
Chapter 4

Additive Functionals

Many interesting economic time series display persistent growth that ren-
ders the assumptions of stationarity and ergodicity untenable. But station-
arity and ergodicity are the theoretical foundations that activate the Laws
of Large Numbers and Central Limit theorems that make statistical learning
possible. In this chapter and in chapters 5, 6, and 7, we describe alternative
sets of assumptions that are sufficient to render particular components of
growing time series stationary and ergodic in ways that enable statistical
learning. In this chapter, we describe processes that grow but have Markov
increments, while in chapter 5 we describe a generaliztion, namely, processes
with stationary increments. Chapter 6 describes transformations designed
to render nonstationary processes stationary and ergodic. Chapter 7 de-
scribes processes whose logarithms are processes with Markov increments.
All four chapters describe decompositions of a time series into stationary
and nonstationary components that allow us to apply Laws of Large Num-
bers and Central Limit approximations to stationary components.

In this chapter, we use a stationary Markov process to construct a pro-
cess that displays stochastic arithmetic growth. We show how to extract a
linear time trend and a martingale from that growing process. In chapter 7,
we use findings of this chapter to model a process that displays geometric
growth.
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74 Chapter 4. Additive Functionals

4.1 Definition

A k-dimensional stochastic process {Wt+1 : t = 0, 1, ...} is a set of unantic-
ipated economic shocks. Let {Xt : t = 0, 1, ...} = {Xt} be a discrete-time
stationary Markov process that is generated by initial distribution Q for X0

and transition equation

Xt+1 = φ(Xt,Wt+1),

where φ is a Borel measurable function. Let {Ft : t = 0, 1, ...} be the filtra-
tion generated by histories of W and X; Ft serves as the information set
(sigma algebra) generated by X0,W1, . . . ,Wt. To insist that the process
{Wt+1} represents unanticipated shocks, we restrict it to satisfy

E (Wt+1|Ft) = 0.

We condition on a statistical model in the sense of section 2.6 and assume
that the Xt process is ergodic.1 The Markov structure of {Xt} makes the
distribution of (Xt+1,Wt+1) conditioned on Ft depend only on Xt. Like
{Xt}, the pair {(Xt,Wt)} is a first-order Markov process. Because the
shock Wt+1 is unpredictable and Xt is the only relevant state vector for
(Xt+1,Wt+1), the composite system {(Xt,Wt)} has a triangular structure
in the sense that it can be expressed as

Xt+1 = φ(Xt,Wt+1)

Wt+1 = Wt+1

Definition 4.1.1. A process {Yt} is said to be an additive functional if
it can be represented as

Yt+1 − Yt = κ(Xt,Wt+1) (4.1)

for a (Borel measurable) function κ : Rn × Rk → R, or equivalently

Yt = Y0 +
t∑

j=1

κ(Xj−1,Wj),

where we initialize Y0 at some arbitrary (Borel measurable) function of X0.

1In the spirit of chapter 2, if we want to acknowledge model uncertainty, we can
apply the construction offered here to each of element of a set of statistical models and
then form weighted averages over that set of models.
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We make Y0 a function of X0 because this allows us to construct Yt as a
function of the underlying Markov process between dates zero and t. Using
a more general initial condition would have straightforward consequences
for results to be stated in this chapter.2

Definition 4.1.2. An additive functional {Yt : t = 0, 1, ...} is said to be an
additive martingale if E [κ(Xt,Wt+1)|Xt] = 0.

Example 4.1.3. Suppose

Yt+1 − Yt = µ(Xt) + σ(Xt)Wt+1

Xt+1 = AXt +BWt+1

where {Wt+1} is an iid sequence of multivariate normally distributed random
vectors, A is a stable matrix, and B has full column rank. Here µ(Xt) is
the conditional mean of Yt+1 − Yt and |σ(Xt)|2 is its conditional variance.
This is called a stochastic volatility model because |σ(Xt)|2 is a stochastic
process.

When the conditional mean µ(Xt) = 0 in example (4.1.3), the process {Yt}
becomes a martingale. Note that E [κ(Xt,Wt+1)|Xt] = 0 implies the usual
martingale restriction

E [Yt+1|Ft] = Yt, for t = 0, 1, ....

4.2 Extracting Martingales

An additive functional can be decomposed into a sum of components, one
of which is an additive martingale that summarizes all long-run stochastic
variation in the additive functional. In this section, we show how to extract
the martingale component of an additive functional. We begin with an
algorithm that applies to a special type of additive functional for which
κ(x,w∗) = f(x) and

∫
f(x)Q(dx) = 0. This algorithm will be the key tool

in extracting martingales from additive functionals with general κ(x,w∗)
functions.

2There is great flexibility in initializing the process. We refer to an outcome of this
more general construction as an additive process instead of an additive functional.
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Algorithm 4.2.1. Suppose that f ∈ N and

Yt+1 − Yt = f(Xt).

Solve g(x) = f(x) + Tg(x) for g(x) to get

g(x) = (I− T)−1f(x) =
∞∑
j=0

Tjf(x) =
∞∑
j=0

E [f(Xt+j)|Xt = x] , (4.2)

a legitimate calculation provided that the infinite sum on the right side of
(4.2) is finite. A sufficient condition for the sum on the right side of (4.2)
to be finite is that Tm is a strong contraction for some integer m ≥ 1.
The function g is the best forecast of the long-term limit of the additive
functional {Yt : t = 0, 1, ...} as a function of the current Markov state.
Where (∗) denotes a next period value, let

κ1(x,w∗)
.
= g[φ(x,w∗)]− g(x) + f(x)

and note that (I− T)g(x) = f(x) implies that

κ1(x,w∗) = g(x∗)− Tg(x).

Thus, κ1(Xt,Wt+1) is the error in forecasting g(Xt+1) given Xt, so

E [κ1(Xt,Wt+1)|Xt] = 0.

Therefore,

Yt =
t∑

j=1

f(Xj−1) + Y0

=
t∑

j=1

κ1(Xj−1,Wj)− g(Xt) + g(X0) + Y0.

The component
∑t

j=1 κ1(Xj−1,Wj) is a martingale, while −g(Xt) is sta-
tionary and g(X0) + Y0 is constant.

Algorithm 4.2.1 is an instance of a more general construction of Gordin
(1969) that we have obtained by specializing to a Markov process for Xt.

3

We use algorithm 4.2.1 as a component of the following algorithm for ex-
tracting a martingale from an additive functional.

3Also see Hall and Heyde (1980).
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Algorithm 4.2.2. Let {Xt} be a stationary, ergodic Markov process. Let
{Yt} be an additive functional. Perform the following steps.

(i) Compute the conditional expectation E [κ(Xt,Wt+1)|Xt = x] = f̄(x) of
Yt+1 − Yt and form the deviation of κ(Xt,Wt+1) from its conditional
mean

κ2(Xt,Wt+1) = κ(Xt,Wt+1)− f̄(Xt).

Note that E[κ2(Xt,Wt+1)|Xt = x] = 0.

(ii) Let ν be the unconditional mean ν
.
=
∫
f̄(x)Q(dx). Let f(x) be the

deviation of the conditional mean of Yt+1− Yt, f̄(x) from its uncondi-
tional mean ν: f(x) = f̄(x)−ν. By construction f ∈ N . Take f as de-
fined here to be the f that appears in algorithm 4.2.1 and form g and κ1

in the algorithm 4.2.1 decomposition f(x) = κ1(x,w∗)− g(x∗) + g(x).

(iii) Note that

κ(x,w∗) = κ2(x,w∗) + f̄(x)
= κ2(x,w∗) + f(x) + ν
= κ2(x,w∗) + κ1(x,w∗)− g[φ(x,w∗)] + g(x) + ν.

(iv) It follows that

Yt = tν +

[
t∑

j=1

κa(Xj−1,Wj)

]
− g(Xt) + g(X0) + Y0 (4.3)

where κa(x,w
∗) = κ1(x,w∗) + κ2(x,w∗) and E [κa(Xj,Wj+1)|Xj] = 0.

Via algorithm 4.2.2, we have established4

Proposition 4.2.3. Suppose that {Yt} is an additive functional, that Tm
is a strong contraction on N for some m, and that E[κ(Xt,Wt+1)2] < ∞.
Then

Yt = tν︸︷︷︸ +
t∑

j=1

κa(Xj−1,Wj)︸ ︷︷ ︸ − g(Xt)︸ ︷︷ ︸ + Y0 + g(X0)︸ ︷︷ ︸ .
trend martingale stationary invariant

4Proposition 4.2.3 can be viewed as a special case of proposition 5.1.2, which assumes
stationary rather than Markov increments.
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Each term in the decomposition is itself an additive functional. The first
term is a linear time trend, the second an additive martingale, the third a
stationary process with mean zero, and the fourth a time-invariant constant.
If Y0 = −g(X0), then the fourth term is zero.

We use the decomposition in Proposition 4.2.3 as a way to identify
a linear time trend and “permanent shock” associated with an additive
functional. The permanent shock is the increment to the martingale. There
are multiple ways to construct transitory components, some of which yield
transitory shocks that are correlated with permanent shocks.

Application to a VAR

In this subsection, we apply the four-step construction in algorithm 4.2.2
to an example in which the Markov state {Xt} follows a first-order VAR

Xt+1 = AXt +BWt+1, (4.4)

where A is a stable matrix and {Wt+1} is a sequence of independent and
identically normally distributed random variables with mean zero and co-
variance matrix I. Thus, the one-step ahead conditional covariance matrix
of the innovations BWt+1 to Xt+1 equals BB′. Let

Yt+1 − Yt = κ(Xt,Wt+1) = D ·Xt + ν + F ·Wt+1, (4.5)

where D and F are vectors with the same dimensions as Xt and Wt+1,
respectively. For this example, the four steps of algorithm 4.2.2 are:

(i) Form the conditional growth rate

f̄(x) = D · x+ ν

and the deviation
κ2(Xt,Wt+1) = F ·Wt+1.

(ii) Compute f(x) by subtracting from f̄(x) its unconditional mean:

f(x) = D · x+ ν − ν = D · x.

Here we are using the fact that the unconditional mean of X is zero
because A is a stable matrix.
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(iii) Form

κ1(x,w∗) = f(x) + g(x∗)− g(x)
= D · x+D′(I − A)−1(Ax+Bw∗)−D′(I − A)−1x
= [B′(I − A′)−1D] · w∗,

where g(x)
.
= (I− T)−1f(x) = D′(I − A)−1x.

(iv) It follows that κa = κ1 + κ2 is

κa(Xt,Wt+1) = [F +B′(I − A′)−1D] ·Wt+1. (4.6)

We shall use formula (4.6) when we construct examples below.

Example 4.2.4. Beveridge and Nelson (1981) decomposed a univariate
time series Yt into permanent and transitory components.5 In terms of our
notation, Beveridge and Nelson let a univariate {Wt+1} process drive a se-
rially correlated univariate process that we can map into a first-order vector
process Xt. For Beveridge and Nelson (1981), [F + B′(I − A′)−1D] ·Wt+1

is the permanent shock in a proposition 4.2.3 decomposition of a univariate
time series into permanent and transitory components. Because {Wt+1} is
a univariate process, permanent and transitory shocks are necessarily per-
fectly correlated.

4.3 Examples of Additive Functionals

Example 4.3.1. (Long-term risk)

Let C denote consumption. The logarithm of consumption evolves as

logCt+1 − logCt = ν +Xt + F ·Wt+1

where
Xt+1 = AXt +BWt+1,

|A| < 1 is a scalar, the process {Xt} is univariate, and the i.i.d. N (0, I)
shock vector Wt+1 is 2 × 1. The 2 × 1 vectors F and B are such that one
component of Wt+1 disturbs consumption growth directly, while the other

5We can regard them as seeking to generalize the model studied by Muth (1960).
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component disturbs the Markov state Xt. The j−step ahead conditional
mean of logCt+1 − logCt is µ + AjXt, so the Markov state Xt contributes
a predictable component to consumption growth. When A is close to 1,
there is said to be substantial “long-run risk” in consumption. The impulse
response function of logCt+j+1 − logCt+j to the shock vector Wt+1 is an
infinite sequence

F,B′, B′A,B′A2, · · · . (4.7)

It is mathematically convenient to represent this sequence by constructing a
function with elements of the sequence as coefficients of a power series. This
function is called a z transform and provides us with a useful bookkeeping
device:

F +
∞∑
j=1

B′Aj−1zj = F + zB′(I − Az)−1,

where z is a complex valued scalar satisfying |z| ≤ 1. The impulse response
of logCt+1 cumulates impulse responses of logCt+1 − logCt, so its z trans-
form is (

1

1− z

)[
F + zB′(I − Az)−1

]
,

which is well defined as a power series for |z| < 1. It is also well defined as
a function of z for |z| ≤ 1, except when z = 1.6 Division by 1− z in effect
accumulates the impulse responses of the first difference of log consumption.

The increment to the martingale component in a proposition 4.2.3 de-
composition of logCt scaled to have a unit standard deviation is evidently
F ∗ ·Wt+1, where

F ∗ =
1

|F +B′(I − A)−1|
[F +B′(I − A)−1].

We call F ∗ ·Wt+1 a permanent shock and can calculate the impulse response
of logCt to it. The permanent shock is a linear combination of components
of a bivariate impulse response function, with a z-transform that is the same
linear combination of z transforms of the two components:(

1

1− z

)
F ∗ · [F + zB′(I − zA)−1].

6Formally, the transform has a pole at z = 1.
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4.4 Cointegration

Remark 4.4.1. A linear combination of two additive functionals is an addi-
tive functional.7 Specifically, let Xt be governed by the vector autoregression
(4.4) and let κ̃1(x,w∗) and κ̃2(x,w∗) be two functions that can play the role
of κ(x,w∗) in constructing additive functionals. For real valued scalars r1

and r2, form

Yt = r1Y
[1]
t + r2Y

[2]
t

where Y
[1]
t is built with κ̃1 and Y

[2]
t is built with κ̃2. Thus, we can build

Yt = r1Y
[1]
t + r2Y

[2]
t =

t∑
j=1

[r1κ̃1(Xj−1,Wj) + r2κ̃2(Xj−1,Wj)]

+ r1Y
[1]

0 + r2Y
[2]

0 .

The Proposition 4.2.3 martingale component of {Yt : t = 0, 1, ...} is the

corresponding linear combination of the martingale components of {Y [1]
t :

t = 0, 1, ...} and {Y [2]
t : t = 0, 1, ...}. The Proposition 4.2.3 trend component

of {Yt : t = 0, 1, ...} is the corresponding linear combination of the trend

components of {Y [1]
t : t = 0, 1, ...} and {Y [2]

t : t = 0, 1, ...}.

Engle and Granger (1987) focused on a special set of linear combinations
of two additive functionals whose linear trend and martingale components
are both zero. Engle and Granger call two processes cointegrated if there
exists a linear combination of them that is stationary,8 which is true when
there exist real valued scalars r1 and r2 such that

r1ν1 + r2ν2 = 0
r1κa1 + r2κa2 = 0,

where the ν’s and κa’s correspond to the first two components of the rep-
resentation in Proposition 4.2.3. These two zero restrictions imply that the
time trend and the martingale component for the linear combination Yt are

7An analogous statement applies to additive processes.
8Their definition can readily be extended to require only that the linear combination

be asymptotically stationary. That would allow transients in the cointegrating residual
ignited by initial conditions X0 far in the tails of the stationary distribution of X.
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both zero.9 When r1 = 1 and r2 = −1, the component additive functionals
Y

[1]
t and Y

[2]
t share a common growth component.

Example 4.4.2. (hyperinflation)

Sargent (1977) constructed a model of hyperinflation in which Cagan’s adap-
tive expectations model for inflation is an implication of rational expecta-
tions. Let qt = pt− pt−1 and kt = mt−mt−1 where pt is the log of the price
level and mt is the log of money supply. Let q̄t be the public’s time t forecast
of time t + 1 inflation. Cagan’s adaptive expectations rule for forecasting
inflation is

q̄t = λq̄t−1 + (1− λ)qt

for 0 < λ < 1. To make this adaptive expectations rule optimal, we assume
that

qt+1 = q̄t + σf ·Wt+1,

which implies that

qt+1 = λqt + (1− λ)qt + σf ·Wt+1 − λσf ·Wt

or

qt+1 − qt = σf ·Wt+1 − λσf ·Wt.

The demand for real balances is

qt − kt = αq̄t + σd ·Wt

= αqt − λσf ·Wt + σd ·Wt,

where α > 0 and −α is the semi elasticity of the demand for real balances
with respect to expected inflation. So

kt = (1− α)qt + λσf ·Wt − σd ·Wt.

From this relation, it follows that the martingale components of {kt} and
{qt} are proportional and that

[
−1 (α− 1)

]
is a cointegrating vector for

{(kt, qt)}.

9The cointegration vector (r1, r2) is determined only up to scale.
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Figure 41: The top panel plots the logarithm of consumption (smooth blue
series) and logarithm of corporate earnings (choppy red series). The bottom
panel plots the difference in the logarithms of consumption and corporate
earnings.
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Example 4.4.3. (Long-term consumption risk, II)

Hansen et al. (2008) had the idea of using covariation with other time series
to help infer long-term stochastic components of consumption. Figure 41
plots logarithms of nondurable consumption Ct and corporate earnings Nt.
The absence of an obvious trend or martingale in the second panel, which
plots the difference between the logarithms of nondurable consumption and
corporate earnings, suggests the presence of common trend and martingale
components in the two series themselves, an observation that led Hansen
et al. to impose co-integration between the logarithms of consumption and
corporate earnings and thereby restrict them to grow together. A way to
impose the sought after co-integration is to let Xt be governed by the VAR

Xt+1 = AXt +BWt+1,

where A is a stable matrix and {Wt+1} is an i.i.d. sequence of N (0, I) ran-
dom vectors; then to choose Xt to have the growth rate of consumption
(expressed in logarithms) as its first entry and the logarithm of corporate
earnings minus the logarithm of consumption in the second position, then
to fill in the remaining components of Xt with lags of these and any other
variables that help forecast the logarithms of corporate earnings and con-
sumption. This specification leaves us with two additive functionals with
increments:

log Y
[1]
t+1 − log Y

[1]
t = ν1 +X

[1]
t+1

log Y
[2]
t+1 − log Y

[2]
t = ν2 +X

[2]
t+1 −X

[2]
t +X

[1]
t+1,

where Y
[1]
t+1 = Ct+1 and Y

[2]
t+1 = Nt+1. The two additive functionals {log Y

[1]
t+1}

and {log Y
[2]
t+1} share the same martingale and trend components but have

different transitory components.
Notice that

log Y
[1]
t+1 − log Y

[1]
t = ν1 +D ·Xt + F ·Wt+1

where
D = A′U1, F = B′U1

and U1 is a vector of zeros except for a one in the first position. The impulse
response vector of logCt+1 − logCt to Wt+1 is

F,B′D,B′A′D, · · · ,
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Figure 42: This figure plots the response of the logarithm of consumption to
a permanent shock (solid) and and to a temporary shock (dashed line). The
permanent shock is identified as the increment to the common martingale
component of the logarithm of consumption and the logarithm of corporate
earnings. The figure comes from Hansen et al. (2008).

which has z-transform:

F + ζB′(I − ζA′)−1D = B′(I − ζA′)−1U1.

The martingale increment scaled to have unit standard deviation is F ∗·Wt+1,
where

F ∗ =
1

|B′(I − A′)−1U1|
B′(I − A′)−1U1

and the z-transform of the impulse response function of logCt+1 to the
martingale increment is(

1

1− ζ

)
F ∗ · [B′(I − ζA′)−1U1].

Figure 42 shows how the logarithm of aggregate consumption responds
to a shock identified as the common martingale component of the logarithm



86 Chapter 4. Additive Functionals

of consumption and the logarithm of corporate earnings. The immediate
response is less than half the long-term response. The long-term response
equals the magnitude of the common martingale component of the logarithms
of consumption and corporate earnings.10 This figure illustrates a long-term
consumption risk of the type featured by Bansal and Yaron (2004). The
long-term response is about double that of the short-term response. We will
discuss the accuracy of this estimate in chapter 9.

4.5 Evaluating long-term risk

A model from Hansen et al. (2008) describes a representative household
that cares especially about long-term components of risk in consumption of
the type discussed in examples 4.4.3 and 4.4.3.

Additive functional for utility

A representative household ranks consumption processes {Ct}∞t=0 with a
utility functional {Vt}∞t=0 that satisfies the recursion:

log Vt = [1− exp(−δ)] logCt + exp(−δ) logRt (Vt+1) (4.8)

where

Rt(Vt+1) =
(
E
[
(Vt+1)1−γ |Ft

]) 1
1−γ . (4.9)

Here Vt is the date t continuation value for current and future consumption,
δ > 0 is a subjective discount rate, and γ ≥ 1 is a risk aversion parame-
ter appearing in the ‘risk-sensitivity’ operator Rt(Vt+1) defined in equation
(4.8).

Remark 4.5.1. The limit of R as γ approaches 1 is just ordinary expected
logarithmic utility:

lim
γ↓1

logRt(Vt+1) = lim
γ↓1

logE
[
(Vt+1)1−γ |Ft

]
1− γ

= E (log Vt+1|Ft) .

Suppose that {logCt}∞t=0 is an additive functional described by

logCt+1 − logCt = ν +D ·Xt + F ·Wt+1

10This is a consequence of Proposition 6.3.2.
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where
Xt+1 = AXt +BWt+1,

A is a stable matrix and {Wt+1}∞t=0 is an i.i.d. sequence of N (0, I) random
vectors.

Proposition 4.5.2. The value function process {Vt}∞t=0 is described by

log Vt − logCt = U ·Xt + u (4.10)

where
U = exp(−δ) [I − exp(−δ)A′]−1

D, (4.11)

and

u =
exp(−δ)

1− exp(−δ)
ν +

(1− γ)

2

exp(−δ)
1− exp(−δ)

∣∣∣∣D′ [I − exp(−δ)A]−1B + F

∣∣∣∣2.
(4.12)

Proof. Transform the utility recursion (4.8) to

log Vt − logCt = exp(−δ) logRt

[(
Vt+1

Ct+1

)(
Ct+1

Ct

)]
.

Guess that Vt has the form (8.9). Under this guess,[(
Vt+1

Ct+1

)(
Ct+1

Ct

)]1−γ

is a log-normal random variable with conditional mean

(1− γ) (A′U ·Xt + u +D ·Xt + ν)

and conditional variance

(1− γ)2|U ′B + F |2.

Recall that for a log normal random variable, the logarithm of the mean is
the mean of the associated normally distributed random variable plus one
half the variance of this same random variable. It follows that U in the
value function (8.9) satisfies U = exp(−δ)A′U + exp(−δ)D, which implies
formula (4.11), which is independent of γ. Similarly,

u = exp(−δ)
[
u + ν +

1

2
(1− γ)|U ′B + F |2

]
,

which implies formula (4.12) for u.
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In example 7.3.6 below, we will use a special case of this value functional
to describe costs of random fluctuations in aggregate consumption.

Implied Stochastic Discount Factor Process

A stochastic discount factor process {St} expresses how a consumer values
exposures to risks. It provides a local way to assess how the decision maker
responds to uncertainty. Such calculations have a variety of applications.
First they provide the ingredients for the construction of asset pricing mod-
els. Second, they provide inputs into the computation of Pigouvian taxes
for the purposes correcting for externalities in a socially optimal ways in the
presence of uncertainty. Finally, they are sometimes valuable in assessing
the impact of small (local) changes in policies.

The date zero value of a risky date t payout ξt is

πt0(ξt) = E

[(
St
S0

)
ξt

∣∣∣F0

]
. (4.13)

We can compute the ratio St
S0

that appears in formula (4.13) by evaluat-
ing the slope of an indifference curve that runs through both a baseline
consumption process {Ct}∞t=0 and a perturbed one

(C0 − P0(r), C1, C2, . . . , Ct + rξt, Ct+1, ...).

Here P0(r) expresses how much current period consumption must be re-
duced to keep a consumer on the same indifference curve when we replace
Ct by Ct + rξt. We think of r as parameterizing an indifference curve. We
set πt0(ξt) defined in equation (4.13) equal to the slope of that indifference
curve:

πt0(ξt) =
d

dr
P0(r)

∣∣
r=0

.

Applying this way of computing πt0(ξt) in (4.13) to utility specification
(4.8) results in

St+1

St
= exp(−δ)

(
Ct
Ct+1

)(
(Vt+1)1−γ

E
[
(Vt+1)1−γ |Ft

]) . (4.14)

Fact 4.5.3. The term

(
(Vt+1)1−γ

E[(Vt+1)1−γ |Ft]

)
is a nonnegative random variable

with conditional expectation equal to unity. Therefore, it is a ratio of one-
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step transition probabilities that can be interpreted as a multiplicative incre-
ment to a likelihood ratio process, an object that will play a central role in
chapter 8.

Taking logs on both sides to enable us to express equation (4.14) as

logSt+1− logSt = −δ − logCt + logCt+1

+

{
(1− γ) [ log Vt+1 − E (log Vt+1|Ft)]

}
− (1− γ)2

2

∣∣D′ [I − exp(−δ)A]−1B exp(−δ) + F ′
∣∣2 .

(4.15)

From formulas (8.9), (4.11), and (4.12), the forward-looking term in braces
on the right side of equation (4.15) is

(1− γ) [(log Vt+1 − logCt)− E (log Vt+1 − logCt|Ft)]
= (1− γ)

(
D′ [I − exp(−δ)A]−1B exp(−δ) + F ′

)
Wt+1. (4.16)

With this calculation, it is evident that the logarithm of the stochastic
discount factor process is an additive functional.

Remark 4.5.4. Notice that when δ = 0,[
D′ [I − exp(−δ)A]−1B exp(−δ) + F ′

]
appearing in (4.16) equals the matrix [F +B′(I−A′)−1D]′ multiplying Wt+1

in formula (4.6) for the martingale increment κa(Xt,Wt+1) of the additive
functional that is logCt. Thus, formula (4.16) for the forward-looking term
contributed by the continuation value is 1−γ times an approximation to the
martingale increment of {logCt}, an approximation that becomes arbitrarily
accurate when the subjective rate of discount δ becomes sufficiently small.
Adding the contribution from {logCt− logCt+1} on the right side of (4.15),
the martingale component of the logarithm of the stochastic discount factor
then has an increment that approximates

−γ
[
D′ (I − A)−1B + F ′

]
Wt+1,

when exp(−δ) is very close to 1. This is proportional to the martingale
increment of {logCt : t = 0, 1, 2, ...}, the risk aversion parameter γ being
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the factor of proportionality. This martingale component of the logarithm of
the stochastic discount factor process dominates the pricing of long-horizon
risks. The minus sign in front of γ expresses that the representative con-
sumer dislikes risk. The inner product of the vector

[
D′ (I − A)−1B + F ′

]
appearing in the martingale increment (with itself) turns out to be approx-
imately equal to the variance of 1

t
Yt for large t (see formula (4.17) below).

4.6 Digression on robustness

To fit asset pricing models to data, it is common to assume a large value
of the risk aversion parameter γ in (4.9). Some agree with Lucas (2003)
that the required value of γ indicates implausibly high risk-aversion. In this
context it is noteworth that we can reinterpret the parameter γ in the risk-
sensitivity operator defined in equation (4.9) as reflecting a representative
consumer’s concerns about robustness to model misspecification instead of
risk aversion. A value of γ sufficiently high to fit risk prices and consump-
tion volatility may not be implausible when we adopt a point of view of
Barillas et al. (2009) and regard it as measuring something other than risk
aversion. In developing our reinterpretation, we can appeal to insights from
the contributions of Jacobson (1973), Whittle (1981), and Hansen and Sar-
gent (1995) to control theory and the economics paper of Hansen et al.
(2006).

The reinterpretation regards γ as measuring a representative consumer’s
concern about robustness of his valuations with respect to misspecifications
of the stochastic process governing consumption, accomplished by recog-
nizing the risk-sensitivity operator as an indirect utility function emerging
from a minimization problem that we shall discuss in section 8.9.

4.7 Central Limit Theory

Let {Yt : t = 0, 1, ...} be an additive martingale process whose increments
Yt+1 − Yt are stationary, ergodic, martingale differences:

E (Yt+1 − Yt|Ft) = 0.
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Billingsley (1961) proved that this process obeys a central limit theorem
asserting that

1√
t
Yt =⇒ N(0, E[(Yt+1 − Yt)2])

where =⇒means convergence in distribution.11 In Billingsley’s central limit
theorem, the increments to Y are martingale differences rather than i.i.d.
as they are in more “standard” central limit theorems.

Gordin (1969) extends Billingsley’s result to allow for temporally de-
pendent increments. We can regard Gordin’s result as an application of
Proposition 4.2.3.

Corollary 4.7.1. (Gordin (1969)) Suppose that the assumptions of Propo-
sition 4.2.3 apply and that ν = 0. Then

1√
t
Yt =⇒ N(0, σ2)

where σ2 = E
(
[κa(Xj,Wj+1)]2

)
.12

The variance formula

σ2 = lim
t→∞

1

t
variance(Yt) = E

(
[κa(Xj,Wj+1)]2

)
shows how properly to take into account the temporal dependence of the
increments (Yt+1 − Yt) when computing the “long-run” volatility of the
level Yt. Notice that all that matters is the martingale component, not the
stationary g(Xt) component.

To illustrate, we return to the first-order VAR example 4.2 with ν = 0:

Xt+1 = AXt +BWt+1

Yt+1 − Yt = D ·Xt + F ·Wt+1.

The variance of the martingale increment that appears in Corollary 4.7.1
is13

σ2 = [F +B′(I − A′)−1D] · [F +B′(I − A′)−1D]. (4.17)

11Ergodicity can be dispensed with if we replace the variance by E[(Y1 − Y0)2|I] in
the variance used for the normal approximation.

12Hall and Heyde (1980) show how to extend this approach to functional counterparts
to the Central Limit Theorem.

13This expression for σ2 equals the spectral density of {Yt+1 − Yt} at zero frequency.
Recall that this term also played a key role in remark 4.5.4.
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This differs from both the conditional variance |F |2 and the unconditional
variance, D′ΣD + |F |2 of Yt+1 − Yt, where

Σ =
∞∑
j=0

(A)jBB′(Aj)′ (4.18)

is the covariance matrix of the stationary distribution of Xt.
Since linear combinations of additive functionals are additive function-

als, Corollary 4.7.1 can be applied to any linear combination of a vector of
additive functionals.

4.8 Growth-rate Regimes

In this section, we construct a Proposition 4.2.3 decomposition for a model
with persistent switches in both the conditional mean and the conditional
volatility of the growth rate Yt+1−Yt. Section 4.9 then describes the Propo-
sition 4.2.3 decomposition for a model in which a growth rate has stochastic
volatility that is a quadratic function of the state Xt.

Suppose that {Xt} evolves according to an n-state Markov chain with
transition matrix P. Realized values of Xt are coordinate vectors in Rn.
Suppose that P has only one unit eigenvalue. Let q be the row eigenvector
associated with that unit eigenvalue normalized so that q · 1n = 1:

q′P = q′.

Consider an additive functional satisfying

Yt+1 − Yt = D ·Xt +Xt
′FW1,t+1,

where {W1,t} is an i.i.d. sequence of multivariate standard normally dis-
tributed random vectors. Evidently, the stationary Markov {Xt} process
induces discrete changes in the conditional mean and conditional volatility
of the growth rate process {Yt+1−Yt}. We can represent the Markov chain
as

Xt+1 = PXt +W2,t+1

where E(Xt+1|Xt) = PXt and {W2,t+1} is an n× 1 vector process that sat-
isfies E(W2,t+1|Xt) = 0, which is therefore a martingale difference sequence
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adapted to Xt, Xt−1, . . . , X0. Thus, we construct a second component of
the shock vector as

W2,t+1 = Xt+1 − E (Xt+1|Xt) .

To apply algorithm 4.2.2, first compute

κ2(Xt,Wt+1) = Xt
′FW1,t+1,

and

ν = D · q.

Let f(x) = f · x where

f = D − ν1n.

Then g(x) = g · x where g solves

(I− P) g = f

q′g = 0,

where we include the second equation because the matrix (I− P) is singular
since

q′ (I− P) = 0.

Set

κ1(x,w∗) = f · x+ g · x∗ − g · x.

Recall that κ1(x,w∗) is the part of g · x∗ that cannot be predicted given x,
so

κ1(x,w∗) = g · (x∗ − Px) = g · w∗2.

So

Yt = tν +

[
t∑

j=1

κa(Xj−1,Wj)

]
− g ·Xt + g ·X0 + Y0,

where κa = κ1 + κ2. The martingale increment has both continuous and
discrete components:

κa(Xt,Wt+1) = Xt
′FW1,t+1︸ ︷︷ ︸ + g ·W2,t+1︸ ︷︷ ︸ .

continuous discrete
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4.9 Quadratic Model of Growth

In this section, we describe an additive process with stochastic volatility. In
chapter 10, we will characterize the behavior of prices of the risks driving
such a process.

Suppose that {Xt} follows the first-order autoregression

Xt+1 = AXt +BWt+1,

where A has stable eigenvalues and {Wt+1 : t = 0, 1, ...} is a sequence
of independent and identically normally distributed random variables with
mean zero and covariance matrix I. Consider an additive functional {Yt}
defined by

Yt+1 − Yt = ε+D ·Xt +
1

2
Xt
′HXt + F ·Wt+1 +Xt

′GWt+1,

where H is a symmetric matrix. The function Xt
′G expresses stochastic

volatility of the shock vector Xt
′GWt+1 in the conditional distribution of

Yt+1 − Yt.
To apply algorithm 4.2.2, first compute

κ2(Xt,Wt+1) = F ·Wt+1 +Xt
′GWt+1.

Next compute

ν = ε+
1

2
E (Xt

′HXt) = ε+
1

2
trace(HΣ),

where Σ is the covariance matrix in a stochastic steady state given by
formula (4.18), and

f(x) = D · x+
1

2
x′Hx− 1

2
trace(HΣ).

Recall that g − Tg = f and guess that

g(x) = D̂ · x+
1

2
x′Ĥx− 1

2
trace

(
ĤΣ

)
.

This guess gives rise to the following two relations:

D̂ − A′D̂ = D,

Ĥ − A′ĤA = H. (4.19)
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It can be verified that

Ĥ =
∞∑
j=0

(
Aj
)′
H
(
Aj
)

D̂ = (I − A′)−1D.

Since Σ = BB′ + AΣA,

trace
(
ĤΣ

)
= trace

(
ĤBB′

)
+ trace

(
ĤAΣA′

)
= trace

(
B′ĤB

)
+ trace

(
A′ĤAΣ

)
= trace

(
B′ĤB

)
+ trace

[(
Ĥ −H

)
Σ
]
,

where the last equality follows from (4.19). Thus,

trace
(
B′ĤB

)
= trace (HΣ) . (4.20)

The increment to the martingale component of the additive functional is

κa(Xt,Wt+1) =F ·Wt+1 +Xt
′GWt+1 +

(
B′D̂

)
·Wt+1

+
1

2
Xt+1

′ĤXt+1 +
1

2
Xt
′
(
H − Ĥ

)
Xt − ν

=
(
F +B′D̂

)
·Wt+1 +Xt

′
(
G+ A′Ĥ

)
Wt+1

+
1

2
Wt+1

′B′ĤBWt+1 −
1

2
trace(HΣ)

=
(
F +B′D̂

)
·Wt+1 +Xt

′
(
G+ A′Ĥ

)
Wt+1

+
1

2
Wt+1

′B′ĤBWt+1 −
1

2
trace(B′ĤB),

where the last equality follows from (4.20).


