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Abstract

We investigate a method for extracting nonlinear principal components. These
principal components maximize variation subject to smoothness and orthogonality
constraints; but we allow for a general class of constraints and densities, including
densities without compact support and even densities with algebraic tails. We provide
primitive sufficient conditions for the existence of these principal components. We also
characterize the limiting behavior of the associated eigenvalues, the objects used to
quantify the incremental importance of the principal components. By exploiting the
theory of continuous-time, reversible Markov processes, we give a different interpreta-
tion of the principal components and the smoothness constraints. When the diffusion
matrix is used to enforce smoothness, the principal components maximize long-run
variation relative to the overall variation subject to orthogonality constraints. More-
over, the principal components behave as scalar autoregressions with heteroskedastic
innovations. Finally, we explore implications for a more general class of stationary,
multivariate diffusion processes.
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1 Introduction

Principal components are functions of the data that capture maximal variation in some
sense. Often they are restricted to be linear functions of the underlying data. In this paper
we study the extraction of nonlinear principal components using information encoded in
the density of the data. Formally, the principal components maximize variation subject to
orthogonality and smoothness constraints where smoothness constraints are enforced by the
quadratic form f expressed in terms of the gradients of functions. Specifically, the quadratic
form is

f(φ, ψ) =
1

2

∫

Ω

∇φ(x)′Σ(x)∇ψ(x)q(x)dx

where Σ is a state-dependent positive-definite matrix, q is the population density of the data,
∇ denotes the (weak) gradient operator and Ω is the state space.

Alternatively, principal components are solutions to approximation problems. Suppose
we wish to form the best finite-dimensional least squares approximation to an infinite-
dimensional space of smooth functions, where we use the form f to limit the class of functions
to be approximated. In a sense that we make formal, a finite number of principal compo-
nents solves this problem. More stringent smoothness restrictions enforced by penalization
limit the family of functions to be approximated while improving the overall quality of ap-
proximation. Thus our analysis of principal components is in part as an investigation of this
approximation.

Previously Salinelli (1998) defined nonlinear principal components for absolutely contin-
uous random variables and characterized these principal components as eigenfunctions of a
self-adjoint, differential operator. Our departure from Salinelli (1998) is substantial. For
Salinelli, the matrix Σ is state independent, the state space Ω is compact and the density
q is bounded above and below for the bulk of his analysis. Our interest in probability den-
sities q that do not have compact support, including densities with algebraic tails leads us
naturally to consider a more general class of smoothness penalties. By allowing for a more
flexible specification for Σ and q, we entertain a larger class of smoothness constraints vis a
vis Salinelli (1998) with explicit links to the data generation. Establishing the existence of
principal components in this setup is no longer routine.

Salinelli (1998) assumes the data generation process is independent and identically dis-
tributed. While our analysis is applicable to such an environment, we also explore the case
in which data are generated by a stationary diffusion process. By considering such processes,
we give a specific interpretation of the matrix Σ used to enforce smoothness. It is the local
covariance or diffusion matrix. With this interpretation, the principal components extracted
with smoothness penalties are ordered by the ratio of their long run variation to the over-
all variation. That is, principal components that capture variation subject to smoothness
constraints also display low frequency variation due to their high persistence.

In this paper we do the following:

1. Formulate the nonlinear principal component extraction to include state-dependence
in the smoothness constraint and state spaces that have infinite Lebesgue measure.
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2. Give sufficient conditions for the existence of these principal components and provide
bounds on the incremental importance of these components when used in approxima-
tion.

3. Provide a reversible Markov diffusion process for the data generation that supports the
principal component extraction method and generates testable implications.

4. Show that these sufficient conditions imply the existence of countably many eigenvalues
and eigenfunctions for a more general class of Markov diffusion processes.

The rest of the paper is organized as follows. In Section 2, we first define principal
components as functions that maximize variation subject to orthogonality conditions and
smoothness bounds given by the quadratic form f. These principal components are eigen-
functions of the form f. We then characterize a family of optimization problems that princi-
pal components must solve and show that these functions also solve a problem of obtaining
the “best” finite-dimensional approximations in a least-square sense. The quality of these
approximations are related to the eigenvalues associated with the eigenfunctions. If the
constraints of the optimization problem that yield the principal components satisfy a com-
pactness criteria, principal components exist. Section 3 is dedicated to deriving primitive
conditions that imply the compactness criteria. In Section 4 we specialize the conditions that
imply compactness to the case when radial symmetry holds and discuss four parameterized
examples. We then present bounds on the rate of divergence of the eigenvalues that are
associated with the principal components. These bounds, in turn, are bounds on the rate of
convergence of the approximation errors that obtain when we use principal components in
approximation. The results in Section 5 relate the principal components to eigenfunctions of
conditional expectations operators associated with a stationary Markov process {xt} defined
using the diffusion matrix Σ and the stationary density q. Given an eigenfunction ψ, the
process {ψ(xt)} behaves as a scalar autoregression. Thus the eigenfunciton we obtain satisfy
testable implications when the data is generated by a Markov process. Section 6 gives some
concluding remarks and discusses applications our results. The appendices contain some
proofs and computations associated with examples.

2 Principal Components

To define a functional notion of principal components we require two quadratic forms. We
start with an open connected Ω ⊆ R

n. Let q be a probability density on Ω with respect
to Lebesgue measure. The implied probability distribution is the population counterpart
to the empirical distribution of the data. Let L2 denote the space of Borel measurable
square integrable functions with respect to population probability distribution. The L2 inner
product (denoted < ·, · >) is one of the two forms of interest. We use the corresponding
norm to define an approximation criterion.

The second form is used to measure smoothness. Consider (quadratic) form fo defined
on C2

K , the space of twice continuously differentiable functions with compact support in Ω,
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that can be parameterized in terms of the density q and a positive definite matrix Σ that
can depend on the state:

fo(φ, ψ) =
1

2

∫

Ω

∑

i,j

σij
∂φ

∂yj

∂ψ

∂yi
q (1)

where
Σ = [σij ].

Assumption 2.1. : q is a positive, continuously differentiable probability density on Ω.

Assumption 2.2. : Σ is a continuously differentiable, positive definite matrix function on
Ω.1

While the fo is constructed in terms of the product qΣ, the density q will play a distinct role
when we consider extending the domain of the form to a larger set of functions.

To study the case in which Ω is not compact, we will consider a particular closed extension
of the form fo. We extend the form fo to a larger domain H̄ ⊂ L2 using the notion of a weak
derivative.

H̄
.
= {φ ∈ L2 : there exists g measurable, with

∫

g′Σgq <∞,

and

∫

φ∇ψ = −
∫

gψ, for all ψ ∈ C1
K}

The random vector g is unique (for each φ) and is referred to as the weak derivative of φ.
From now on, for each φ in H̄ we write ∇φ = g.2 For any pair of functions ψ and φ in

H̄ we define:

f(φ, ψ) =
1

2

∫

Ω

(∇φ)′Σ(∇ψ)q,

which is an extension of fo. In H̄ we use the inner product < φ, ψ >f̄=< φ, ψ > +f(φ, ψ).
In Appendix A we prove that with this inner product H̄ is complete (and hence a Hilbert
space). Thus H̄ is taken to be the domain D(f) of the form f . Notice, in particular, that
the unit function is in D(f).

1Assumptions 2.1 and 2.2 restrict the density q and the matrix Σ to be continuously differentiable. As
argued by Davies (1989) these restrictions can be replaced by a less stringent requirement that entries of the
matrix qΣ are locally (in L2(Lebesgue)), weakly differentiable. (See Theorem 1.2.5.)

2Notice that H̄ is constructed exactly as a weighted Sobolev space except that instead of requiring that
g ∈ L2, we require that Λg ∈ L2 where Λ is the square root of Σ. Also we use C1

K
test functions. One can

show, using mollifiers, that allowing for this larger set of test functions is equivalent to using the more usual
set of test functions, C∞

K
(see Brezis (1983) Remark 1, page 150.)
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2.1 Initial Construction

Principal components maximize variation subject to smoothness constraints. In our gener-
alization these principal components are defined as follows.3

Definition 2.1. : The function ψj is the jth nonlinear principal component for j ≥ 1 if ψj
solves:

max
φ

< φ, φ >

subject to

f(φ, φ) = 1

< ψs, φ > = 0, s = 0, ..., j − 1

where ψ0 is initialized to be the constant function one.

There are two differences between our proposed extraction and that of Salinelli (1998).
First, Salinelli (1998) assumes that Σ is state independent. To accommodate a rich class
of densities, we allow Σ to be state dependent. Second, Salinelli (1998) assumes that the
data density q has finite Lebesgue measure and is bounded away from zero. We allow the
Lebesgue measure of the state space to be infinite, and accordingly the density q is no longer
assumed to be bounded from below.

As we will see, principal components are eigenfunctions of the quadratic forms f .

Definition 2.2. An eigenfunction ψ of the quadratic form f satisfies:

f(φ, ψ) = δ < φ, ψ > (2)

for all φ ∈ D(f). The scalar δ is the corresponding eigenvalue.

Since f is positive semidefinite, δ must be nonnegative. The principal components extracted
in the manner given in (2.1) have eigenvalues δj that increase with j. If we renormalize the
eigenfunctions to have a unit second moment, the principal components will be ordered by
their smoothness as measured by δ = f(ψ, ψ).

Suppose that the principal components {ψj : j = 0, 1, ...} exist with corresponding eigen-
values {δj : j = 0, 1, ...}. Consider any φ in L2. Then

φ =

∞
∑

j=0

< ψj, φ >

< ψj , ψj >
ψj,

< φ, φ >=
∞

∑

j=0

< ψj , φ >
2

< ψj , ψj >
,

3There are other functional principal component constructions. For instance, Dauxois and Pousse (1975)
and Dauxois and Nkiet (1998) suggest a different way to construct nonlinear principal components for mul-
tivariate densities based on choosing pairs of functions that maximize cross correlations without penalizing
derivatives.
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and for any φ, ψ ∈ D(f),

f(φ, ψ) =

∞
∑

j=0

δj
< φ, ψj >< ψ, ψj >

< ψj , ψj >2
. (3)

The following example is used to illustrate principal components.

Example 2.1. Let Σ = I and

q(x) ∝
{

exp
[

− (|x| − 1)2] if |x| ≥ 1
1 if |x| < 1

The proportionality factor can be chosen so that the density q integrates to unity. The radial
symmetry is chosen for simplicity.

For the sake of illustration, we assume that n = 2. Some principal components are of the
form:

ψ(x) = ϑ(|x|),
In addition, there are principal components that are not constant on circles. These prin-
cipal components come in pairs. The principal component extraction will identify a two-
dimensional space rather than the more familiar one-dimensional extraction. In particular
there will be two orthogonal principal components ψ and ψ∗ with the same smoothness and
the same variance. One of these, say ψ will be symmetric: ψ(x1, x2) = ψ(x2, x1) and another
will be anti-symmetric: ψ∗(x1, x2) = −ψ∗(x2, x1).

We display the first five principal components in the accompanying figures. The compu-
tational method is described in Appendix B. These principal components are scaled to have
unit variance and are ordered by their smoothness. Principal components one and two come
in a symmetric-antisymmetric pair and are shown in Figures 1 and 2. These functions are
almost linear inside a circle of radius two. Beyond this circle the slope increases.

Principal components three and four also come in a symmetric-antisymmetric pair and are
reported in Figures 3 and 4. Since the principal components are ordered by their smoothness,
these functions oscillate more than the first pair. The fifth principal component is constant
on circles and is depicted in Figure 5.

2.2 Benchmark Optimization Problem

Given a density q, principal components solve finite dimensional approximation problems.
We will show that, in a specific sense, they can be used to build best approximating finite
dimensional spaces. Let H be a closed in L2 linear subspace of L2. Prior to establishing this
result, consider the optimization problem:

Problem 2.1.
max
φ∈H

< φ, φ >
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Figure 1: This figure displays the symmetric principal component in the first symmetric-
antisymmetric pair. The upper-left panel gives a three-dimensional plot of the principal
component. The lower-left block gives two slices of the function. One slice fixes the first
coordinate at zero, and the other slice fixes the second coordinate at zero. The value of the
principal component is given on the vertical axis. The lower-right panel reports level curves
of the principal component holding fixed the value of the principal component at different
levels.
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Figure 2: This figure displays the anti-symmetric principal component in the first symmetric-
antisymmetric pair. The upper-left panel gives a three-dimensional plot of the principal
component. The lower-left block gives two slices of the function. One slice fixes the first
coordinate at zero, and the other slice fixes the second coordinate at zero. The value of the
principal component is given on the vertical axis. The lower-right panel reports level curves
of the principal component holding fixed the value of the principal component.
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Figure 3: This figure displays the symmetric principal component in the second symmetric-
antisymmetric pair. The upper-left panel gives a three-dimensional plot of the principal
component. The lower-left block gives two slices of the function. One slice fixes the first
coordinate at zero, and the other slice fixes the second coordinate at zero. The value of the
principal component is given on the vertical axis. The lower-right panel reports level curves
of the principal component holding fixed the value of the principal component.
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Figure 4: This figure displays the anti-symmetric principal component in the second
symmetric-antisymmetric pair. The upper-left panel gives a three-dimensional plot of the
principal component. The lower-left block gives two slices of the function. One slice fixes
the first coordinate at zero and the other slice fixes the second coordinate at zero. The value
of the principal component is given on the vertical axis. The lower-right panel reports level
curves of the principal component holding fixed the value of the principal component.
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Figure 5: This figure displays the fifth principal component. This principal component is
constant on circles centered at zero. The upper-left panel gives a three-dimensional plot of
the principal component. The lower-left block gives two slices of the function. One slice
fixes the first coordinate at zero, and the other slice fixes the second coordinate at zero. The
value of the principal component is given on the vertical axis. The lower-right panel reports
level curves of the principal component holding fixed the value of the principal component.
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subject to
< φ, φ > +θf(φ, φ) ≤ 1

for some θ > 0.

To establish the existence of a solution to Problem 2.1, it suffices to suppose the following:

Criterion 2.1. {φ ∈ D(f) : θf(φ, φ)+ < φ, φ >≤ 1} is precompact (has compact closure)
in L2.

The precompactness restriction guarantees that we may extract an L2 convergent sequence
in the constraint set, with objectives that approximate the supremum. The limit point of
convergent sequence used to approximate the supremum, however, will necessarily be in the
constraint set because the constraint set is convex and the form is closed.

We provide sufficient conditions for this compactness criterion in the next section. A
necessary condition is that φ satisfies an eigenvalue problem:

Claim 2.1. A solution φ∗ to Problem 2.1 will also solve the eigenvalue problem:

< ψ, φ∗ >= λ[< ψ, φ∗ > +θf(ψ, φ∗)]

for some positive λ and all ψ ∈ H.

Proof. Let φ∗ solve Problem 2.1. Then for each ψ ∈ H and r ∈ R
+ small

< φ∗ + rψ, φ∗ + rψ >

< φ∗ + rψ, φ∗ + rψ > +θf(φ∗ + rψ, φ∗ + rψ)
≤ λ

.
=

< φ∗, φ∗ >

< φ∗, φ∗ > +θf(φ∗, φ∗)
.

That is:

2r < φ∗, ψ > +r
2 < ψ, ψ >≤ λ[2r < φ∗, ψ > +r

2 < ψ, ψ > +2rθf(φ∗, ψ) + r
2θf(ψ, ψ)].

Dividing by 2r and taking limr→0

< φ∗, ψ >≤ λ[< φ∗, ψ > +θf(φ∗, ψ)].

Since we could use also −ψ,

< φ∗, ψ >= λ[< φ∗, ψ > +θf(φ∗, ψ)]

for each ψ ∈ H.
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2.3 Recursive approximation

Why do we care about principal components? In what sense do they capture the most
important variation of data? One way to address this is to explore the construction of
the best, finite-dimensional, least squares approximations. Specifically, suppose we wish
to construct the best finite dimensional set of approximating functions for the space of
functions that are square integrable with respect to a probability measure Q with density
q. We now motivate principal components as the recursive solution to such a problem. The
N -dimensional problem is solved by solving N one-dimensional problems using a sequence
of H ’s that remove one dimension in each step. The outcome at each step is a principal
component used as an additional approximating function.

Initially solve Problem 2.1 for H = L2, select a solution φ0 and denote the maximized
objective as λ0. In fact φ0 = 1 and λ0 = 1. Inductively, given φ0, φ1, ..., φj−1, form Hj−1

as the j dimensional space generated by these j solutions constructed recursively. Let H⊥
j−1

denote the space of all elements of L2 that are orthogonal to these j solutions and hence
orthogonal to Hj−1. Solve Problem 2.1 for H = H⊥

j−1, select a solution φj , and form λj as
the maximized value. The sequence {λj : j = 0, 1, ...} is decreasing because we are omitting
components of the constraint set for the maximization problem as j increases.

In what sense is such a recursive procedure optimal? In answering this question, let
Proj(ψ|Ĥ) denote the least squares projection of ψ onto the closed (in L2) linear space Ĥ .
The second moment of the approximation error is:

< ψ − Proj(ψ|Ĥ), ψ − Proj(ψ|Ĥ) >=< ψ, ψ > −[Proj(ψ|Ĥ)]2.

Claim 2.2. Let Ĥ denote any N-dimensional subspace of L2. Then

max
{ψ:<ψ,ψ>+θf(ψ,ψ)≤1}

{< ψ, ψ > −[Proj(ψ|Ĥ)]2} ≥ λN .

Proof. In solving the maximization component of the problem, first limit the ψ’s to be in
HN but orthogonal to Ĥ. This can only reduce maximized value. The space of such ψ’s
contains more than just the zero element because HN has N + 1 dimensions. Write ψ as:

ψ =
N

∑

j=0

rjφj.

The objective can be expressed as:
N

∑

j=0

(rj)
2λj ,

since Proj(ψ|Ĥ) = 0. The constraint set implies that

N
∑

j=0

(rj)
2 ≤ 1
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because the f(φj, φℓ) =< φj , φℓ >= 0 for j 6= ℓ. While the coefficients rj cannot be freely

chosen (ψ must be orthogonal to Ĥ), they can be scaled so that the constraint is satisfied
with equality. Since the sequence of λj ’s is decreasing, the maximized objective must be no
less than λN .

Our next result shows that the bound deduced in Claim 2.2 is attained by HN−1.

Claim 2.3.
max

{ψ:<ψ,ψ>+θf(ψ,ψ)≤1}
{< ψ, ψ > −[Proj(ψ|HN−1)]

2} = λN

Proof. Write ψ as:
ψ = Proj(ψ|HN−1) + ϕ

where ϕ is in HN . Write:

Proj(ψ|HN−1) =
N−1
∑

j=0

rjφj

Using this decomposition, the objective can be written as:

< ϕ, ϕ >,

and the constraint set can be written as:

N−1
∑

j=0

(rj)
2+ < ϕ, ϕ > +θf(ϕ, ϕ),

because φ1, φ2, ..., φN−1, ϕ are orthogonal, and f(φj, ϕ) = f(φj, φℓ) = 0 for j = 0, ..., N − 1
and ℓ = j+ 1, j+ 2, ..., N − 1. To maximize the objective, the coefficients rj ’s are set to zero
and ϕ is chosen by solving Problem 2.1 for H = H⊥

N−1. The conclusion follows.

Taken together, these two claims justify HN−1 as a good N -dimensional space of approx-
imating functions.

Remark 2.1. There exist N-dimensional spaces other than HN−1 that attain the bound given
in Claim 2.2. One reason is that there may be multiple solutions for φ in Problem 2.1. At
each stage of the recursive construction of HN−1, any of these solutions may be used. Even
when the solution to Problem 2.1 is unique, at each stage of the construction φN−1 may be
replaced by the sum of φN−1 plus some φ′s that is orthogonal to all of the solutions to Problem
2.1 with H = H⊥

N−1. Such a choice cannot necessarily be used in a recursive construction of
optimal approximating spaces with dimension greater than N .

Remark 2.2. This analysis can be seen as a special case the finite-dimensional approxima-
tion of linear operators. By using < φ, ψ > +θf(φ, ψ) as an inner product, we may construct
a Hilbert space of functions. The embedding operator is the identity operator mapping this
Hilbert space into L2. Approximation numbers from operator theory define formally the ability

13



to approximate a linear operator such as this embedding operator by a best possible finite-
dimensional operator (e.g. see Edmunds and Evans (1987), page 53). For this operator a
solution is the least squares projection onto a finite number of the functions whose recursive
construction we just characterized. The resulting approximation numbers {aN : N ≥ 0} are
given by aN = (λN)1/2.4

2.4 Principal Components Revisited

In Problem 2.1, the constraint set gets larger as θ declines to zero. Reducing the smoothness
penalty with a smaller θ enlarges the collection of functions that satisfy the constraint.
Thus the maximized objective increases as θ is reduced. While this is true, it turns out the
maximizing choice of φ does not depend on θ up to scale. This follows because the ranking
over φ’s implied by the ratio:

< φ, φ >

< φ, φ > +θf(φ, φ)

does not depend on the value of θ. The same ranking is also implied by the ratio:

< φ, φ >

f(φ, φ)

provided that H is orthogonal to all constant functions. Thus a scaled version of φ∗ solves:

Problem 2.2.
max
φ∈H

< φ, φ >

subject to:
f(φ, φ) = 1

Restricting H to be orthogonal to constant functions is equivalent to limiting attention to
functions φ that have mean zero under the population data distribution Q. Recall that our
construction of principal components was based on the recursive application of this problem.

From Claim 2.1 we know that φ∗ satisfies:

< ψ, φ∗ >= λ[< ψ, φ∗ > +θf(ψ, φ∗)]

for ψ ∈ H . Rearranging terms,

f(ψ, φ∗) = δ < ψ, φ∗ >

where

δ =
1 − λ

λθ
.

4Our proof of Claim 2.2 follows closely that of Theorem 5.10 (page 91) in Edmunds and Evans (1987).
It is included here for sake of completeness.
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This is the eigenvalue associated with the principal component extraction. Solving for λ,

λ =
1

1 + δθ
.

Since eigenvalues δ of the form increase without bound, the corresponding sequence of λ’s
converge to zero guaranteeing that approximation becomes arbitrarily accurate as the num-
ber of principal components increases.

3 Existence

In section 2.2 we noted that the compactness Criterion 2.1 implies the existence of principal
components of the form f . We now consider more primitive sufficient conditions that imply
this criterion.

This section is organized as follows. We first review the existence condition used by
Salinelli (1998) and the one derived by Hansen et al. (1998) for the real line. We then extend
their results to multivariate processes defined on R

n using two devices. First, we transform
the function space and hence the form so that distribution induced by q is replaced by the
Lebesgue measure. This transfomation allows us to apply known results for forms built using
Lebesgue measure. Second, we study forms that are simpler but dominated by f . When the
dominated forms satisfy Criterion 2.1 the same can be said of f .

3.1 Compact Domain

Salinelli (1998) used Rellich’s compact embedding theorem applied to a compact state space
to establish existence of principal components when the domain Ω is bounded with a con-
tinuous boundary. His approach can be employed here provided that the density is bounded
and bounded away from zero and the derivative penalty matrix Σ is uniformly nonsingular.5

3.2 Real Line

Consider next results on the real line. Thus q is a positive density on the real line. The
positive definite matrix Σ is now simply a scalar, which we parameterize as

Σ = ς2.

Proposition 3.1. Suppose that

∫ ∞

0

1

ς2(x)q(x)
= +∞,

∫ ∞

0

1

ς2(−x)q(−x) = +∞ (4)

5Salinelli (1998) also gives results for some very special cases of unbounded domains (see section five of
his paper). Among other restrictions, he considers multivariate domains with finite Lebesgue measure.
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lim
|x|→∞

− x

|x|

[

ς(x)
q′(y)

q(x)
+ ς ′(x)

]

= +∞. (5)

Then Criterion 2.1 is satisfied.

Proof. See Appendix C.

When ς is constant, the compactness condition (5) reduces to:

lim
|y|→∞

− x

|x|

[

q′(x)

q(x)

]

= +∞,

which rules out densities with algebraic tails (tails that decay faster than |x| raised to a
negative power.) By allowing for ς to increase, we can accommodate densities with algebraic
tails.

3.3 R
n

In the subsections that follow, we will provide multivariate extensions for both sources of
compactness: growth in the logarithmic derivative of the density q and growth in the deriv-
ative penalty Σ. For simplicity, we will concentrate in the case where the state space is all
of R

n.

3.3.1 Core

The compactness Criterion 2.1 involves the domain of the form f which is often rather
complicated to describe. For this reason, we will focus on cases where this domain can be
well approximated by smooth functions. The adequate notion of approximation is that of a
core:

Definition 3.1. A family of functions Co ⊂ D(f) is a core of f if for any φ0 in the domain
D(f), there exists a sequence {φj} in Co such that

lim
j→∞

< φj − φ0, φj − φ0 > +f(φj − φ0, φj − φ0) = 0.

Condition 3.1. C2
K is a core of f .

Let f̂ denote the minimal extension, the smallest closed extension of fo that is defined
in (1). Condition 3.1 is equivalent to f = f̂ .

Although their purpose was different, Fukushima et al. (1994) provide a convenient suf-
ficient condition that turns out to imply Condition 3.1 in environments that interest us.
Define:

κ(r) =

∫

|x|=1

x′Σ(rx)xq(rx)dS(x)
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where dS is the measure (surface element) used for integration on the sphere |x| = 1. For
functions ψ and φ in C2

K that are radially symmetric, i.e. φ(x) = ξ(|x|) and ψ(x) = ζ(|x|),
we may depict the form fo as an integral over radii:

fo(ψ, φ) =

∫ ∞

0

dξ(r)

dr

dζ(r)

dr
κ(r)rn−1dr.

Proposition 3.2. Condition 3.1 is implied by:
∫ ∞

0

κ(r)−1
r
1−ndr = ∞. (6)

.

Proof. See Appendix C.

Restriction (6) implies the scalar restriction (4) of Proposition 3.1. This follows since for
any non-negative reals r1 and r2,

min

{

1

r1
,

1

r2

}

≥ 1

r1 + r2
.

Notice that (6) is a joint restriction on Σ and q. We may relate this condition to the
moments of q and the growth of Σ using the inequality:

+∞ =

(
∫ ∞

0

1

r

dr

)2

≤
∫ ∞

0

κ(r)−1
r
1−ndr

∫ ∞

0

κ(r)rn−3dr.

Thus a sufficient condition for (6) is that
∫ ∞

0

κ(r)

r
2

r
n−1dr <∞. (7)

This latter inequality displays a tradeoff between growth in the penalization matrix and
moments of the distribution. Define

ς2(r) = sup
|x|=1

x′Σ(rx)x,

and

̺(r) =

∫

|x|=1

q(rx)dS(x).

Notice that
κ(r) ≤ ς2(r)̺(r).

Suppose for instance, ς2(r) is dominated by a quadratic function (in r). Then (7) and hence
(6) are satisfied because the density q is integrable:

∫ ∞

0

̺(r)rn−1dr = 1.
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Remark 3.1. Consider the specification given in Example 2.1. Since Σ is an identity matrix,
it suffices that q be integrable. Thus C2

K is a core for the form f in this example.

We may extend the previous argument by supposing instead that

ς2(r) ≤ c|r|2+2δ

for some positive δ. Then
κ(r)

r
2

≤ cr2δ
∫

|x|=1

q(rx)dS(x).

Thus (7) is satisfied provided that

∫

|x|2δq(x)dx <∞.

Hence we can allow for faster growth in ς2 if q has high enough moments.

3.3.2 Transforming the Measure

In this subsection we transform the space L2 into a Lebesgue counterpart L2(leb). The trans-
formation is standard (see Davies (1989)), but it is often applied in the reverse direction.
By using this transformation we may appeal to some existing mathematical results on com-
pactness to establish Criterion 2.1,

Uθ = {φ ∈ D(f) : θf(φ, φ)+ < φ, φ >≤ 1}

is precompact in L2 for some θ > 0.
Given q write:

q1/2 = exp(−h).

Assumption 3.1. The function h is twice continuously differentiable.

This assumption imposes extra smoothness on the density, smoothness that is not required
in our previous analysis.

Map the space L2 into L2(leb) by the (invertible) unitary transformation:

ψ = Uφ ≡ exp(−h)φ.

Since U is unitary, it suffices to show that U(Uθ) is pre-compact. We will actually construct
a set that contains U(Uθ) and is pre-compact in L2(leb).

First notice that U and U−1 leave C2
K invariant, and for any ψ ∈ C2

K the corresponding
φ = U−1ψ satisfies:

∇φ = exp(h)(ψ∇h+ ∇ψ).
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Thus

f(U−1ψ, U−1ψ∗) =
1

2

∫

(∇ψ)′Σ(∇ψ∗) +
1

2

∫

(∇h)′Σ[∇(ψψ∗)] +
1

2

∫

(∇h)′Σ(∇h)ψψ∗.

Applying integration-by-parts to ψ ∈ C2
K , it follows that

1

2

∫

(∇h)′Σ[∇(ψψ∗)] = −1

2

∫

∑

i,j

σi,j
∂2h

∂yi∂yj
ψψ∗ − 1

2

∫

∑

i,j

∂σi,j
∂yi

∂h

∂yj
ψψ∗.

Therefore,

f(U−1ψ, U−1ψ∗) =
1

2

∫

(∇ψ)′Σ(∇ψ∗) +
1

2

∫

V ψψ∗ (8)

where the potential function V is given by:

V = −
∑

i,j

σi,j
∂2h

∂yi∂yj
−

∑

i,j

∂σi,j
∂yi

∂h

∂yj
+ (∇h)′Σ(∇h). (9)

Proposition 3.3. Suppose that C2
K is a core for f , ψ = Uφ for some φ ∈ H̄ and V is

bounded from below. Then ψ is weakly differentiable,

∇ψ = exp(−h)(−φ∇h + ∇φ)

and
∫

(∇φ)′Σ∇φq =

∫

V ψ2 +

∫

(∇ψ)′Σ(∇ψ). (10)

Proof. See Appendix C.

A consequence of this proposition is that

Vθ = {ψ ∈ L2(leb) :

∫
(

1 +
θ

2
V

)

ψ2 +
θ

2

∫

(∇ψ)′Σ(∇ψ) ≤ 1} ⊃ U(Uθ),

and it thus suffices to show that Vθ is precompact in L2(leb) for some θ > 0.
We consider two methods for establishing that this property is satisfied. We first focus

on the behavior of the potential V used in the quadratic form:
∫

(1 + θ
2
V )ψ2, and then we

study extensions that exploit growth in the derivative penalty matrix Σ used in the quadratic
form:

∫

(∇ψ)′Σ(∇ψ).

3.3.3 Divergent Potential

In this section, we use the tail behavior of the potential V . To simplify the treatment of the
term

∫

(∇ψ)′Σ(∇ψ) in the definition of Vθ we impose:

Assumption 3.2. The derivative penalty matrix Σ ≥ cI for some c > 0.
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This assumption rules out cases in which the derivative penalty matrix diminishes to zero
for arbitrarily large states.

We also suppose that the potential function diverges at the boundary:

Criterion 3.1. lim|x|→∞ V (x) = +∞.

Proposition 3.4. Under Assumptions 3.1 and 3.2, if Criterion 3.1 is satisfied, then Crite-
rion 2.1 is satisfied.

Proof. Since V is continuous and diverges at the boundaries, it must be bounded from below.
Also, it follows from Assumption 3.2 that

Vθ ⊂ {ψ ∈ L2(leb) : ψ has a weak derivative and
∫

(

1 +
θ

2
V

)

(ψ)2 +
θc

2

∫

|∇ψ)|2 ≤ 1}.

We may then apply the argument in the proof of Theorem XIII.67 of Reed and Simon (1978)
to establish that Vθ is precompact in L2(leb).

Direct verification of Criterion 3.1 may be difficult because formula (9) is a bit com-
plicated. However, we may replace the Σ by a lower bound. In what follows we suppose
that

Assumption 3.3. The derivative penalty matrix Σ satisfies

Σ(x) ≥ ς(x)2I.

where ς is twice continuously differentiable and ς(x)2 ≥ c > 0.

Let:

f̌o(φ, φ
∗) =

1

2

∫

∇φ · ∇φ∗ς2q(x)

on the space C2
K . Then

f̌o(φ, φ) ≤ fo(φ, φ).

Let f̌ be the minimal extension of f̌o. If f is the minimal extension of fo, Assumption 3.3
insures that the domain of f̌ contains the domain of f. Applying Proposition 3.3 to f̌ , it
suffices to use

V̌ (x) = ς(x)2

(

−trace

[

∂2h(x)

∂xi∂xj

]

− 2∇ς(x) · ∇h(x)
ς(x)

+ |∇h(x)|2
)

.

in place of V in demonstrating compactness.

Criterion 3.2. Assumption 3.3 is satisfied and

lim
|x|→∞

V̌ (x) = +∞.
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To derive some sufficient conditions for this criterion we parameterize ς as:

ς(x) = exp[v(x)].

Then an alternative formula for V̌ is:

V̌ (x) = −ς(x)2trace

[

∂2h(x)

∂xi∂xj

]

+ ς(x)2|∇h(x) −∇v(x)|2 − ς(x)2∇v(x) · ∇v(x).

An alternative to criterion 3.2 is:

Criterion 3.3. Assumption 3.3 is satisfied,

a)

lim
|x|→∞

|∇v(x)|
|∇h(x)| = 0;

b)

lim
|x|→∞

ς(x)2

(

−trace

[

∂2h(x)

∂xi∂xj

]

+ ∇h(x) · ∇h(x)
)

= +∞.

Proposition 3.5. Suppose Assumptions 3.1 is satisfied. Then Criterion 3.3 implies Crite-
rion 2.1.

Restriction b) of Criterion 3.3 limits the second derivative contribution from offsetting that
of the squared gradient of h. This criterion is convenient to check when h displays polynomial
growth, or equivalently when q has exponentially thin tails. Even if |∇h| becomes arbitrarily
small for large |x|, the compactness criterion can still be satisfied by having the penalization
ς increase to more than offset this decline.

Next we consider a way to exploit further growth in ∇ς. This approach gives us a way
to enhance the potential function, and may be used when lim inf |x|→∞

|∇v(x)|
|∇h(x)| > 0. Write

∫

ς2∇φ · ∇φ = c

∫

∇φ · ∇φ+

∫

(ς2 − c)∇φ · ∇φ.

We now deduce a convenient lower bound on:
∫

(ς2 − c)∇φ · ∇φ,

following an approach of Davies (1989) (see Theorem 1.5.12). Construct an additional po-
tential function:

W̌ (x) = (ς2 + c)(∇v · ∇v) +
(

ς2 − c

)

trace

(

∂2v

∂xi∂xj

)

.
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Lemma 3.1. Suppose Assumption 3.3 is satisfied. Then
∫

W̌φ2 ≤
∫

(ς2 − c)∇φ · ∇φ

for all φ ∈ C2
K.

Proof. See Appendix C.

Note that

V̌ (x) + W̌ (x) = ς(x)2trace

[

∂2v(x)

∂xi∂xj
− ∂2h(x)

∂xi∂xj

]

+ ς(x)2|∇h(x) −∇v(x)|2

+c

[

∇v(x) · ∇v(x) − trace

(

∂2v(x)

∂xi∂xj

)]

.

Criterion 3.4. Assumption 3.3 is satisfied,

a)

lim
|x|→∞

[

∇v(x) · ∇v(x) − trace

(

∂2v(x)

∂xi∂xj

)]

= 0;

b)

lim
|x|→∞

ς(x)2trace

[

∂2v(x)

∂xi∂xj
− ∂2h(x)

∂xi∂xj

]

+ ς(x)2|∇h(x) −∇v(x)|2 = +∞.

Proposition 3.6. Suppose Assumptions 3.1 and Condition 3.1 are satisfied. Then Criterion
3.4 implies Criterion 2.1.

Restriction a) of Criterion 3.4 limits the tail growth of the penalization. There are two
reasons that such growth should be limited. The fast growth in Σ limits the functions that
we hope to approximate using principal components. Also for C2

K to be a core for the form
f we require limits on growth in Σ (see subsection 3.3.1.)

Our use of W̌ in addition to V̌ in effect replaces −ς2|∇v|2 with a second derivative term:

ς(x)2trace

[

∂2v(x)

∂xi∂xj

]

.

The following example illustrates the advantage of this replacement.

Example 3.1.

v(x) =
β

2
log(1 + |x|2) +

c̃

2

where c̃ = log c Thus ς grows like |x|β in the tails. Simple calculations result in

−∇v(x) · ∇v(x) = −β2 |x|2
(1 + |x|2)2

,
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and

trace

[

∂2v(x)

∂xi∂xj

]

= β

[

n+ (n− 2)|x|2
(1 + |x|2)2

]

.

Notice that both terms converge to zero as |x| gets large, but that the squared gradient scaled
by ς2 becomes arbitrarily large when β > 1. The first term is always negative, but the second
one is nonnegative provided that n ≥ 2. Even when n = 1 the second term is larger than
the first provided that β > 1.6 This example illustrates when Criterion 3.4 is preferred to
Criterion 3.3. The distinction can be important when densities have algebraic tails.

We conclude this section by summarizing our findings so far. We provided two criteria for
constructing penalization functions that support principal component approximation. The
first one, Criterion 3.3 gives the most flexibility; but it is applicable for data densities that
have relatively thin tails. The second one, Criterion 3.4, allows for densities with algebraic
tails but requires that the penalization be more severe in the extremes to compensate for
the tail thickness. Making the penalization more potent limits the class of functions that are
approximated. Moreover, when the penalization is too extreme, we encounter an additional
approximation problem: the family of functions C2

K ceases to be a core for the form used in
the principal component extraction.

The remainder of our paper can be read in two different ways. The next section considers
refinements of results in this section, but for a limited class of densities. These results in
effect illustrate formally and in a more precise way how the quality of approximation is
altered by the tail behavior of the density and the penalization. Section 5 uses the theory of
Markov processes to provide an explicit rational for the choice of penalization. Neither this
section nor the next builds on one another. Each can be read separately without knowledge
of the other.

4 Illustration and Refinement

The optimization problem 2.1 uses a form built with a penalization matrix Σ scaled by a den-
sity q. The density also defines the underlying sense of approximation. For a given density,
increasing the penalization effectively limits the class of functions that can be approximated.
This should result in a corresponding accuracy gain. That is, for a fixed finite number of
principal components we should be able to approximate better a smaller class of functions.
Changing the density q changes the norm of the space L2. In particular, when we make the
tail of the density thicker, the sense of approximation becomes more stringent. While it is
too ambitious to establish a full array of exact results, we will be able to illustrate these
effects for some examples.

In this section we first specialize the general compactness criteria of section 3 to the case
of a radially symmetric density and penalization function. We study four parameterized

6We have previously established an alternative compactness criterion for n = 1 that does not involve
second derivatives that may be preferred to Criterion 3.4.
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classes of examples, two with densities that have exponential tails and two with densities
that have thicker algebraic tails. We first derive bounds on the parameters that guarantee
that we can apply radial counterparts to our compactness criteria 3.3 and 3.4 above. We then
present bounds on the rate of divergence of the eigenvalues δj associated with the principal
component extraction. Recall that these eigenvalues measure the smoothness of the principal
components and are related to the bounds, λj , on the least squares approximation error
second moments via the formula:

λj =
1

1 + θδj
. (11)

Thus by bounding the rate of divergence of the eigenvalues, we bound the rate of convergence
of the approximation errors.

4.1 Compactness under Radial Symmetry

Prior to our analysis of some examples, we consider the specialization of our compactness
criteria when radial symmetry is imposed. Recall that q(x) = exp[−2h(x)] and Σ(x) ≥
exp[2v(x)]. Suppose that

h(x) = η(|x|)
v(x) = ν(|x|),

where when necessary we use the weak notion of a derivative. Then

∇h(x) = x
|x|η

′(|x|), trace
[

∂2h(x)
∂x∂x′

]

= (n−1)
|x| η

′(|x|) + η′′(|x|).

The radial counterpart to compactness Criterion 3.3 is

Criterion 4.1. Assumption 3.3 is satisfied,

a)

lim
r→∞

ν ′

η′
= 0;

b)

lim
r→∞

exp(2ν)

[

−(n− 1)

r

η′ − η′′ + η′2
]

= +∞.

Remark 4.1. Consider again Example 2.1. This example is radially symmetric and can be
parameterized as in this section. Exploiting the radial symmetry, let

η(r)
.
=

{

1
2
(r − 1)2 + constant if 1 ≤ r

constant if 0 ≤ r < 1

where the constant is chosen so that q = exp(−2h) is a density and h(x) = η(|x|). The
function ν is identically one. Since η grows as a quadradic in r, Criterion 4.1 is satisfied.
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Similarly, the radial counterpart to compactness Criterion 3.4 is:

Criterion 4.2. Assumption 3.3 is satisfied,

a)

lim
r→∞

−(n− 1)

r

ν ′ − ν ′′ + (ν ′)2 = 0;

b)

lim
r→∞

exp(2ν)

[

ν ′′ − η′′ +
(n− 1)

r

(ν ′ − η′) + (η′ − ν ′)2

]

= +∞

We will apply these criteria in the examples that follow.

4.2 Four Examples

Example 4.1. (Exponential Decay I) Suppose that

η(r) = c1(1 + r
2)

ξ
2 + c2,

exp[2ν(r)] = c(1 + r
2)β.

For this example we use compactness Criterion 4.1. A simple calculation shows that part
a) is satisfied and that part b) is dominated by exp(2ν)(η′)2. The resulting potential function
behaves like

c(c1)
2ξ2(1 + r

2)ω

for large r where
ω = β + ξ − 1.

Compactness requires that ω exceeds zero and thus depends on the sum of β and ξ. This
dependence depicts a simple tradeoff between the tail behavior of the density and the potency
of the penalization. In particular, as long as ξ > 1, we still have compactness even when the
penalization matrix Σ is the identity matrix.

Our second example includes a limiting case of Example 4.1 in which ξ = 1. If β were
also set to zero, principal components would fail to exist because we would be attempting
to approximate a class of functions that is too large. We shrink the set by including a
logarithmic specification of ς.

Example 4.2. (Exponential Decay II) Suppose that η is the same as in Example 4.1 but
that we consider a less potent penalty function:

η(r) = c1(1 + r
2)

ξ
2 + c2,

exp[2ν(r)] = c̄[log(1 + r
2)]τ + c

where ξ ≥ 1 and τ ≥ 0.
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As in Example 4.1, we apply Criterion 4.1. In this case, however, the potential function
behaves like:

c̄(c1ξ)
2[log(1 + r

2)]τ (1 + r
2)ξ−1

for large r. Notice that the potential function diverges even when ξ = 1 provided that τ > 0.
Our next example considers densities with algebraic tails.

Example 4.3. (Algebraic Decay I)7 Suppose

η(r) =
γ

2
log(1 + r

2) + c
∗.

where γ > n/2 for the resulting q to be integrable. Consistent with our previous example and
Example 3.1, let

ν(r) =
β

2
log(1 + r

2) +
c̃

2

where c̃ = log c. We now restrict β > 1.

In this case we use compactness Criterion 4.2. Simple calculations result in

(η′ − ν ′)2 = (β − γ)2 r
2

(1 + r
2)2

(n− 1)

r

(ν ′ − η′) = (n− 1)(β − γ)
1

1 + r
2

ν ′′ − η′′ = (β − γ)
1 − r

2

(1 + r
2)2

Provided that γ−β > n−2 the potential function Criterion 4.2 is guaranteed to be positive
and to diverge for large r. Moreover, Proposition 3.2 guarantees that C2

K is a form core when
Σ = ς2I.8

For this example, γ has to be large relative to β to ensure that the potential function
has the correct sign in the tails and that C2

K is a form core. On the other hand, it does
not influence the rate at with the potential function diverges. Instead the potential function
behaves like

[(β − γ)2 + (β − γ)(n− 2)](1 + r
2)ω

for ω = β − 1. The value of γ only alters the scaling factor.
The following example studies a limiting case of the algebraic tail, but with a weak

penalty. Thus we set β = 1, a value not allowed in our previous investigation, but we
include a more modest penalty term.

7Pang (1996) gives an extended analysis of an example similar to this.
8By optimizing over the choice of the potential function, this inequality can be improved to be: γ − β >

n

2
− 1 and Proposition 3.2 may still be used to establish that C2

K
is a form core.
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Example 4.4. ( Algebraic Decay II) As in our previous example, suppose

η(r) =
γ

2
log(1 + r

2) + c
∗.

where γ > n/2, and let

exp[2ν(r)] = c(1 + r
2)(1 + [log(1 + r

2)])τ

for τ > 0.

In this example it can be shown that the potential function of Criterion 4.2 behaves like
scale multiple of (1 + [log(1 + r

2)])τ for large r. Consistent with our previous example, we
restrict γ > n− 1 to ensure that the potential function is positive and that C2

K is a core for
the form.

The four examples illustrate the application of the compactness criteria. When the
potential functions diverge more rapidly, approximation becomes easier in the following
sense that we obtain sharper bounds on the decay rate of the eigenvalues. We show this
formally in the next subsections.

4.3 Some benchmark results on eigenvalue decay

Consider two forms f1 and f2 with common cores such that f2 ≥ f1 on a core for the form
f2. Then the jth eigenvalue of the form f2 is greater than or equal to the jth eigenvalue of
the form f1 (e.g. see Edmunds and Evans (1987), Lemma 2.3). This gives us an operational
way to use eigenvalue divergence for special forms to bound the eigenvalue divergence of
the forms of interest. For this reason we start by deriving sharp bounds on parameterized
versions of two forms studied previously in the literature:

fw(φ, ψ) =

∫

φψw +

∫

∇φ∇ψ,

and

fdw(φ, ψ) =

∫

φψw +

∫

∇φ∇ψw

defined on the appropriately defined subspaces of L2(leb). We will apply the following three
results in our subsequent analysis. Our first result gives a characterization of the eigenvalues
of a parameterization of fw.

Claim 4.1. Let w(x) = (1+|x|2)ω for some ω > 1/2. Then the jth eigenvalue of fw satisfies:9

δj ∼ (j + 1)
2ω

n(1+ω) .

9The notation ∼ means that we can find two constants say cℓ and cu such that when we use cℓ we have
the inequality ≤ and when we use the constant cu we have the inequality ≥.
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Remark 4.2. We consider again Example 2.1. The potential function for this example is
quadratic in r = |x| in the tails and behaves like such a w function in the tails for ω = 1. A

generalization of the above claim that is easy to establish shows that δj ∼ (j + 1)
1
n .

The second two results consider two alternative parameterizations of the form fdw.

Claim 4.2. Let w(x) = (1 + |x|2)ω for ω > 0. The eigenvalues δj of fdw satisfy:

• If ω > 1, then δj ∼ (j + 1)
2
n .

• If 0 < ω < 1, then δj ∼ (j + 1)
2ω
n .

• If ω = 1, then δj ∼
(

j+1
log(j+1)

)
2
n

.

Claim 4.3. Let w(x) = [1 + log(1 + |x|2)]τ for τ > 0. Then the eigenvalues δj of fdw satisfy

δj ∼ [log(j + 1)]τ .

Notice that in comparing the results in Claims 4.2 and 4.3, we see that weaker penalties slow
the decay rate in the eigenvalues.

In the remainder of this section we shall apply these claims to obtain bounds on the
eigenvalues of the form f .

4.4 Lower bounds

We now reconsider the four examples described previously using bounding arguments. Con-
sider first Example 4.1. In this example we use either ω = β + ξ − 1 in conjunction with
Claim 4.1 or ω = min{β + ξ − 1, β} in conjunction with Claim 4.2 to obtain a lower bound
on the divergence rate of the eigenvalues depending upon which claim gives the best results.
The outcome of this comparison is depicted in Figure 6.

This figure depicts a tradeoff between the thinness of tail density as captured by the
parameter ξ and the strictness of the penalty β. In the far right region the divergence
rate matches that when the state space is compact with minimum smooth boundary and
the density is bounded and bounded away from zero (see e.g. Edmunds and Evans (1987),
Theorem V.6.5). When β = 0, we fail to obtain a bound on the eigenvalue divergence when
1 < ξ < 3/2 even though we know that the potential function diverges, albeit at a slow rate.
This is evidently a case in which approximation is particularly difficult and eigenvalue decay
is slow.

Consider Example 4.2. For ξ ≥ 3/2 we can bound the eigenvalue decay just as in Example
4.1 with β = 0 by applying Claim 4.1. For 1 ≤ ξ < 3/2, we use Claim 4.3 to bound the
eigenvalues. Combining these results gives:
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Figure 6: For exponential tail density, the jth eigenvalue δj ≥ c(j + 1)
2ρ
n [log(j + 1)]−

2ε
n
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• (Claim 4.3) If 1 ≤ ξ < 3/2, then δj ≥ c[log(j + 1)]τ

• (Claim 4.1) If ξ ≥ 3/2, then δj ≥ c(j + 1)
2(ξ−1)

nξ

The first region for ξ is of particular interest to us. In Example 4.1, when β = 0 we
ruled out ξ = 1 to achieve existence, and we eliminated entirely this first region for ξ to
obtain bounds on the eigenvalues. We include this region by imposing a weak penalty, but
obtaining a correspondingly weak bound on the eigenvalue decay.

Consider next Example 4.3. In this case the eigenvalue decay bounds are dictated by the
magnitude of β. Applying Claim 4.2 with ω = β − 1, we obtain:10

• If β > 2 then δj ≥ c(j + 1)
2
n .

• If β = 2 then δj ≥ c(j + 1)
2
n [log(j + 1)]−

2
n .

• If 1 < β < 2, then δj ≥ c(j + 1)
2(β−1)

n .

The value of γ limits how large β can be because of the form core restriction.
Finally, the eigenvalue decay rate for Example 4.4 is given by Claim 4.3. The rate becomes

arbitrarily slow as τ declines to zero.

4.5 Upper bounds

So far we have derived lower bounds on the decay of the eigenvalues of the form. As we
saw from formula (11), these lower bounds give upper bounds on the ability to approximate
with a finite number of principal components. Thus these bounds are informative as to when
approximation problems are relatively easy. Upper bounds on the decay of the eigenvalues
of the form can also be valuable. Not only do they allow us to infer when the lower bounds
are relatively sharp, they can be used to inform as to when approximation problems are
difficult. Upper bounds on eigenvalues can be obtained by using upper bounds on forms as
we now illustrate.

Consider Example 4.1 with β = 0. We have already verified that the potential function
diverges for 1 < ξ < 3/2, but we failed to give a lower bound on the eigenvalue decay.
Applying Claim 4.1 in conjunction with divergence rate of the potential function, we obtain
the upper bound:

δj ≤ c(j + 1)
2(ξ−1)

n ,

but in this case the bound is necessarily weak. When ξ = 1 and we include the limiting
penalization given in Example 4.2, we find that

δj ≤ c[log(j + 1)]τ

and our bound is now sharp. The slow eigenvalue decay in this example implies that the
resulting approximation problem is a particularly challenging one.

10Notice that when β > 3/2, Claim 4.1 also can be applied with ω = β − 1. However, Claim 4.2 provides
sharper eigenvalue bounds.
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5 Forms and Markov Processes

So far we considered the role of the penalization matrix Σ in the existence, construction and
approximation properties of principal components. We now use stationary Markov diffusions
to give an explicit interpretation of this penalization matrix.

We proceed as follows. We suppose that the data are generated by a Markov diffusion.
Associated with the form f , there is a second-order differential operator F that generates the
semigroup of a Markov diffusion. The diffusion process has Σ as its local covariance matrix
and q as it stationary density. The construction of F is unique provided that we restrict the
process to be time reversible. The construction will gives us an alternative interpretation for
the matrix Σ when the data are samples of a continuous time diffusion process.

As we will see when we relax reversibility there are multiple diffusion processes that are
consistent with the form f . All of these diffusion processes have the same diffusion matrix
Σ and the same stationary density q, but they have different drift functions. Our existence
results for principal components will turn out to also imply the existence of eigenfunctions
of the conditional expectations operators of these alternative Markov processes. The eigen-
functions behave like scalar autoregressions with heteroskedastic disturbances that satisfy
conditional moment restrictions in discrete time. When the process is reversible these two
objects coincide, but more generally they diverge.

5.1 A Differential Operator

There is a differential operator Fo that is associated with the form fo, which we construct
using integration-by-parts. For any pair of functions φ and ψ in C2

K :

fo(φ, ψ) =
1

2

∫

Ω

∑

i,j

σij
∂φ

∂yj

∂ψ

∂yi
q

= −1

2

∫

∑

i,j

σij
∂2φ

∂yi∂yj
ψq − 1

2

∫

∑

i,j

∂(qσij)

∂yi

∂φ

∂yj
ψ (12)

where the second equality of (12) follows from the integration-by-parts formula:
∫

∑

i,j

∂(qσij)

∂yi

∂φ

∂yj
ψ = −

∫

∑

i,j

σij
∂2φ

∂yi∂yj
ψq −

∫

∑

i,j

σij
∂φ

∂yj

∂ψ

∂yi
q.

We use (12) to motivate our interest in the differential operator Fo:

Foφ = −1

2

∑

i,j

σij
∂2φ

∂yi∂yj
− 1

2q

∑

i,j

∂(qσij)

∂yi

∂φ

∂yj
. (13)

This operator is constructed so that the form fo can be represented as:

fo(φ, ψ) = < Foφ, ψ >

= < φ, Foψ > .
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where the second relation holds because we can interchange the role of φ and ψ in (12).
Notice from (13) that operator Fo has both a first derivative term and a second derivative
term. Symmetry (with respect to q) is built into the construction of this operator because
of its link to the symmetric form fo.

We are interested in the operator Fo because of its use in modeling Markov diffusions.
Suppose that {xt} solves the stochastic differential equation:

dxt = µ(xt)dt+ Λ(xt)dBt

with appropriate boundary restrictions, where {Bt : t ≥ 0} is an n-dimensional, standard
Brownian motion, and:

µj =
1

2q

n
∑

i=1

∂(σijq)

∂yi
.

Set
Σ = ΛΛ′.

Then we may use Ito’s Lemma to show that for each φ ∈ C2
K

−Foφ = lim
t↓0

E [φ(xt)|x0 = x] − φ(x)

t
,

where this limit is taken with respect to the L2. That is, −Fo coincides with the infinitesimal
generator of {xt} in C2

K . We use this link to the stochastic differential equation to motivate
our use of the matrix Σ for penalizing derivatives. This matrix will also be the diffusion
matrix for a continuous-time Markov process with stationary density q.

5.2 Generating Reversible Diffusions

A stochastic process is time reversible if its forward and backward transition probabilities
are the same. Multivariate reversible diffusions can be parameterized directly by the pair
(q,Σ). Associated with the closed extension f is a family of resolvent operators Gα indexed
by a positive parameter α. We use the resolvent operators to build a semigroup of condi-
tional expectation operators for a Markov process, and in particular, the generator of that
semigroup.

For any α > 0, the resolvent operator Gα is constructed as follows. Given a function
φ ∈ L2, define Gαφ ∈ D(f) to be the solution to

f(Gαφ, ψ) + α < Gαφ, ψ >=< φ, ψ > (14)

for all ψ ∈ D(f). The Riesz Representation Theorem guarantees the existence of the Gαφ.
This family of resolvent operators is known to satisfy several convenient restrictions (e.g. see
Fukushima et al. (1994) pages 15 and 19). In particular, Gα is a one-to-one mapping from
L2 into Gα(L

2).
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We associate with the form f the self-adjoint, positive semidefinite operator:

Fφ = (Gα)
−1φ− αφ (15)

defined on the domain Gα(L
2). It can be shown that F is independent of α.11 Moreover, it

is an extension of the operator Fo because f is an extension of fo (e.g. see Lemma 3.3.1 of
Fukushima et al. (1994)).

We also use the family of resolvent operators to build a semigroup of conditional expec-
tation operators. A natural candidate for this semigroup is {exp(−tF ) : t ≥ 0}. Formally,
the expression exp(−tF ) is not well defined as a series expansion. However, for any α and
any t, we may form the exponential:

exp(tα2Gα − αtI)

as a Neumann series expansion. Notice that (15) implies

tα2Gα − tαI = tα[(I +
1

α
F )−1 − I]

= −tF
(

I +
1

α
F

)−1

.

Instead of the direct use of a series expansion, we use the limit

lim
α→∞

exp[(tα2Gα) − αtI] = exp(−Ft)

often referred to as Yosida approximation to construct formally a strongly continuous, semi-
group of operators indexed by t ≥ 0.12

We have just seen how to construct resolvent operators and the semigroup of conditional
expectation operators from the form. We may invert this latter relation and obtain:

Gαφ =

∫ ∞

0

exp(−αt) exp(−tF )φdt (16)

which is the usual formula for the resolvents of a semigroup of operators . The operator −F
is referred to as the generator of both the semigroup {exp(−tF ) : t ≥ 0} and of the family
of resolvent operators {Gα : α > 0}.

As we have just seen, associated with a closed form f , there is an operator F and a
(strongly continuous) semigroup {exp(−tF ) : t ≥ 0} on L2. To establish that there is a
Markov process associated with this semigroup, we need first to verify that the semigroup
satisfies two properties. First we require, for each t ≥ 0 and each 0 ≤ φ ≤ 1 in L2,

11Since the operator F is self-adjoint and positive semidefinite, we may define a unique positive semidefinite
square root

√
F . While F may only be defined on a reduced domain, the domain of its square root may be

extended uniquely to the entire space D(f) and: f(φ, ψ) =<
√
Fφ,

√
Fψ > (e.g. see Fukushima et al. (1994)

Theorem 1.3.1).
12Strong continuity requires that exp(−tF )φ converges in L2 to φ as t declines to zero.
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0 ≤ exp(−Ft)φ ≤ 1. A semigroup satisfying this property is called submarkov in the
language of Beurling and Deny (1958). Second we require, for each t ≥ 0, exp(−Ft)1 = 1. A
semigroup satisfying this property is said to conserve probabilities. We refer to a submarkov
semigroup that conserves probabilities as a Markov semigroup.13 Finally we must make sure
that the Markov semigroup is actually the family of conditional expectation operators of a
Markov process.

The following condition is sufficient for a closed form to generate a submarkov semigroup
(e.g., see Davies (1989) section 1.3).

Condition 5.1. (Beurling-Deny) For any φ ∈ D(f), ψ given by the truncation:

ψ = (0 ∨ φ) ∧ 1

is in D(f) and
f(ψ, ψ) ≤ f(φ, φ).

When this condition is satisfied, the semigroup exp(−Ft) is submarkov, and for each t ≥ 0,
exp(−Ft) is an L2 contraction (‖ exp(−Ft)φ‖2 ≤ ‖φ‖2). This contraction property is also
satisfied for the Lp norm for 1 ≤ p ≤ ∞ (Davies (1989) Theorem 1.3.3). In particular, we
may extend the semigroup from L2 to L1 while preserving the contraction property.

The form f satisfies the Beurling-Deny criteria (Davies (1989) Theorem 1.3.5). Thus
there exists a self-adjoint operator F associated with f , which is an extension of Fo and
generates a submarkov semigroup exp(−Ft). Theorem 7.2.1 of Fukushima et al. (1994)
guarantees that there exists a Markov process {xt} that has exp(−Ft) as its semigroup of
conditional expectations.14 The semigroup exp(−Ft) conserves probability because the unit
function is in the domain of the form f and f(1, φ) = 0 for any φ ∈ D(f). As a consequence,
the unit function is also in the domain of the operator F ,

F1 = 0.

We illustrate the Markov process construction by reconsidering Example 2.1. The Markov
process associated with this form has the identity as the diffusion matrix Σ. The drift can
be inferred from formula (13):

µ = −1

2
∇ log q =

{−(|y| − 1) y
|y| if |y| ≥ 1

0 if |y| < 1.

This construction results in a continuous-time extension of the familiar threshold autore-
gression model.15

13Fukushima (1971) and others do not use the term submarkov when the semigroup fails to conserve
probabilities. Fukushima (1971) shows that when the operators fail to conserve probabilities, a Markov
process construction is still possible, but on an extended state space. We will describe this construction
subsequently.

14Actually it is a Hunt process, a special strong Markov process that possesses certain sample path conti-
nuity properties. (See Fukushima et al. (1994), Appendix A.2 for a definition.)

15See Tong (1990) for a discussion of discrete-time threshold autoregressive models. For analyses of other
continuous-time threshold models see Stramer et al. (1996a) and Stramer et al. (1996b).
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5.3 Principal Components and Eigenfunctions

Eigenfunctions of the closed form f will also be eigenfunctions of the resolvent operators Gα

and of the generator F . For convenience, we rewrite equation (14):

f(Gαφ, ψ) + α < Gαφ, ψ >=< φ, ψ > .

From this formula, we may verify that f and Gα must share eigenfunctions for any α > 0.
The eigenvalues are related via the formula:

λ =
1

δ + α

where λ is the eigenvalue of Gα and δ is the corresponding eigenvalue of f .
Given the relation between the generator F and the resolvent operator Gα,

Fφ = (Gα)
−1φ− αφ,

these two operators must share eigenfunctions. Moreover, eigenfunctions of the operators F ,
Gα and the form f must belong to the domain of F or equivalently to the image of Gα. This
domain is contained in the domain of the form f . Similarly, we may show that if φ is an
eigenfunction of the form f with eigenvalue δ, then φ is an eigenfunction of exp(−tF ) with
eigenvalue exp(−tδ) for any positive t.

An eigenfunction ψ of the generator F satisfies:

E[ψ(xt+s)|xt] = exp(−δs)ψ(xt), (17)

for some positive number δ and each transition interval s. Thus the principal components
described previously will also satisfy the testable conditional moment implications (17). The
scalar process {ψ(xt)} should behave as a scalar autoregression with autoregressive coefficient
exp(−δs) for sample interval s. The forecast error: ψ(xt+s)−exp(−δs)ψ(xt) will typically be
conditionally heteroskedastic (have conditional variance that depends on the Markov state
xt).

Since the form can be depicted using a principal component decomposition as in (3),
analogous decompositions are applicable to F and exp(−Ft):

Fφ =
∑

j

δj
< φ, ψj >

< ψj, ψj >
ψj

exp(−tF )φ =
∑

j

exp(−tδj)
< φ, ψj >

< ψj , ψj >
ψj

where the first expansion is only a valid L2 series when φ is in the domain of the operator
F . When the eigenvalues of the form increase rapidly, the term exp(−tδj) will decline to
zero, more so when the time horizon t becomes large. As a consequence, it becomes easier to
approximation the conditional expectation operator over a finite transition interval t with a
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smaller number of principal components. On the other hand, slow eigenvalue divergence of
the form will make it challenging to approximate the transition operators with a small number
of principal components. Our results in previous sections give primitive conditions based on
the behavior of stationary density and diffusion matrices for the existence of eigenfunction
decompositions and eigenvalue decay rates.

5.4 An Alternative Form

In this subsection we construct a second quadratic form used to depict the long-run variance
of a stochastic processes constructed from the Markov process {xt}.

This quadratic form is defined to be the limit

g(φ, ψ) = 2 lim
α↓0

< Gαφ, ψ >

and is well defined on a subspace S(F ) of functions in L2 for which

lim
α↓0

< Gαφ, φ ><∞.

While the form f is used to define the operator F , the form g may be used to define F−1

as is evident from formulas (14) or (15). The forms f and g share eigenfunctions. The g
eigenvalues are the reciprocals of the f eigenvalues.

In light of equation (16)

< Gαφ, ψ >=

∫ ∞

0

exp(−αt)E[φ(xt)ψ(x0)]dt. (18)

Hence, using (15), we obtain:

g(φ, ψ) = lim
α↓0

2 < Gαφ, ψ >

= lim
α↓0

2 < (αI + F )−1φ, ψ > .

Notice that this form is symmetric because the resolvent operator is self-adjoint for any
positive α. Using (18) we may write this form as

g(φ, ψ) =

∫ +∞

−∞
E[φ(xt)ψ(x0)]dt

=

∫ +∞

−∞
E[ψ(xt)φ(x0)]dt.

Recall that the spectral density function at frequency θ for a stochastic process {φ(xt)}
is defined to be:

∫ +∞

−∞
exp(−iθt)E[φ(xt)φ(x0)]dt
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whenever this integral is well defined. In particular g(φ, φ) is the spectral density of the
process {φ(xt)} at frequency zero, a well known measure of the long run variance.

For an alternative but closely related defense of the term long run variance, suppose that
φ = Fψ for some ψ in the domain of F . Then,

MT = ψ(xT ) − ψ(x0) +

∫ T

0

φ(xs)ds

is a martingale adapted to the Markov filtration. Following Bhattacharya (1982) and Hansen
and Scheinkman (1995), we may use this martingale construction to justify:

1√
T

∫ T

0

φ(xs)ds⇒ Normal (0, g(φ, φ)) .

Thus g(φ, φ) is the limiting variance for the process { 1√
T

∫ T

0
φ(xs)ds} as the sample length

T becomes large.
This gives us an alternative interpretation of our extended version of the principal com-

ponent extraction of Salinelli (1998). We may be base the extraction on maximizing g(φ, φ)
subject to < φ, φ >= 1 over recursively constructed spaces H . In words we are maximizing
long run variation while constraining the overall variation. Smooth functions of a Markov
state are also highly persistence and as a consequence maximize long run variation.

5.5 Irreversible Processes

The stationary Markov construction we used in the previous section resulted in a generator
that was self adjoint and hence a process that was time reversible. Even among the class of
stationary Markov diffusions, reversibility is special when the process has multiple dimen-
sions. Given a stationary density q and a diffusion matrix Σ, we have seen how to construct
a reversible diffusion, but typically there are other diffusions that share the same density
and diffusion matrix. We now characterize the drifts of such processes and show how our
compactness results can be extended.

5.5.1 Misspecified Reversibility

Instead of constructing a Markov process implied by a form, suppose instead we have specified
the process as a semigroup of conditional expectation operators indexed by the transition
interval. We suppose this process has stationary density q. Following Nelson (1958) and
Hansen and Scheinkman (1995) we study the semigroup of conditional expectation operators
on the space L2. This semigroup has a generator A defined on a dense subspace of L2.
Consistent with our construction of F , on the subspace of C2

K , we suppose that A can be
represented as a second-order differential operator:

Aφ =
1

2

∑

i,j

σij
∂2φ

∂yi∂yj
+

∑

j

µj
∂φ

∂yj
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and that
∫

Aφq = 0.

It may be shown that

−
∫

ψ(Aφ)q = fo(φ, ψ)

on C2
K .

This construction does not require that A = −F or that A be self adjoint. How can the
adjoint be represented? The adjoint must satisfy:

−
∫

φ(A∗ψ)q = fo(φ, ψ)

implying that the F that we constructed previously must satisfy: F = −(A+A∗)/2. More-
over, since q is also the stationary density of the reverse time process:

∫

A∗φq = 0.

It follows from Nelson (1958) that the adjoint operator has the same diffusion matrix,
but a different drift vector µ. The drift for the adjoint operator A∗ is given by:

µ∗ = −µ+
1

q

∑

i,j

∂(qσij)

∂yi

∂φ

∂yj
.

The adjoint operator generates the semigroup of expectation operators for the reverse time
diffusion. From the formula for reverse time drift, µ∗, it follows that

µ+ µ∗

2
=

1

2q

∑

i,j

∂(qσij)

∂yi

∂φ

∂yj
,

which is the negative of the second term in representation (13) for Fo. Thus if the generator
A of the semigroup is not self adjoint, then the operator F implied by the form is a second
order differential operator built using a simple average of the forward and reverse time drift
coefficients, µ and µ∗, and the common diffusion matrix, Σ.

Remark 5.1. The density q and the diffusion matrix Σ do place other restrictions on the
drift vector µ. Since q is the stationary density, µ and µ∗ must also satisfy:

∂(µq)

∂y
=

∂

∂y

∑

i,j

∂(qσij)

∂yi

∂φ

∂yj
,

∂(µ∗q)

∂y
=

∂

∂y

∑

i,j

∂(qσij)

∂yi

∂φ

∂yj
.

While there is typically one solution µ (or µ∗) to this equation for the scalar case, multiple
solutions will exist for the multivariate case. That is, unless reversibility is imposed a priori,
the drift cannot be identified from the density and diffusion matrices; but the average of the
forward and backward drift can be inferred.
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5.5.2 Resolvent Compactness

For a Markov process with generator A we may construct a family of resolvent operators:

Rαφ =

∫ ∞

0

exp(−αt) exp(At)φdt = (αI − A)−1φ.

While the generator is an unbounded operator on L2, the resolvent operators are bounded.
When the resolvents are compact operators, they have well defined eigenfunctions and eigen-
values, but they may be complex valued. (See Rudin (1973), Theorem 4.25, page 108.)

Given α the resolvent operator will be compact provided that the image of Rα of the L2

unit ball has compact closure. Consider a function ϕ given by

ϕ = (αI − A)−1φ.

Then

< φ, φ >= α2 < ϕ, ϕ > −2α < ϕ,Aϕ > + < Aϕ,Aϕ >≥ α2 < ϕ, ϕ > +2αf(ϕ, ϕ).

Thus it suffices to show that

{ϕ ∈ L2 : α2 < ϕ, ϕ > +2αf(ϕ, ϕ) ≤ 1}

has compact closure. This set will have compact closure, if, and only if, compactness Crite-
rion 2.1 is satisfied for

θ =
2

α
.

Given these relations, our sufficient conditions for the existence of principal components
can also be applied to establish the existence of eigenfunctions even when the generator is
not self adjoint. These eigenfunctions continue to behave as conditionally heteroskedastic
autoregressions and therefore satisfy an extensive array of testable conditional moment re-
strictions.16 Also they can be used to approximate dynamics over finite time intervals and
can ordered by their importance in contributing to long run dynamics by the magnitudes of
the eigenvalues.

5.6 Related Literature

The idea of using eigenfunctions of conditional expectation operators for estimation and
testing of Markov processes has been suggested previously by Demoura (1998), Hansen and
Scheinkman (1995), Kessler and Sorensen (1999), Hansen et al. (1998), Darolles et al. (1998)
and Florens et al. (1998). In particular, Kessler and Sorensen (1999) use eigenfunctions
to construct quasi-optimal estimators of parametric scalar models of the drift and diffusion

16The eigenfunctions and eigenvalues may be complex in the irreversible case. When they are complex, the
real and imaginary parts of the eigenfunction can be used to construct a bi-variate, first-order autoregression
with an error term that has conditional mean zero.
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coefficients from discrete-time data in the special case in which the functional forms of eigen-
functions are known a priori. Demoura (1998), Hansen and Scheinkman (1995), Hansen et al.
(1998), Darolles et al. (1998) and Darolles et al. (2004) study semiparametric and nonpara-
metric identification and over-identification based on a principal component extraction that
is closely related to the one analyzed here. This previous literature focuses on applications
primarily to scalar diffusions and in some cases to scalar diffusions on compact state spaces
with reflective boundaries.

In this section we have shown how the principal component extraction for Markov dif-
fusions extends to multivariate settings applicable to processes without attracting barriers.
While the principal components we construct will typically not be eigenfunctions of condi-
tional expectation operators when the underlying Markov process fails to be reversible, our
existence results for principal components still apply to the existence of eigenfunctions.

6 Concluding Remarks

We have studied principal components from multiple vantage points. We have explored their
role in capturing variation subject to smoothness constraints and their role in capturing long
run variation in time series modeling. We have also considered their use in approximation
where the smoothness constraints limit the family of functions to be approximated. Along
this latter vein, Meddahi (2001), Andersen et al. (2004) and Corradi and Distaso (2005)
exploit their approximation properties of principal components in volatility modeling. Re-
latedly, given their ability to capture variation in multivariate data, Bontemps and Meddahi
(2005) use the implied principal components to devise tests of multivariate distributional
assumptions.

There are a variety of other applications that can be explored in both time series and
cross sectional analyses. For instance, the forms used to define principal components give a
way to model multivariate Markov processes. While we focused on diffusion processes, more
general processes including processes with jumps can be accommodated by expanding the
types of forms that are considered. As argued by Hansen and Scheinkman (1995) reversible
diffusions can be identified nonparametrically from discrete time data. Moreover, for any
given nonlinear Markov process model fit to data, the implied principal components or more
generally the eigenfunctions give natural devices for characterizing the dynamics and for
supplying diagnostics and testable implications. For instance, under reversibility we have
seen that principal components should behave as eigenfunctions of conditional expectation
operators and hence satisfy testable conditional moment restrictions.

Continuous time Markov process models are typically specified in terms of their local
dynamics. Given the nonlinearity in the state variables, it is a a nontrivial task to infer
the global dynamics, and in particular the long run behavior from this local specification.
Characterizing eigenfunctions of conditional expectation operators offer a way of approxi-
mating intermediate and long term dynamics in ways that are typically disguised from the
local dynamics in nonlinear settings.

In addition to developing some of the alternative interpretations of principal components
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in a functional setting, this paper has provided sufficient conditions for their existence and in
some circumstances characterized the behavior of the corresponding eigenvalues that measure
the incremental importance of the principal components. Formally, we link the existence of
the principal components to the behavior of the density and the behavior of the penalization
function used to measure smoothness. By supplying this analysis we demonstrate how high
level existence assumptions can be supplanted by more careful inspection of the inputs into
the extraction or approximation problems.

In this paper we have focused on the natural first step by establishing the existence of and
characterizing functional principal components. Inferential issues, while crucial, are beyond
the scope of this paper. Since these methods have already found use in applications, some
statistical results have been obtained in special cases. Our main interest in these methods is
in the characterization of distributions and the dynamics that underly those distributions.
Formalizing statistical comparisons of models and data in a multivariate setting is an obvious
next step, supported by either parametric, semiparametric or nonparametric estimation of
local dynamics.
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A Form Closure

To show that the form f is closed extension of fo, we verify that H̄ is a Hilbert space.

Proposition A.1. H̄ is a Hilbert space.

Proof. Let Λ be the symmetric square root of the penalty matrix Σ. If {φj} is a Cauchy
sequence in H̄, then {φj} and the entries of {Λ∇φj} form Cauchy sequences in L2. Denote
the limits in L2 as

φ = lim
j→∞

φj

v = lim
j→∞

Λ∇φj.

For each u ∈ C1
K we know that:

∫

φj
∂u

∂x
= −

∫

(∇φj)u,

where ∂u
∂x

is the partial derivative of u with respect to x. Since Σ is positive definite and
continuous on any compact subset of Ω and u vanishes outside any such set, it follows that

∫

φ
∂u

∂x
= −

∫

(Λ−1v)u.

Hence φ ∈ H̄ with ∇φ = Λ−1v. Moreover, φn → φ in H̄.

B Computation

For convenience in our numerical calculations, we transform the state space using polar
coordinates: x′ = [r cos(ω), r sin(ω)] for ω in (−π, π] and r ≥ 0.

Consider the quadratic form in the level. For a given φ, define ξ as

ξ(r, ω) = φ[r cos(ω), r sin(ω)],

and define ξ∗ analogously from φ∗. Then
∫

R2

φφ∗q =
1

2π

∫ ∞

0

∫ π

−π
ξ(r, ω)ξ∗(r, ω)dωq∗(r)dr (19)

where

q∗(r) ∝
{

r exp
[

− (r − 1)2] if r ≥ 1
r if r < 1

.

Consider next the quadratic form for the derivatives. Note that

∇φ =
1

r

[

r cos(ω) − sin(ω)
r sin(ω) cos(ω)

] [

ξr
ξω

]

.
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Thus

(∇φ) · (∇φ∗) = (ξrξ
∗
r ) +

1

r
2
(ξωξ

∗
ω).

We may evaluate the form:
∫

R2

(∇φ) · (∇φ∗)q =
1

2π

∫ ∞

0

∫ π

−π
ξr(r, ω)ξ∗r(r, ω)dωq∗(r)dr

+
1

2π

∫ ∞

0

1

r
2

∫ π

−π
ξω(r, ω)ξ∗ω(r, ω)dωq∗(r)dr. (20)

In our calculations we use basis functions of the form: p(r) cos(kω) and p(r)sin(kω)
where p is a scalar Hermite polynomial in r and k is a nonnegative integer. We exploit the
orthogonality of cos(kω) and sin(kω) for a given k and the orthogonality of cos(kω) with
sin(ℓω) and cos(ℓω) for k different from ℓ all with respect to the uniform distribution on
(−π, π]. This orthogonality allows us to separate the problem in two ways, by choice of k
and by choice of cosine or sine for a given k.

With this separation in mind, consider two functions: ξ(r, ω) = p(r) cos(kω) and ξ∗(r, ω) =
p∗(r) cos(kω) for some positive integer k. Recall that

1

2π

∫ π

−π
cos(kω)2dω =

1

2π

∫ π

−π
sin(kω)2dω =

1

2
.

Thus the form in (19) is:

1

2π

∫ ∞

0

∫

−π,π
ξ(r, ω)ξ∗(r, ω)dωq∗(r)dr =

1

2

∫ ∞

0

p(r)p∗(r)q∗(r)dr,

and the form in (20) is:

1

2π

∫ ∞

0

∫ π

−π
ξr(r, ω)ξ∗r(r, ω)dωq∗(r)dr +

1

2π

∫ ∞

0

1

r
2

∫ π

−π
ξω(r, ω)ξ∗ω(r, ω)dωq∗(r)dr

=
1

2

∫ ∞

0

[

k2

r
2
p(r)p∗(r) + p′(r)p∗′(r)

]

q∗(r)dr.

For computational purposes we may use these two forms in p and solve scalar problems.
Notice that the second form depends on k. The k = 0 problem gives rise to the principal
components that are constant on circles. For k ≥ 1 we may compute principal components
of the form p(r) cos(kω) and p(r) sin(kω). The sum of the two will be symmetric and the
difference will be anti-symmetric when converted to the original coordinates.

To solve the principal component problem numerically, we selected a finite-dimensional
family of basis functions, evaluated two quadratic forms using numerical integration, and
solved a generalized eigenvector problem.

1. Basis functions. We used as basis functions Hermite polynomials constructed to be
orthogonal relative to the density: exp(−y2).
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2. Numerical integration. We performed numerical integration over r using Monte Carlo
sampling the implied density q∗ for r = |x|.

3. Generalized eigenvectors. The previous two steps resulted in the construction of two
positive semidefinite matrices. One for the form

∫

φψq and the other for the form
1
2

∫

(∇φ) · (∇ψ)q. Call the first matrix V and the second matrix W . We factored
V = A′A using a Cholesky decomposition, and computed the spectral (eigenvalue-
eigenvector) decomposition of A′−1WA−1 using the Schur decomposition to construct
the principal components.

C Additional Proofs

Consider first the proof of Proposition 3.1.

Proof. Hansen et al. (1998) consider densities from stationary scalar diffusions, whose bound-
aries are not attracting. This proposition gives an equivalent statement of their compactness
condition, written in terms of the stationary density. The scalar diffusion coefficient in their
analysis is ς2.

We now present a criteria for Condition 3.1 to hold. This result is due essentially to
Azencott (1974) and Davies (1985).

Proposition C.1. Consider a form fo that satisfies the Beurling-Deny Criterion 5.1. Let
f̂ denote the minimal extension of of fo with domain D(f̂). Suppose that 1 ∈ D(f̂) and
f̂(1, φ) = 0 for all φ ∈ D(f̂). Then f̂ = f .

Proof. As explained in Section 5.2, associated with the forms f and f̂ we may construct
operators F and F̂ and resolvents G and Ĝ. Integration by parts can be used to show that
the operators F and F̂ are extensions of the differential operator

L̂φ = −1

q

∑

i,j

∂

∂x i

(

qσij
∂φ

∂xj

)

,

defined on C2
K . The form f̂ and hence the form f satisfies the Beurling-Deny Criterion 5.1

(Davies (1989) Theorem 1.3.5). Hence as stated in Davies (1985) the operators F and F̂
can be extended to subspaces of L1. Similarly the resolvents G and Ĝ can be extended to
L1. We will denote the extended operators as F 1, F̂ 1, G1, and Ĝ1. Since q is integrable, L2

convergence implies L1 convergence and consequently F and F̂ are restrictions of F 1 and
F̂ 1, respectively. Similarly for the resolvent operators.

If f̂(1, φ) = 0 for all φ ∈ D(f̂) then F̂1 = 0 and Ĝ1 = 1. Consequently G11 = 1. It
follows from Theorem 2.2 in Davies (1985) that C2

K is a core for F 1, in the sense that F 1 is
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the closure in L1 of L̂.17 Hence C2
K is a core for F 2, and thus a core for f or, equivalently, f

and f̂ coincide.

We now prove Proposition 3.2.

Proof. Since f̂ is the minimal closed extension, it has C2
K as its core. When this condition

is met, a sequence of functions φj in C2
K can be constructed that converge to 1 in L2 and

f(φj, φj) converges to zero. See Fukushima et al. (1994) Theorem 1.6.6 and Theorem 1.6.7.
An approximating sequence of functions with compact support is supplied by Fukushima
et al. (1994) in the proof of Theorem 1.6.7. This sequence can be smoothed using a suitable
regularization to produce a corresponding approximating sequence in C2

K . Thus the unit

function is in the domain of f̂ and f̂(1, φ) = 0 for φ ∈ C2
K and hence for φ ∈ D(f̂). As we

established above, this is sufficient for Condition 3.1.

Next, we establish Proposition 3.3

Proof. Since V is bounded from below, we may choose a θ > 0 such that V +θ is nonnegative.
Construct the space:

Ȟ
.
= {ψ ∈ L2(leb) :

∫

(V + θ)(ψ)2 <∞, there exists g measurable, with

∫

g′Σg <∞,

and

∫

ψ∇ϕ = −
∫

gϕ, for all ψ ∈ C1
K}.

As in the proof of Proposition A.1, it follows that Ȟ is a Hilbert space with inner product:
∫

(V + θ + 1)ψψ̃ +

∫

(∇ψ)′Σ(∇ψ̃).

We show that UH̄ ⊂ Ȟ .
Since C2

K is a core for f , there exists a sequence {φj : j = 1, 2, ...} in C2
K that converges

to φ in the Hilbert space norm of H̄ . Hence this sequence is Cauchy in that norm. Writing
ψj = Uφj and applying equation (8) we obtain:

∫

(φj − φℓ)
2(1 + θ)q +

∫

(∇φj −∇φℓ)′Σ(∇φj −∇φℓ)q

=

∫

(V + θ + 1)(ψj − ψℓ)
2 +

∫

(∇ψj −∇ψℓ)′Σ(∇ψj −∇ψℓ).

Thus {ψj : j = 1, 2, ...} is Cauchy in the Hilbert space norm of Ȟ and the limit point ψ must
satisfy ψ = Uφ. Notice that

∫

V (ψ)2 +
∫

(∇ψ)′Σ(∇ψ) equals Ȟ squared norm minus θ + 1
times the L2(Q) squared norm. Thus,

∫

V (ψ)2 +

∫

(∇ψ)′Σ(∇ψ) = lim
j→∞

∫

(∇ψj)′Σ(∇ψj)q

17Davies (1985) assumes that the coefficients of L̂ are C∞. However the proof holds for C2 coefficients since
elliptic regularity holds even when the coefficients are only Lipschitz (see Theorem 6.3 of Agmon (1965))
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= lim
j→∞

(∇φj)′Σ(∇φj)q

=

∫

(∇φ)′Σ(∇φ)q.

This proves (10).
For a given ψ = Uφ our candidate for the weak derivative is,

g
.
= exp(−h)(−φ∇h + ∇φ).

To verify that g is indeed the weak derivative, we must show that for any ϕ ∈ C1
K

∫

ψ∇ϕ = −
∫

gϕ, (21)

and
∫

g′Σg <∞. (22)

We check relation (21) by applying integration by parts,

−
∫

∇ψϕ = −
∫

[exp(−h)(−φ∇h + ∇φ)]ϕ = −
∫

∇φ exp(−h)ϕ+

∫

exp(−h)ϕφ∇h

=

∫

φ[exp(−h)∇ϕ−∇h exp(−h)ϕ] +

∫

exp(−h)ϕφ∇h =

∫

ψ∇ϕ.

Inequality (22) follows from (10).

We now establish Lemma 3.1

Proof. Consider a positive function

χ(x) =
1

ς
,

and note that
[

ς(x)2 − c

]

∇χ(x) = −ς(x)∇v + c

∇v(x)
ς(x)

.

For φ in C2
K we may apply integration by parts to show that

∫

(ς2 − c)∇χ · ∇φ =

∫
[(

ς2 + c

ς

)

(∇v · ∇v) +

(

ς2 − c

ς

)

trace

(

∂2v

∂xi∂xj

)]

φ

=

∫

W̌χφ

The conclusion follows from Theorem 1.5.12 of Davies (1989). While Davies (1989) uses test
functions φ in C∞

K , the same proof applies to C2
K test functions.
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Finally, we consider the three results related to eigenvalue decay. The proof of Claim 4.1
is based on a result of Reed and Simon (1978).

Proof. Reed and Simon (1978) (Theorem XIII.81) show that the number of eigenvalues of
fw that are less than or equal to r > 0 can be bounded above and below by scale multiples
of18

∫ û

0

[r − (1 + u2)ω]
n
2 un−1du.

where

û =
(

r

1
ω − 1

)
1
2
.

Since r ≥ r − (1 + u2)ω, the integral is dominated by

r

n
2

∫ û

0

un−1du =
1

n
r

n
2 ûn

Thus the integral can be dominated by a scale multiple of r

n
2
+ n

2ω . An analogous upper bound
can be formed with an appropriate adjustment in the constant term.

Claim 4.2 follows directly from Proposition 4.1 of Mynbaev and Otel’baev (1988).

Proof. Use the form fdw to construct an inner product and a corresponding Hilbert space,
and consider the embedding operator (identity operator) mapping this space into L2(leb).
Mynbaev and Otel’baev (1988) established the exact order of the approximation numbers
{aj : j ≥ 0} for this embedding operator. The result follows by using the known relation
(δj)

−1/2 = aj between the approximation numbers of an embedding operator and eigenvalues.
(See Remark 2.2 and Theorem 5.10 of Edmunds and Evans (1987).)

In turn, Claim 4.3 follows from the analysis of Haroske (1997).

Proof. Again we use the form fdw to construct an embedding operator as in the previous
proof. For the choice of w given in this claim, Haroske (1997) (Proposition 4.4) established
the exact order of its entropy numbers: ej ∼ [log(j + 1)]−

τ
2 . Entropy number ej for an

operator mapping into L2(leb) is the infimum of all ǫ > 0 for which there exist 2j balls
in L2(leb) with radius ǫ which cover the image of the operator over the unit ball implied
by the form. For this problem, entropy numbers behave like approximation numbers. For
instance, inequality (3.0.9) in Carl and Stephani (1990), page 120 states that aj ≤ 2ej, and
the Theorem in Triebel (1994) implies that ej ≤ caj for some positive number c.19 Given
the essential equivalence of the behavior of approximation numbers and entropy numbers,
the conclusion follows from the relationship (δj)

−1/2 = aj mentioned above.

18While Reed and Simon (1978) only prove this result for n ≥ 2, they argue that the result extends to the
n = 1 case.

19The second inequality follows from part (ii) of the Theorem in Triebel (1994) by setting Triebel’s f(j)
equal to the reciprocal of the entropy numbers. With this construction the inequality is an implication of
Triebel’s equation (5).
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