Uncertainty and Valuation

Tsinghua Forum & Tsinghua PBCSF
Global Academic Leader Forum
Beijing, China
November 17, 2017
Recursive Valuation

- Use a recursive utility model (see Koopmans, Kreps & Porteus, Epstein & Zin, …) to highlight how uncertainty about future events affects asset valuation.

- Explore ways in which expectations and uncertainty about future growth rates influence risky claims to consumption.

Investigate how beliefs about the future are reflected in current-period assessments through continuation values. The *forward-looking* nature of the recursive utility model provides an additional channel through which *perceptions* about the future matter. (Bansal-Yaron and many others.)
Recursive Utility

Consider the aggregator specified in terms of C_t the current period consumption and V_t the continuation value:

$$V_t = \left[(C_t)^{1-\rho} + \exp(-\delta) \left[\mathcal{R}_t(V_{t+1}) \right]^{1-\rho} \right]^{\frac{1}{1-\rho}}$$

where

$$\mathcal{R}_t(V_{t+1}) = \left(E \left[(V_{t+1})^{1-\gamma} | \mathcal{F}_t \right] \right)^{\frac{1}{1-\gamma}}$$

adjusts the continuation value V_{t+1} for risk. $\frac{1}{\rho}$ is the elasticity of intertemporal substitution and δ is a subjective discount rate.
Stochastic Discount Factor

\[\frac{S_{t+1}}{S_t} = \exp(-\delta) \left(\frac{C_{t+1}}{C_t} \right)^{-\rho} \left[\frac{V_{t+1}}{R_t(V_{t+1})} \right]^\rho - \gamma \]

▷ Continuation value enhances the impact of the perceptions about the future.

▷ Special case: Power utility sets \(\rho = \gamma \).

▷ Multiply to compound over multiple periods.

▷ When \(\rho = 1 \)

\[\left[\frac{V_{t+1}}{R_t(V_{t+1})} \right]^{1-\gamma} = \frac{(V_{t+1})^{1-\gamma}}{E[(V_{t+1})^{1-\gamma}|\mathcal{F}_t]} \]

has conditional expectation equal to unity. Equivalent interpretation as distorted beliefs.
Risk-Return Tradeoffs

Dynamic asset pricing through altering cash flow exposure to shocks.

- Study implication on the price today of changing the exposure tomorrow on a cash flow at some future date.
- Represent shock price elasticities by normalizing the exposure and studying the impact on the logarithms of the expected returns.
- Construct pricing counterpart to impulse response functions.
Impulse Problem

Ragnar Frisch (1933):

There are several alternative ways in which one may approach the *impulse problem* One way which I believe is particularly fruitful and promising is to study what would become of the solution of a determinate dynamic system if it were exposed to a stream of erratic shocks that constantly upsets the continuous evolution, and by so doing introduces into the system the energy necessary to maintain the swings.

Irving Fisher (1930):

The manner in which risk operates upon time preference will differ, among other things, *according to the particular periods in the future* to which the risk applies.
Elasticities

Counterparts to impulse response functions pertinent to valuation:

▷ shock-exposure elasticities
▷ shock-price elasticities

These are the ingredients to risk premia, and they have a term structure induced by the changes in the investment horizons.

Quantitative Example
(Bansal-Yaron)

\[
dZ_t^{[1]} = -0.021Z_t^{[1]} dt + \sqrt{Z_t^{[2]}} \begin{bmatrix} 0.031 & -0.015 & 0 \end{bmatrix} dW_t
\]

\[
dZ_t^{[2]} = -0.013 \left(Z_t^{[2]} - 1 \right) dt + \sqrt{Z_t^{[2]}} \begin{bmatrix} 0 & 0 & -0.038 \end{bmatrix} dW_t
\]

\[
dY_t = (0.01)(0.15 + Z_t^{[1]}) dt + (0.01)\sqrt{Z_t^{[2]}} \begin{bmatrix} 0.34 & 0.7 & 0 \end{bmatrix} dW_t
\]

▷ \(Y_t \) is the logarithm of consumption;
▷ \(Z^{[1]} \) captures predictability in growth rates;
▷ \(Z^{[2]} \) captures stochastic volatility;
▷ Components of \(dW_t \):
 o Permanent shock;
 o Transitory shock;
 o Stochastic volatility shock.
Shock-Price Elasticities

Recursive utility and Power utility. Bands depict .1 and .9 deciles.
Success?

▷ The mechanism relies on endowing investors with knowledge of statistically subtle components of the macro time series. Where does this confidence come from?
▷ Imposes stochastic volatility exogenously.
▷ Imposes large risk aversion.
Risk Aversion or Subjective Belief Distortion

- Introduce a positive martingale process \tilde{M} with a unit expectation
- Form $\tilde{S} = \frac{S}{\tilde{M}}$
- Observe:
 \[S = \tilde{S} \times \tilde{M} \]
- Use \tilde{M} to distort investor beliefs and use \tilde{S} as an alternative stochastic discount factor

Cannot distinguish belief distortions from stochastic discount factors without further restrictions!
Martingale Factorization Methods

Suppose that $\log S$ has stationary increments. Then S has three components

$$\frac{S_t}{S_0} = \exp(-\eta t) \left(\frac{M_t}{M_0} \right) \left(\frac{F_t}{F_0} \right)$$

where

- η long term yield on a discount bond;
- $\log M$ has stationary increments;
- $\log F$ is stationary.

References: Alvarez and Jermann (Econometrica), Hansen and Scheinkman (Econometrica) and Borovička-Hansen-Scheinkman (Journal of Finance)
Martingale Factorization Methods

\[\frac{S_t}{S_0} = \exp(-\eta t) \left(\frac{M_t}{M_0} \right) \left(\frac{F_t}{F_0} \right) \]

- Probability associated with M is a long-term counterpart to a
 forward measure. Under this measure long-term risk prices for
 growth rate risk are degenerate.

- The positive martingale M embeds interesting economic
 considerations including stochastic growth and recursive utility.

Flat shock price elasticities for some shocks reflect a prominent
martingale component to the stochastic discount factor.
Remember this Plot

Uncertainty components

▷ **risk** - uncertainty *within* a model: uncertain outcomes with known probabilities

▷ **ambiguity** - uncertainty *across* models: unknown weights for alternative possible models

▷ **misspecification** - uncertainty *about* models: unknown flaws of approximating models
Uncertainty can be risk

50 Red Balls
50 Blue Balls
Uncertainty can be *ambiguity*

? Red Balls

? Blue Balls
Uncertainty can change over time

? Red Balls
? Blue Balls
What about Subjective Probability?

▷ De Finetti:

“Subjectivists should feel obligated to recognize that any opinion (so much more the initial one) is only vaguely acceptable...So it is important not only to know the exact answer for an exactly specified initial problem, but what happens changing in a reasonable neighbourhood the assumed opinion.”

▷ Savage:

“No matter how neat modern operational definitions of personal probability may look, it is usually possible to determine the personal probabilities of events only very crudely.”
Making Robustness Operational

▷ Explore a family of “posteriors/priors” used to weight models possibly relative to a benchmark specification. Dynamic learning plays a central role. (Robust Bayesian analysis)

▷ Explore a family of alternative potential models or a class of perturbations to a benchmark model subject to constraints or penalization. Future perturbations may not be tied to the past making learning about them impossible. (Control theory and statistical origins.)

Use the decision problem to target the member of the family that has the largest adverse utility consequences.
Worst-case Model of a Belief Distortion

▷ The analysis often yields a (constrained) worst-case probability.
▷ Apply the theory of two-person games. The decision maker optimizes taking as given the worst-case probability.
▷ Decentralize with worst-case probability.

Concerns about model misspecification look like belief distortions.
Formalization

▷ Construct a specification of preferences as in Hansen-Sargent (AER) and Maccheroni-Marinacci-Rustichini (Econometrica, JET)

▷ Relative entropy penalization gives a rationale for exponential tilting using the value function as the penalized worst-case probability:

\[
\exp \left(- \frac{\log V_{t+1}}{\xi} \right) \frac{E \left[\exp \left(- \frac{\log V_{t+1}}{\xi} \right) | \mathcal{F}_t \right]}{E \left[(V_{t+1})^{1-\gamma} | \mathcal{F}_t \right]} = \frac{(V_{t+1})^{1-\gamma}}{E \left[(V_{t+1})^{1-\gamma} | \mathcal{F}_t \right]}
\]

where \(V_{t+1} \) is the next-period continuation value and \(1 - \gamma = -\frac{1}{\xi} \).

No endogenous source for fluctuations in uncertainty prices.
Robustness concerns illustrated

▷ Initial model

\[dY_t = (.01) \left(\hat{\alpha}_y + \hat{\beta}Z_t \right) dt + (.01)\sigma_x \cdot dW_t \]
\[dZ_t = \hat{\alpha}_z dt - \hat{\kappa}Z_t dt + \sigma_z \cdot dW_t \]

▷ \(W \) a Brownian motion

▷ Think of \(Y \) as log consumption and use logarithmic utility

▷ \(Z \) generates “long-run risk” or growth-rate uncertainty
Basic idea

▷ A representative consumer has instantaneous utility log $C_t = Y_t$
▷ **Disguise** drift distortions inside Brownian motions.
▷ **Weak information** on the parameters. Other distortions are allowable but the decision problem features these.
▷ A concern for robustness is reflected in the implied “risk”-return tradeoff over alternative investment horizons.
Potential Misspecification

▷ Change the evolution of W:

\[dW_t = U_t dt + dW^U_t \]

where W^U is a Brownian motion and U_t is a history dependent drift distortion.

▷ Impose a quadratic penalty in the drift distortion. Link to likelihood ratios and statistical discrepancy.

▷ Worst-case drift distortion is constant. Increase uncertainty prices but in a manner that is invariant over time.
Enriching the Uncertainty Pricing Dynamics

Two approaches:

▷ Structural misspecification.
▷ Robust learning under misspecification - fragile beliefs.

I will report results based on the first approach. Results for the second can be found in Hansen and Sargent (QE, 2010) and Hansen Ely Lecture (AER, 2007).
Family of Restricted Models

▷ parameters: \(\alpha_y, \beta, \alpha_z, \kappa \)

▷ evolution:

\[
\begin{align*}
 dY_t &= .01 (\alpha_y + \beta Z_t) \, dt + .01 \sigma_y \cdot dW_t^R \\
 dZ_t &= \alpha_z dt - \kappa Z_t dt + \sigma_z \cdot dW_t^R
\end{align*}
\]

▷ Construct drift distortion for the Brownian motion

\[
dW_t = R_t dt + dW_t^R \quad \text{where} \quad R_t = \eta(Z_t) \equiv \eta_0 + \eta_1 Z_t
\]

and where

\[
 \sigma = \begin{bmatrix} (\sigma_y)' \\ (\sigma_z)' \end{bmatrix},
\]

and

\[
 \sigma \eta_0 = \begin{bmatrix} \alpha_y - \hat{\alpha}_y \\ \alpha_z - \hat{\alpha}_z \end{bmatrix}, \quad \sigma \eta_1 = \begin{bmatrix} \beta - \hat{\beta} \\ \hat{\kappa} - \kappa \end{bmatrix}
\]

▷ Impose local restriction (see Chen-Epstein, Econometrica).
Uncertainty and Financial Markets

Bear Bull Rumble, Adrian deRooy
Slope Uncertainty

\[dY_t = 0.01 \left(\alpha_y dt + \beta Z_t dt + \sigma_y \cdot dW_t \right) \quad \text{macro evolution} \]

\[dZ_t = \alpha_z dt - \kappa Z_t dt + \sigma_z \cdot dW_t \quad \text{growth evolution} \]

Sets of parameter values \((\beta, \kappa)\) constrained by relative entropy.
Slope Uncertainty

\[dY_t = 0.01 (\alpha_y dt + \beta Z_t dt + \sigma_y \cdot dW_t) \] \hspace{1cm} \text{macro evolution}

\[dZ_t = \alpha_z dt - \kappa Z_t dt + \sigma_z \cdot dW_t \] \hspace{1cm} \text{growth evolution}

Sets of parameter values \((\beta, \kappa)\) constrained by relative entropy.
Slope Uncertainty

\[dY_t = 0.01 (\alpha_y dt + \beta Z_t dt + \sigma_y \cdot dW_t) \quad \text{macro evolution} \]

\[dZ_t = \alpha_z dt - \kappa Z_t dt + \sigma_z \cdot dW_t \quad \text{growth evolution} \]

Sets of parameter values \((\beta, \kappa)\) constrained by relative entropy.
Misspecified Dynamics

▷ Introduce unstructured drift distortions U_t:

$$dW_t = U_t dt + dW^U_t$$

▷ impose a quadratic penalty $|U_t - R_t|^2$ where R_t is one of the possible modeled drift distortions

▷ minimize over the restricted family of R_t’s

Special case of variational preferences and extends Hansen-Sargent (AER).
Growth rate drifts. Left panel: larger structured entropy. Right panel: smaller structured entropy. **Black**: baseline model; **red**: worst-case structured model; **blue**: $q_{u,s} = .1$; and **green**: $q_{u,s} = .2$. Reference: Hansen-Sargent, *Tenuous Beliefs and the Price of Uncertainty*.
Tilting Probabilities

Distribution of $Y_t - Y_0$ under the baseline model and worst-case model. The **black** solid line depicts the baseline median and gray shaded region are includes .1-.9 deciles. The **red** dashed line is the median under the worst-case model and the red shaded region includes the .1-.9 deciles.
What We Have Achieved

▷ **tractable** approach for confronting uncertainty
▷ **mechanism** for inducing **fluctuations** in asset values
▷ investors **fear persistence** in bad times and **fear the lack of persistence** in good times
Broader Perspective

▷ **difficult** to disentangle risk aversion from belief distortions
▷ belief distortions are **more compelling** in environments in which **uncertainty** is complex
▷ statistical tools provide valuable ways to assess **environmental complexity**
▷ value to **pushing beyond** the **risk** model commonly embraced in economics and finance
Education is the path from cocky ignorance to miserable uncertainty

- Mark Twain