D and a particular linear combi-
nation of gN(β0). The matrix used in this linear combination “corrects” for the estimation

error associated with the use of an estimator b
[1]
N instead of the unknown true value β

[1]
o . By

imitating our previous construction of an asymptotically efficient estimator, we construct
the (constrained) efficient choice of A22 given A11:

A22 = B22(D22)
′
([−D21 (A11D11)

−1 A11 I
]
V

[
− [

D21 (A11D11)
−1 A11

]′
I

])−1

for some nonsingular matrix B22. An efficient estimator can be implemented in the second
stage by solving:

min
β[2]

g
[2]
N

(
b
[1]
N , β[2]

)′
WNg

[2]
N

(
b
[1]
N , β[2]

)

for V
[2]
N given by a consistent estimator of

V [2] =

([−D21 (A11D11)
−1 A11 I

]
V

[
− [

D21 (A11D11)
−1 A11

]′
I

])−1
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or by some other method that selects (at least asymptotically) the same set of moment
conditions to use in estimation. Thus we have a method that adjusts for the initial estimation
of β[1] while making efficient use of the moment conditions Ef [2](xt, β) = 0.

As an aside, notice the following. Given an estimate b
[1]
N , the criterion based methods

of statistical inference described in section 3 can be adapted to making inferences in this
second stage in a straightforward manner.

5 Conditional Moment Conditions

The bound (7) presumes a finite number of moment conditions and characterizes how to use
these conditions efficiently. If we start from the conditional moment restriction:

E [f(xt+`, β0)|Ft] = 0

then in fact there are many moment conditions at our disposal. Functions of variables in the
conditioning information set can be used to extend the number of moment conditions. By
allowing for these conditions, we can improve upon the asymptotic efficiency bound for GMM
estimation. Analogous conditional moment restrictions arise in cross-sectional settings.

For a characterizations and implementations appropriate for cross sectional data see
Chamberlain (1986) and Newey (1993), and for characterizations and implementations in a
time series settings see Hansen (1985), Hansen (1993), and West (2001). The characteriza-
tions are conceptually interesting but reliable implementation is more challenging. A related
GMM estimation problem is posed and studied by Carrasco and Florens (2000) in which
there is a pre-specified continuum of moment conditions that are available for estimation.

6 Conclusion

GMM methods of estimation and inference are adaptable to a wide array of problems in
economics. They are complementary to maximum likelihood methods and their Bayesian
counterparts. Their large sample properties are easy to characterize. While their computa-
tional simplicity is sometimes a virtue, perhaps their most compelling use is in the estimation
of partially specified models or of misspecified dynamic models designed to match a limited
array of empirical targets.
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