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a b s t r a c t

Nonlinearities in the drift and diffusion coefficients influence temporal dependence in diffusion models.
We study this link using three measures of temporal dependence: ρ-mixing , β-mixing and α-mixing .
Stationary diffusions that are ρ-mixing have mixing coefficients that decay exponentially to zero. When
they fail to be ρ-mixing , they are still β-mixing and α-mixing; but coefficient decay is slower than
exponential. For such processes we find transformations of the Markov states that have finite variances
but infinite spectral densities at frequency zero. The resulting spectral densities behave like those of
stochastic processes with long memory. Finally we show how state dependent, Poisson sampling alters
the temporal dependence.
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1. Introduction

This paper studies how nonlinearity induces temporal depen-
dence in continuous-time Markov models. Our interest in tem-
poral dependence stems from a variety of empirical evidence.
Bond prices are known to be highly persistent and the condi-
tional volatilities of financial time series are often temporally clus-
tered; e.g., see Ding et al. (1993), Bollerslev and Mikkelsen (1996)
and Andersen et al. (2001). Using linear time seriesmethods, many
researchers have documented the presence of long memory in em-
pirical descriptions of data. Here we investigate when high de-
grees of temporal dependence are present in first-order (and hence
finite-memory) Markov models. In these models the dependence
emerges because of the nonlinearities in the evolution equation for
the Markov state.
Since hedging and pricing theories in financial economics often

assume securities follow continuous-time nonlinear diffusions,
we use these models to capture nonlinearities in time series.
For pedagogical and analytical convenience, we primarily treat
the case of scalar diffusions. That is, we study the solution to a
stochastic differential equation:

dxt = µ(xt)dt + σ(xt)dWt
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where µ is the drift coefficient, σ 2 is the diffusion coefficient
and {Wt} is a one-dimensional standard Brownian motion. While
scalar diffusion processes are special, they provide a very nice
laboratory for our analysis. They allow for nonlinearities in the
time series to be captured fully by two functions: the drift and the
diffusion coefficients. By focusing on diffusion models, we are able
to show clearly the mechanism whereby nonlinearities in a time
series get transmitted into temporal dependence. After studying
scalar diffusions in some detail, we explore the implications of
subordination whereby the scalar diffusion operates according
to a stochastic time scale. We conclude with some multivariate
extensions.
We classify the temporal dependence of scalar diffusions using

three alternative notions of mixing: ρ-mixing , β-mixing and
α-mixing . The ρ-mixing coefficients measure the temporal decay
of maximally autocorrelated (nonlinear) functions of the Markov
state. When ρ-mixing coefficients decay to zero, the spectral
density of any process with finite second moments formed by
taking anonlinear function of the state has a continuous (andhence
finite) spectral density at all frequencies, including frequency zero.
Thus ρ-mixing gives an operational way to classify the dependence
of a nonlinear Markov process. The process is weakly dependent
if the ρ-mixing coefficients decay to zero and strongly dependent
if the ρ-mixing coefficients are identically one. In our study of
strongly dependent processes, we also use β-mixing and α-mixing ,
which for our purposes aremore refined concepts. The β-mixing or
α-mixing coefficients for the strongly dependent processes have
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a decay rate that is slower than exponential and the implied
spectral density functions for some of these processes diverge
at frequency zero. Since the β-mixing coefficients dominate the
corresponding α-mixing coefficients, implications for β-mixing
have direct consequences for α-mixing .
For both ρ- and β-mixing we are led to use

µ

σ
−
σ ′

2
to measure the pull from the boundaries. When this pull measure
is negative at the right boundary and positive at the left
boundary, Hansen and Scheinkman (1995) have shown how
the non-zero boundary pull restrictions imply ρ-mixing with
exponential decay. We extend their result by showing that in the
case of scalar diffusions, β-mixing and ρ-mixing with exponential
decay are almost equivalent concepts, and both are implied by the
non-zero boundary pull restrictions.
When the pull measure is zero at one of the boundaries, the

Markov process is strongly dependent: the ρ-mixing coefficients
are identically one and the β-mixing coefficients decay at a
rate slower than exponential. We provide sufficient conditions
for β-mixing coefficients to decay at a polynomial rate. These
conditions are expressed as restrictions on how slowly the pull
measure goes to zero at one of the boundaries. For some of
these strongly dependent processes we may find functions of the
Markov state with spectral densities that are infinite at frequency
zero. Thus in spite of the first-order Markov property, best linear
predictors are compelled to weight heavily past observations. We
display scalar diffusions whose spectral densities near frequency
zero diverge in the same manner as stationary linear models that
are fractionally integrated.1
We also provide some characterizations of ρ-mixing and

α-mixing coefficients as functions of the stationary density and
diffusion coefficient. These characterizations allow us to relate
the behavior of the mixing coefficients to the thickness of the
tails of the stationary density and to the growth of the diffusion
coefficient as a function of the Markov state. This analysis includes
multivariate diffusion processes.
Our findings complement the work of Granger and Teräsvirta

(1999), who produce a (discrete-time) nonlinear Markov model
with sample statistics that suggest evidence for long memory. We
construct Markov models for which population spectral densities
diverge because of the formsof thenonlinearities in the conditional
means and the conditional volatilities. Our construction differs
from the nonlinear example inGranger and Teräsvirta (1999), since
theirs is still weakly dependent as measured by the population
attributes. It only looks like a long memory process from the
vantage point of sample statistics.2 In contrast, the first-order
strictly stationaryMarkov examples that we construct are strongly
dependent in the population.
We study how the temporal dependence of a diffusion is altered

when it is sampled in a state dependent manner. For convenience,
we use the Poisson sampling scheme advocated by Duffie and

1 Whilewe provide simple sufficient conditions forβ-mixing decay rates in terms
of the pull measures, there are alternative sufficient conditions for a diffusion
process to be ρ-mixing or β-mixing; see, e.g., Genon-Catalot et al. (2000) for
ρ-mixing and Veretennikov (1987) and Veretennikov (1997) for β-mixing . The
sufficient conditions and proof strategies in these papers are different from ours.
More importantly, they do not discuss the possibility of generating long memory
type behavior from strongly dependent strictly stationary Markov diffusions.
2 Similarly, Diebold and Inoue (2001) present several nonlinear time series mod-
els, including models with regime switching, structure changes, and permanent
stochastic breaks, that look like long memory models from the vantage point of the
sample variances of partial sums. Hidalgo and Robinson (1996) discuss the difficulty
of distinguishing a structural break model from a long memory model.
Glynn (2004) with a state dependent intensity parameter. The
state dependence and hence endogeneity in the sampling alters
the temporal dependence and the stationary distribution. We
show how to adjust the measure of pull to take account of this
endogeneity.
The rest of the paper is organized as follows. Section 2

briefly reviews alternative mixing concepts for a continuous-time
stationary Markov process. Section 3 establishes that ρ-mixing is
equivalent to exponential ergodicity for a scalar diffusion, which in
turn implies β-mixing with exponential decay. Section 4 provides
sufficient conditions for ρ-, β-mixing with exponential decay rates
expressed as boundary pull restrictions. Sections 5 and 6 study
strongly dependent diffusion processes in the sense that ρt ≡ 1
for all t ≥ 0, and β-mixing with sub-exponential decay rates.
While Section 5 provides sufficient conditions for β-mixing with
sub-exponential decay rates, Section 6 presents examples where
some nonlinear transformations of the strongly dependentMarkov
diffusions behave as long memory processes. Section 7 considers
the diffusions subject to a Poisson sampling. Section 8 explores
some multivariate extensions obtained by featuring the behavior
of the stationary density and the diffusion matrix. Section 9 gives
some concluding remarks.

2. Review: Mixing conditions

Consider a stationaryMarkov process {xt} on an open connected
set Ω ⊆ Rn. For convenience, use a stationary distribution Q to
initialize this process. Let Lp denote the space of Borel measurable
functions that have finite pth moments in accordance with the
distribution Q :

Lp =

{
φ : Ω → R : ‖φ‖p =

(∫
|φ|pdQ

)1/p
<∞

}
,

1 ≤ p <∞,

L∞ =
{
φ : Ω → R : ‖φ‖∞ = ess sup

x
|φ(x)|

= inf
c>0
(Q {x : |φ(x)| > c} = 0) <∞

}
.

In L2 we will use the familiar inner product: 〈φ,ψ〉 =
∫
φψdQ .

Associated with the Markov process {xt : t ≥ 0} is a semigroup of
conditional expectation operators {Tt : t ≥ 0} defined on L2:
Ttφ(x) = E[φ(xt)|x0 = x].
For notational simplicity, we also let T be shorthand notation
for T1. As in Hansen and Scheinkman (1995), we suppose that
the semigroup is (right) continuous at t = 0. This allows us to
construct a generatorA on a domain D that is dense in L2:

Aφ(x) = lim
t↘0

E[φ(xt)|x0 = x] − φ(x)
t

where the limit is defined using the mean square norm on L2.
Thus the generator is the time zero derivative of the semigroup of
conditional expectation operators.

2.1. Alternative notions of mixing

We consider three alternative notions of mixing. While these
notions are defined more generally, we consider their special-
ization for Markov processes and use operator formulations as
in Rosenblatt (1971).3

3 This subsection is largely based on Rosenblatt (1971) and Bradley (1986). They
stated their results for discrete-time stationary Markov processes on general state
spaces. However, it is easy to see that their results and proofs remain valid for
continuous-time Markov processes.
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Let Z = {φ ∈ L2 :
∫
φdQ = 0} denote the space of square-

integrable functionswithmean zero. The firstmeasure of temporal
dependence is theρ-mixing (ormaximal correlation) coefficients:4

Definition 2.1. The ρ-mixing coefficients are given by

ρt = sup
φ∈Z,‖φ‖2=1

‖Ttφ‖2.

The process {xt} is ρ-mixing if limt→∞ ρt = 0; and is ρ-mixing
with exponential decay rate if ρt ≤ exp(−δt) for some δ > 0.
Banon (1977, Lemma 3.11) and Bradley (1986, Theorem 4.2)

established that for a stationary Markov process either the
ρ-mixing coefficients decay exponentially or they are identically
equal to one.
The next measure of temporal dependence that we consider is

the α-mixing (or strong mixing):5

Definition 2.2. The α-mixing coefficients are given by

αt = sup
φ∈Z,‖φ‖∞=1

‖Ttφ‖1.

The process {xt} is α-mixing if limt→∞ αt = 0; and is α-mixing
with exponential decay rate if αt ≤ γ exp(−δt) for some δ > 0
and γ > 0. The process is α-mixing with a sub-exponential decay
rate if αt ≤ ξ(t) for some positive non-increasing rate function ξ
satisfying 1t log ξ(t)→ 0, as t →∞.

Since the L2 norm of a function φ is less than the L∞ norm but
exceeds the L1 norm,
‖Ttψ‖2

‖ψ‖2
≥
‖Ttψ‖1

‖ψ‖∞
.

Therefore,
ρt ≥ αt .

In contrast to the ρ-mixing coefficients, the α-mixing coefficients
need not converge to zero at an exponential rate.
A third way of measuring temporal dependence is given by the

β-mixing coefficients.6

Definition 2.3 (Davydov, 1973). The β-mixing coefficients are
given by

βt =

∫
sup
0≤φ≤1

∣∣∣∣Ttφ(x)− ∫ φdQ
∣∣∣∣ dQ .

The process {xt} is β-mixing if limt→∞ βt = 0; is β-mixing
with exponential decay rate if βt ≤ γ exp(−δt) for some δ > 0
and γ > 0. The process is β-mixing with sub-exponential decay
rate if limt→∞ ξtβt = 0 for some positive non-decreasing rate
function ξ satisfying ξt →∞, t−1 ln ξt → 0 as t →∞.
A strictly stationary Markov process is β-mixing if and only

if it is (Harris) recurrent and aperiodic; see e.g., Bradley (1986,
Theorem 4.3). Since

sup
|φ|≤1

∫ ∣∣∣∣Ttφ(x)− ∫ φdQ
∣∣∣∣ dQ ≤ ∫ sup

|φ|≤1

∣∣∣∣Ttφ(x)− ∫ φdQ
∣∣∣∣ dQ ,

it follows that
βt ≥ αt .

In contrast to the ρ-mixing coefficients, the β-mixing coeffi-
cients, like the α-mixing coefficients, need not converge to zero
at an exponential rate. For general stationary Markov processes,

4 See the proof of Lemma VII.4.1 in Rosenblatt (1971).
5 See the proof of Lemma VII.3.1 in Rosenblatt (1971).
6 β-mixing is also called absolutely regular. It was studied by Volkonskii and
Rozanov (1959), but they attribute the concept to Kolmogorov. The definition
presented here is an alternative but equivalent one for a stationaryMarkov process;
see e.g. Davydov (1973).
the two dependence measures are not comparable: ρ-mixing does
not imply β-mixing and β-mixing does not imply ρ-mixing; see
e.g., Bradley (1986). Nevertheless, all of the diffusion models that
we consider in this paper are β-mixing , but some have ρt ≡ 1 for
all t .

2.2. f -ergodicity

The notion β-mixing for a Markov process is closely related
to the concept called f -ergodicity (in particular 1-ergodicity); see
e.g., Meyn and Tweedie (1993).

Definition 2.4. Given a Borel measurable function f ≥ 1, the
Markov process {xt} is f -ergodic if

lim
t→∞

sup
0≤φ≤f

∣∣∣∣Ttφ(x)− ∫ φdQ
∣∣∣∣ = 0, for all x.

The Markov process {xt} is f -uniformly ergodic if for all t ≥ 0,

sup
0≤φ≤f

∣∣∣∣Ttφ(x)− ∫ φdQ
∣∣∣∣ ≤ cf (x) exp(−δt)

for positive constants c and δ.7

A stationary process that is f-uniformly ergodic will be β-mixing
with exponential decay rate provided that Ef (xt) < ∞. This
connection is valuable because Meyn and Tweedie (1993) and
Down et al. (1995) provide convenient drift conditions for f -
uniform ergodicity. There exist other methods for establishing
1-ergodicity (i.e. when f ≡ 1) with sub-exponential decay rates;
for example see Lindvall (1983).

3. Temporal dependence of a scalar diffusion

A scalar diffusion is typically represented as the solution to a
stochastic differential equation:
dxt = µ(xt)dt + σ(xt)dWt (1)
with left boundary ` and right boundary r , either of which can be
infinite. The function µ is the drift, σ 2 is the diffusion coefficient
and {Wt} is a standard Brownian motion.

Assumption 3.1. µ and σ are continuous on (`, r) with σ strictly
positive on this interval.

The generator of this scalar diffusion is known to be the
differential operator

Aφ = µφ′ +
1
2
σ 2φ′′.

Wewill give a precise statement of the domain D of this generator
subsequently.
The boundary behavior of a diffusion is characterized by the

behavior of its scale function S(.):

S(x) =
∫ x

a
s(y)dy, for some fixed a ∈ (`, r),

s(y) = exp
[
−

∫ y

a

2µ(u)
σ 2(u)

du
]
.

Since the scale function is increasing, it is well-defined at both
boundaries. A boundary is attracting when the scale function is
finite at that boundary. We focus exclusively on the case in which
neither boundary is attracting:

Assumption 3.2. S(`) = −∞ and S(r) = +∞.

7 Our use of the term uniform ergodicity follows Down et al. (1995), but it differs
from the use in Meyn and Tweedie (1993). Meyn and Tweedie (1993) define f -
uniform ergodicity by requiring the left-hand side to converge to zero uniformly in
x as t gets large.
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We provide sufficient conditions that, among other things,
guarantee that there exists a stationary distribution Q for the
scalar diffusion. Since both boundaries are not attracting, this
distribution, when it exists, is known to be unique and have a
density q that is proportional to 1

sσ 2
. Thus stationarity is satisfied

when:

Assumption 3.3.
∫ r
`

1
s(x)σ 2(x)

dx <∞.

From Has’minskii (1980) (Example 2, page 105), the process
{xt} is Harris recurrent if Assumptions 3.1 and 3.2 hold. Hence
{xt} is positive (Harris) recurrent if Assumptions 3.1–3.3 hold. The
diffusion is also aperiodic under these assumptions. Therefore,

Remark 3.4. Under Assumptions 3.1–3.3, the process {xt} is
β-mixing .
Hansen and Scheinkman (1995) provide sufficient conditions

for a scalar diffusion to be ρ-mixing with exponential decay,
and Hansen et al. (1998) provide alternative conditions for a
diffusion to be strongly dependent in the sense that ρt ≡ 1 for
all t .

3.1. Diffusion in a natural scale

For convenience, we transform the diffusion {xt}monotonically
to its natural scale process {zt}:
zt = S(xt).
Clearly the state space for {zt} is the entire real line (−∞,+∞)
under Assumption 3.2. Moreover, {zt} in the natural scale is known
to be a local martingale (have zero drift) with diffusion coefficient
θ2(z) = s2[S−1(z)]σ 2[S−1(z)].
An equivalent statement of Assumption 3.3 is∫
+∞

−∞

1
θ2(z)

dz <∞.

For the natural scale diffusion, the generator is the second-order
differential operator

Aφ =
1
2
θ2φ′′

defined on the domain

D =


φ : φ′ is absolutely continuous and

∫
1

θ2(z)
φ2(z)dz <∞∫ (

φ′(z)
)2 dz <∞∫ (

θ(z)φ′′(z)
)2 dz <∞


.

It follows from the definitions that the ρ-, β- and α-mixing
coefficients for {zt} are the same as those for {xt}.

3.2. Equivalence of f -uniform ergodicity to ρ-mixing

We already pointed out that f -uniform ergodicity implies β-
mixing with exponential decay. In this section, we explore further
the near equivalence of f -uniform ergodicity and ρ-mixing for
a stationary scalar diffusion. To establish such a link, we use a
characterization of f -uniform ergodicity by Down et al. (1995) and
a characterization of ρ-mixing by Hansen et al. (1998).
Let C2 denote the space of functions mapping (`, r) into Rwith

continuous first and second derivatives. We construct the local
operator

BV = µV ′ +
1
2
σ 2V ′′,

which coincides with the generator A on the intersection of the
domain D of the generator and C2. A non-negative function V in C2
is norm-like if {x : V (x) ≤ v} is compact in (`, r) for any v > 0.
The following result is Theorem 5.2 of Down et al. (1995, page

1681) specialized to our scalar diffusion {xt}:
Theorem 3.5. Suppose Assumptions 3.1 and 3.2 hold, and that there
exists a non-negative function V ∈ C2 (not necessarily norm-like)
such that

BV ≤ −c(V + 1)+ d1K (2)

for some positive constants c and d and some compact set
K . Then: (i) {xt} has a unique invariant probability measure
Q ; (ii)

∫
V (x)dQ (x) <∞; (iii) {xt} is (V + 1)-uniformly ergodic.

For a diffusion in a natural scale, we consider solutions to the
second-order differential equation
Bφ = −cφ
for φ ∈ C2, and some c > 0, which is in the form of an eigenvalue
problem. Weidmann (1987, page 225) shows that there exists a
non-negative a such that for c ≥ a solutions φ cross the zero
axis only a finite number of times and for c < a they cross the
axis an infinite number of times. Hansen et al. (1998) show that
the corresponding diffusion is ρ-mixing if and only if a > 0. We
exploit this characterization of ρ-mixing to establish the following
two theorems.

Theorem 3.6. Suppose that Assumptions 3.1–3.3 hold, and {xt} is
ρ-mixing. Then there exists a non-negative function V ∈ C2 such that

1
2
θ2V ′′ ≤ −c(V + 1)+ d1K .

for some compact interval K and positive constants c and d. As a
consequence, the diffusion is (V +1) uniformly ergodic and β-mixing
with exponential decay.
Proof. See the Appendix. �

We next present a (partial) converse to this result.

Theorem 3.7. Suppose that Assumptions 3.1 and 3.2 hold, and there
is a non-negative function V ∈ C2, a compact interval K and positive
constants c and d such that

1
2
θ2V ′′ ≤ −c(V + 1)+ d1K . (3)

Then: {xt} satisfies Assumption 3.3 and is ρ-mixing.
Proof. See the Appendix. �

4. Mixing with exponential decay rates

In this section we show that
µ

σ
−
σ ′

2
provides a measure of the pull of the diffusion by establishing
formally its implications for weak dependence (i.e., ρ-, β-mixing
with exponential decay rates). We also propose extensions of this
measure that avoid differentiability of the diffusion coefficient.

4.1. The natural scale case

We first study the temporal dependence of diffusions in the
natural scale. As we will see, for these diffusions there is a direct
link between the thickness of the tails of stationary density and
the temporal dependence of the diffusion. We use this link to
provide convenient sufficient conditions for decay rates of the
mixing coefficients.

Theorem 4.1. Suppose Assumptions 3.1 and 3.2 are satisfied. If

lim inf
|z|→∞

θ(z)
|z|

> 0, (4)

then: (i) Assumption 3.3 is satisfied; and (ii) {zt} is ρ- and β-mixing
with exponential decay.
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Proof. We establish this result by applying Theorems 3.6 and 3.7.
We consider the following Lyapunov function:

V (z) =
|z|α

α
, |z| ≥ 1

for some 0 < α < 1, and we fill in the function V on (−1, 1) so
that it is C2 and non-negative. The constructed function is norm-
like, and to guarantee inequality (3), we restrict θ2 to satisfy

θ2

2
V ′′ ≤ −cV + d, c > 0, (5)

for positive constants c and d. Inequality (5) will be satisfied if we
can find positive constants c and d such that

1
2
(α − 1)θ2(z)|z|α−2 ≤ −c

|z|α

α
+ d for |z| ≥ 1.

If necessary,we adjust the constant d so that (5) is satisfied over the
entire real line. Such constants exist given inequality (4). Clearly
this condition is also sufficient for∫

1
θ2(z)

dz <∞

which guarantees the existence of a stationary distribution
(Assumption 3.3). �

4.2. Diffusion with non-zero drift

If a diffusion {zt} in the natural scale is stationary and β-mixing
with exponential decay rates, clearly so is the original process {xt}
where xt = S−1(zt). Transforming the limit in (4) of Theorem 4.1
back to the original scale, we obtain:

Corollary 4.2. Suppose that Assumptions 3.1 and 3.2 are satisfied. If

lim inf
x↗r

sσ
S
> 0

lim sup
x↘`

sσ
S
< 0,

then: {xt} satisfies Assumption 3.3, and is ρ- and β-mixing with
exponential decay.

Remark 4.3. Under Assumptions 3.1 and 3.2, if σ is differentiable,
then the inequalities in Corollary 4.2 are implied by

lim sup
x↗r

(
µ

σ
−
σ ′

2

)
(x) < 0, (6)

lim inf
x↘`

(
µ

σ
−
σ ′

2

)
(x) > 0

We may think of(
µ

σ
−
σ ′

2

)
(x)

as providing a measure of the pull of the diffusion process {xt} (or
−
1
2θ
′(z) as the pull measure for the natural scale diffusion {zt}).

For the scalar diffusion to be β-mixing with exponential decay we
require that the pull be negative at the right boundary and positive
at the left boundary. These restrictions are identical to the ones
proposed by Hansen and Scheinkman (1995) for ρ-mixing with
exponential decay, although their derivation is different than ours.

Remark 4.4. Instead of assuming the differentiability of σ , we can
require the existence of a positive function g that is differentiable
and is dominated by σ :
σ

g
≥ 1.
The inequalities in Corollary 4.2 are now implied by

lim sup
x↗r

(
µ

σ 2
g −

g ′

2

)
< 0

lim inf
x↘`

(
µ

σ 2
g −

g ′

2

)
> 0.

Notice that these inequalities provide a trade-off between the
drift and the diffusion behavior and cover examples in which the
drift is dominated by the square root of the diffusion coefficient.
In these cases, the exponential decay of the β-mixing coefficients
is induced by the rapid increase in the volatility as a function
of the Markov state. The drift may even be positive for states
in the vicinity of the right boundary and negative in the vicinity
of the left boundary (suggesting a pull to the left) while the
resulting diffusion may still be stationary and uniformly ergodic.
(See Conley et al. (1997) for a further discussion of volatility-
induced stationarity.) Also, these conditions permit the diffusion
coefficient to go to zero at either boundary.
We conclude this section by relating our work to that of

Veretennikov (1987). Notice that for the special case when (i) σ
is differentiable, we can transform our original process (1) using
the twice-differentiable function

R(x) =
∫ x

d

1
σ(u)

du,

where d is an interior point in the state space (`, r). This scale
transformation results in a new diffusion process {yt = R(xt) : t ≥
0} with state space (R(`), R(r)), unit diffusion coefficient a2 = 1
and a drift given by our pull measure:

b =
µ

σ
−
σ ′

2
.

Under an additional condition (ii) (R(`), R(r)) = (−∞,∞),8
one can now apply Veretennikov (1987) theorem to establish
β-mixing with exponential decay based on the behavior of the drift
coefficient b of the transformed diffusion with a constant diffusion
coefficient.While this provides an alternativeway to justify our (6)
as a sufficient condition for β-mixing with exponential decay, our
derivation does not need the extra conditions (i) and (ii).9

5. β-mixing with polynomial decay rates

Previously, we deduced sufficient conditions for a diffusion
process to be weakly dependent. In this section, we study
diffusions which are strongly dependent in the sense that the
ρ-mixing coefficients ρt ≡ 1 for all t ≥ 0, or β-mixing coefficients
decay at rates that are slower than exponential.
To study strong dependence,we focus on cases inwhich the pull

measure
µ

σ
−
σ ′

2
converges to zero at one of the two boundaries. To characterize the
strong dependence we study how quickly this measure converges
to zero. This leads us to investigate the limits

ν+ ≡ lim sup
x↗r

[(
σ 2

σσ ′ − 2µ

)′
−

2µ
σσ ′ − 2µ

]

8 Notice that for volatility-induced stationarity type of diffusion models, it may
well be that R(`) > −∞ and/or R(r) < ∞. So (R(`), R(r)) = (−∞,∞) is an
additional restriction.
9 In particular, our Corollary 4.2 cannot be derived from Veretennikov (1987)
theorem.
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ν− ≡ lim inf
x↘`

[(
σ 2

σσ ′ − 2µ

)′
−

2µ
σσ ′ − 2µ

]
to obtain a more refined measure of strong dependence. These
limits bound the behavior of the β-mixing coefficients.

5.1. Hitting times

For a general discrete-time Markov process, the β-mixing
polynomial decay rates are implied by restrictions on themoments
of the random time that it takes to hit a compact set; see
e.g., Tuominen and Tweedie (1994, Theorems 2.3 and 4.3). A
version of this kind of result for scalar diffusion was established
by Lindvall (1983), which we now state.10 Let τK denote the first
time that the process {zt} hits the point K in the interior of the state
space conditioned on being in state z at time zero:

τK (z) = inf {t ≥ 0, zt = K |z0 = z] .

Theorem 5.1. Suppose Assumptions 3.1–3.3 hold. Suppose that there
is a function ξ ≥ 0 non-decreasing on [0,∞) such that E [ξ(τK )] <
∞. Then

lim
t↑∞

ξ(t)βt = 0,

and if further, ξ is absolutely continuous with respect to the Lebesgue
measure and has a density ξ ′, then∫
∞

0
ξ(t)′βt <∞.

In particular, if ξ(t) = tδ for some δ > 0 and E
[
(τK )

δ
]
<∞, then∫

∞

0
tδ−1βt <∞,

lim
t→∞

tδβt = 0. (7)

Proof. See the Appendix. �

5.2. The natural scale case

One strategy for establishing the hitting time moment bounds
of Theorem 5.1 is to follow Lindvall (1983) and study natural
scale diffusion processes. Transforming the scale does not alter
the hitting time distribution. Lindvall (1983) derives a sufficient
condition for E(τK )δ < ∞ based on a moment restriction
expressed using the natural scale stationary distribution. The
following result is based on Lemma 1 and Proposition 2 of Lindvall
(1983) and our Theorem 5.1, but is stated in terms of growth rates
of θ . It is the counterpart of Theorem 4.1, but for slower growth
rates.

Theorem 5.2. Suppose that Assumptions 3.1 and 3.2 hold, and there
exists some constant 12 < η < 1 such that

lim inf
|z|→∞

θ(z)
|z|
= 0, lim inf

|z|→∞

θ(z)
|z|η

> 0. (8)

Let

η∗ ≡ sup
{
η ∈

(
1
2
, 1
)
: inequality (8) is satisfied

}
.

10 Lindvall (1983) does not make any link to β-mixing, but, as we show in the
Appendix, it is easy to modify his result to obtain β-mixing coefficients decaying at
a polynomial order.
Then: (i) Assumption 3.3 is satisfied; (ii) {zt : t ≥ 0} is β-mixing
with limt→∞ tδβt = 0 for any δ < δ∗ =

2η∗−1
2−2η∗ , but is not β-mixing

with exponential decay.

Proof. Eq. (8) implies the result (i) as long as η > 1/2. Eq. (8) also
implies that∫
∞

−∞

|z|1−(α)
−1 1
θ2(z)

dz <∞ provided 2η + (α)−1 − 1 > 1.

Let 0 < δ ≡ α − 1 < 2η−1
2−2η . Then by Lemma 1 or Proposition

2 of Lindvall (1983), we have
∫
∞

−∞
(τK )

δ 1
θ2

< ∞. The result (ii)
now follows from Theorem 5.1, inequality (7). Finally, Hansen et al.
(1998, Theorems 4.2 and 4.3) show thatwhen lim inf|z|→∞ θ(z)

|z| = 0
there is no spectral gap (i.e., ρt = 1); hence {zt : t ≥ 0} cannot be
β-mixing with exponential decay. �

Theorem 5.2 gives interesting results when the tail growth of
θ as a function of |z| exceeds |z|

1
2 but is less than linear. Slower

growth in θ implies slower decay in the β-mixing coefficients.
We next derive a sufficient condition for (8) in the natural scale.

Althoughwederive this in terms of the natural scale, our interest in
this sufficient condition is its counterpart in the original scale. The
logarithmic derivative of a power function is proportional to 1/z.
The coefficient used in this proportionality dictates when the tail
inequality (8) is satisfied. Thuswe are led to compute the derivative(
θ

θ ′

)′
(z) = 1−

θ ′′(z)θ(z)
[θ ′(z)]2

in order to study the tail behavior of θ . We are interested in the
case in which θ ′ tends to zero. Define

ν+ ≡ lim sup
z→+∞

[
1−

θ ′′(z)θ(z)
[θ ′(z)]2

]
ν− ≡ lim inf

z→−∞

[
1−

θ ′′(z)θ(z)
[θ ′(z)]2

]
.

Moreover, let

ν∗ ≡


ν+ if lim sup

z↘−∞
θ ′(z) > 0

ν− if lim inf
z↗+∞

θ ′(z) < 0

max{ν+, ν−} otherwise.

Lemma 5.3. Suppose that θ is twice differentiable, and that

lim inf
z↗+∞

θ ′(z) ≤ 0,

lim sup
z↘−∞

θ ′(z) ≥ 0,

where at least one of these two limits is zero. If 1 < ν∗ < 2, then (8)
is satisfied for any η < 1

ν∗
. In particular, η∗ ≥ 1

ν∗
.

Proof. We prove this result when both limiting derivatives are
equal to zero. The other cases can be proved using a more direct
argument for one boundary and an argument entirely similar to
what follows for the other boundary. Consider any 1

η
> ν∗. For

sufficiently large z∗, and z ≥ z∗,

1
(log θ)′(z)

≤
z
η
+ c1,

and for z ≤ −z∗,

1
(log θ)′(z)

≥
z
η
− c1
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where c+ and c− are some appropriately chosen positive
constants. Taking reciprocals reverses the inequalities. Hence
taking reciprocals and integrating implies that for z ≥ z∗,

log θ(z) ≥ η log(z/η + c1)+ c2,

and for z ≤ −z∗,

log θ(z) ≥ η log(−z/η + c1)+ c2

for some appropriately chosen constant c2. Consequently, we may
find a positive constant c3 such that

θ(z) ≥ c3 (|z|/η + c1)η

for |z| ≥ z∗. Therefore, (8) is satisfied. �

The following example illustrates the polynomial bounds on the
β-mixing coefficients and in particular when Lemma 5.3 produces
the same bounds (i.e. η∗ = 1

ν∗
).

Example 5.4. Suppose that θ(z) = (1+ |z|2)
γ
2 and 1/2 < γ < 1.

It may be shown directly that η∗ = γ . Thus from Theorem 5.2,
limt→∞ tδβt = 0 for any

δ <
2γ − 1
2− 2γ

.

Notice also that ν∗ used in Lemma 5.3 is given by ν∗ = 1
γ
=

1
η∗
.

5.3. Diffusion with a non-zero drift

Our main interest in Lemma 5.3 is its implication for a diffusion
process in the original scale.Wenow transform the condition given
in this lemma. Note that

θ ′(S(x)) = −2
(
µ

σ
−
σ ′

2

)
(x) =

(
σσ ′ − 2µ

σ

)
(x).

We are interested in cases in which θ ′ tends to zero. Since
θ(S(x)) = s(x)σ (x),(
θ [S(x)]
θ ′[S(x)]

)′
=
1
s

(
sσ 2

σσ ′ − 2µ

)′
(x)

=

[(
σ 2

σσ ′ − 2µ

)′
−

2µ
σσ ′ − 2µ

]
(x).

This leads us to define

ν+ ≡ lim sup
x↗r

[(
σ 2

σσ ′ − 2µ

)′
−

2µ
σσ ′ − 2µ

]

ν− ≡ lim inf
x↘`

[(
σ 2

σσ ′ − 2µ

)′
−

2µ
σσ ′ − 2µ

]
.

Corollary 5.5. Suppose that

lim sup
x↗r

(
µ

σ
−
σ ′

2

)
≤ 0

lim inf
x↘`

(
µ

σ
−
σ ′

2

)
≥ 0

with at least one of these limits equal to zero. Let ν∗ be ν+ if only
the first limit is zero, be ν− if only the second limit is zero, and be
max{ν+, ν−} if both limits are zero. If 1 < ν∗ < 2, then for any δ <
2−ν∗
2ν∗−2 the process {xt : t ≥ 0} is β-mixing and limt→∞ t

δβt = 0.

This corollary shows how to compute a polynomial bound
on the rate of decay of the β-mixing coefficients when the pull
measure is zero in one of the two tails.
Example 5.6. Suppose that σ = 1 and

µ(x)


≤ −

κ

x
x ≥ a

≥ −
κ

x
x ≤ −a

for some positive κ and a as in Veretennikov (1997). Then

ν∗ ≡ 1+
1
2κ
∈ (1, 2) provided κ >

1
2
,

and the restriction on δ is

δ <
2− ν∗

2ν∗ − 2
= κ −

1
2
.

This matches the conclusion in Veretennikov (1997) for a scalar
diffusion.

6. Strong dependence and spectral densities

For linear time series models, it is common to link temporal
dependence to the behavior of the spectral density near frequency
zero. For instance, the rate of divergence of the spectral density
at frequency zero gives a way to characterize long memory of a
stochastic process. For this reason, we now examine the implied
behavior of the spectral density function for test functions applied
to the Markov diffusion. In what follows, we will first deduce
a convenient formula for calculating the spectral density at a
given frequency for transformations of a natural scale diffusion.
Then we will construct diffusion processes with spectral densities
that diverge at frequency zero. For this phenomenon to occur,
at the very least we need the processes to fail to be ρ-mixing .
However, even when the ρ-mixing coefficients are identically one,
the spectral density at frequency zero will still be finite for many
(but not all) functions of the Markov state. In particular, we will
use Example 5.4 as a starting point for a natural scale diffusion that
fails to beρ-mixing , and transform the state space to obtainMarkov
processes with divergent spectral density functions.

6.1. A formula for the spectral density

Let {zt} be a natural scale diffusion with diffusion coefficient θ2
(and generator A = θ2φ′′/2). Let Z ≡ {φ ∈ L2 :

∫
φdQ = 0}

denote the class of real-valued test functions with zero means
and finite variances, where Q has density proportional to 1

θ2
.

For any test function φ ∈ Z , the process {φ(zt)} is stationary
β-mixing; hence its spectral measure is absolutely continuous and
the spectral density f (ω) exists satisfying

∫
∞

−∞

| ln f (ω)|
1+ω2

dω <∞ and
can be represented as (see e.g. Ibragimov andRozanov (1978, pages
34–36, 112 and 138))

f (ω) =
1
2π

∫
+∞

−∞

exp(−iωt)
[∫

φ (Ttφ) dQ
]
dt

if
∫
∞

0

(∫
[φ (Ttφ)] dQ

)
dt <∞,

and

f (ω) = lim
M→∞

fM(ω) in L2((−∞,∞), Leb)

if
∫
∞

0

(∫
[φ (Ttφ)] dQ

)2
dt <∞,

fM(ω) =
1
2π

∫
+M

−M
exp(−iωt)

[∫
φ (Ttφ) dQ

]
dt.

Since the natural scale diffusion {zt} is time reversible, the
autocorrelations are non-negative:
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∫
[φ (Ttφ)] dQ ≥ 0.

Thus the spectral density function at frequency zero dominates the
spectral density at all other frequencies.
For any given φ ∈ Z and frequency ω, we solve the differential

equation system

(A− iωI) ψ = φ (9)

where ψ = ψr + iψi and ψr , ψi ∈ D (notice that the solution
ψ depends implicitly on ω). Thus ψ solves the pair of differential
equations

θ2

2
ψ ′′r = −ωψi + φ

θ2

2
ψ ′′i = ωψr

for ψr , ψi ∈ D. By construction, the solution ψ satisfies for any
ω 6= 0

ψ = (A− iωI)−1 φ = −

∫
∞

0
Tt exp(−iωt)φdt.

Then {φ(zt)} has a finite spectral density at frequencyω 6= 0 given
by

f (ω) =
∫
φ

[∫
+∞

−∞

(Tt exp(−iωt)φ) dt
]
dQ

= −2 real
(∫

φ
[
(A− iωI)−1 φ

]
dQ
)

= −2
(∫

φψrdQ
)
.

For frequency ω = 0, the pair of differential equations (9)
becomes ψi = 0 and θ2

2 ψ
′′
r = φ (i.e. Aψ = φ), which has a

solution ψ = A−1φ ∈ D if and only if φ ∈ Z belongs to the range
ofA. In this case, an integration-by-parts argument leads to

f (0) = −2
∫
φ
(
A−1φ

)
dQ =

∫ (
ψ ′r
)2∫ 1

θ2

. (10)

Moreover, f (0) gives the asymptotic variance for the central limit
approximation for

{
1
√
N

∫ N
0 φ(xt)dt

}
(see Bhattacharya (1982)

and Hansen and Scheinkman (1995)).
Notice that when the diffusion process {zt} is ρ-mixing , the

range of A coincides with the space Z; hence any test function
φ ∈ Z has finite f (0) given by the formula (10). However, when
the diffusion process is strongly dependent in the sense ρt ≡ 1 for
all t ≥ 0, the range ofA is merely a dense subset of Z; hence there
exist functions φ ∈ Z that are outside the range ofA. For all of the
test functions φ that belong to the range ofA, the familiar central
limit approximations continue to apply to {φ(xt)}, and for these
the spectral densities remain bounded in the vicinity of frequency
zero. When φ is outside the range ofA, we can no longer solve the
operator equation Aψ = φ in D. The Bhattacharya (1982) central
limit theorem may fail and the spectral density may diverge at
frequency zero.We now construct examples for which the spectral
density becomes unbounded at frequency zero.

6.2. Divergent spectral densities

Formula (10) also suggests a way to construct transformations
(test functions) φ with finite variances but infinite spectral
densities at frequency zero for strongly dependent processes. Find
φ’s with zero means and finite variances that satisfy

θ

2

2

ψ ′′ = φ

for which the corresponding ψ ’s are outside the domain D and in
particular∫ (

ψ ′
)2
= +∞. (11)

We illustrate such a construction by developing further
Example 5.4:

θ(z) =
(
1+ z2

)γ /2
for 12 < γ < 1. For this range of γ ’s we have already argued that
the ρ-mixing coefficients are all one. To find a test function φ with
zeromean, finite variance and infinite spectral density at frequency
zero, we use the construction

φ =
θ

2

2

ψ ′′

and find a function ψ that satisfies (11) along with∫
θ2
(
ψ ′′
)2
<∞, (12)

lim
z→±∞

ψ ′(z) = 0. (13)

An example of such a function is

ψ(z)′ =
(
1+ z2

)−η/2
for

γ −
1
2
< η ≤

1
2
. (14)

The resulting test function φ has a finite variance and a zero mean
against the stationary distribution by virtue of (12) and (13). The
infinite spectral density of the process {φ(zt)} at frequency zero is
suggested by (11).
The process {φ(zt)} is itself Markov for 12 < γ ≤ 3

4 (since
φ(z) is decreasing), and also a scalar diffusion (since φ ∈ C2), but
with a non-zero drift. To illustrate the divergence of the spectral
density, we plot the spectral density for alternative choices of γ
and η. First, we compute the spectral density functions f (ω) for
frequencies ω in the vicinity of frequency zero for three values of
(γ , η) :

(
.51, 14

)
,
( 3
4 ,
1
3

)
,
(
.99, 12

)
in Fig. 1. The γ values .51 and

.99were chosen because they are near the endpoints of the interval
( 12 , 1). Recall that when γ is greater than or equal to one, the
process is ρ-mixing with exponential decay, and when γ is less
than or equal to 12 , the process fails to be stationary. The γ value
of 34 is chosen because the β-mixing coefficients are integrable for
γ > 3

4 , and themean time for hitting a compact set is infinitewhen
γ ≤ 3

4 . The corresponding η’s were chosen to be close to the mid-
point of the interval (γ − 1

2 ,
1
2 ] in (14).

11

11 To compute the (normalized) spectral density for frequency ω, we first solved
the differential equation (9) numerically subject to the boundary restrictions
ψ ′(z∗) = ψ ′(−z∗) for a large value of z∗ . We then evaluated numerically

f (ω) = −2

∫
φψr
θ2∫
φ2

θ2

and checked the sensitivity of the answer to the choice of z∗ .
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Fig. 1. Spectral density functions for different pairs (γ , η). Spectral densities are
rescaled to integrate to one.

Fig. 2. Spectral density functions for different pairs (γ , η) plotted on a log – log
scale. Spectral densities are rescaled to integrate to one.

Long memory processes including stationary versions of
fractional Brownian motion (see Mandelbrot and Ness (1968))
have spectral densities that behave like

log f (ω) ≈ c0 − c1 log(ω) (15)

in the vicinity of frequency zero for 0 < c1 < 1. For this reason, we
also depict the spectral densities on a log – log scale in Fig. 2. Notice
that while the log spectral density is distinctly concave in log(ω)
for γ = .99, it is almost linear for γ = .51. This latter behavior
imitates closely the spectral density of long memory time series.
We also study how η alters the slope:

slope =
d log f
d logω

in Fig. 3. Notice that decreasing η increases the magnitude of the
slope, but the slope never exceeds one, which is the upper bound
on the parameter c1 in (15).

Remark 6.1. In the preceding example, our calculations were
based primarily on the tail properties of the natural scale diffusion
Fig. 3. Spectral density functions for different values of η plotted on a log – log
scale. Spectral density functions are rescaled to integrate to one.

coefficient θ and of the functionψ .We are free to alter the behavior
of these functions on compact subsets and to modify accordingly
the transient dynamics for Markov states on compact sets without
changing the divergence of the resulting spectral density functions.

Remark 6.2. Stationary versions of fractional Brownian motion
are known to have infinite quadratic variations with probability
one. As emphasized byMaheswaran and Sims (1993), this property
may make such processes fail to be local martingales and as
a consequence unappealing as models of arbitrage-free asset
prices.12 Maheswaran and Sims (1993) go on to argue that a
nice feature of fractional Brownian motion that is often featured
is its long range dependence and not its ‘‘finite-time unit’’
properties. They then study continuous-time Gaussian moving-
averagemodels that break the link between short run responses to
shocks and long run dependence.13 (Also, see Robinson (1995) for a
semiparametric estimation method for models that break this link
in a discrete-time setting.). In a similar vein, our nonlinear diffusion
examples showhow tomaintain the local Gaussian structurewhile
inducing nonlinearities and long run dependence. In particular, the
local martingale property is preserved by construction.

7. Endogenous sampling

We conclude the paper by considering discrete-time processes
obtained by sampling a diffusion in a manner that is state
dependent. Following Duffie and Glynn (2004) we construct an
endogenous sampling scheme built from a Poisson process with a
state dependent intensity. Let {xt} denote a Markov process with
generator A, and let {Nt} denote a Poisson process with state
dependent intensityλ. The event times τ ∗j = inf {t : Nt = j} are the
times at which xt is observed.We denote the discrete-time process
as
{
y∗j : j = 0, 1, 2, . . .

}
, where y∗j = xτ∗j , with τ

∗

0 = 0.

12 As follows from Harrison and Kreps (1979); Harrison et al. (1984) and Mah-
eswaran and Sims (1993), localmartingale or semimartingale implications for secu-
rity markets are tied directly to the classes of admissible trading rules. Trading rule
restrictions are required at the outset to admit even geometric Brownian motions
as admissible processes. Themore severe the trading rule restrictions, the larger the
class of admissible price processes.
13 Similar properties have also been investigated by Comte and Renault (1996)
for a multivariate continuous-time moving-average models driven by fractional
Brownian motion.
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While the intensity λ can depend on the Markov state, there
is an equivalent way to depict the process

{
y∗j
}
with an intensity

that is state independent. This construction first alters the time
clock of the diffusion {xt} in a manner analyzed by Ethier and
Kurtz (1986), and then uses a Poisson sampling process with unit
intensity applied to the diffusion with a distorted time clock.

7.1. Altering the time clock

The continuous-time Markov process {̂yt : t ≥ 0} with a
distorted time clock may be constructed as follows:
ŷt = xτt
with the increasing process

τt =

∫ t

0

1
λ(xu)

du

Assumption 7.1. λ is continuous, strictly positive on (`, r).
Ethier and Kurtz (1986, pages 308–309) show that we may
construct the Markov process {̂yt} by using the generator

Â =
1
λ

A

motivated heuristically by the chain rule. Since λ can be state
dependent, the domain of Â may differ from that of A, but the
intersection of the domains will typically contain a dense (in L2)
set of functions. While the Ethier and Kurtz (1986) construction is
applicable to a general class ofMarkov processes, we are interested
in the case in which the original process is a scalar diffusion
with continuous drift and diffusion coefficients, and A and hence
Â is a second-order differential operator that is at least well-
defined on the space C2. The time-deformed process {̂yt : t ≥ 0}
is still a diffusion, where the drift and the diffusion coefficients are
obtained bymultiplying the original drift and diffusion coefficients
of {xt} by the reciprocal of the intensity λ. The scale function of the
new process remains unchanged.
The stationary distribution Q̂ of the process {̂yt} may be

constructed as the Radon–Nikodym derivative proportional to

dQ̂ =
λ

sσ 2∫ r
`

λ

sσ 2
.

Given the state dependent intensity λ, Q̂ is different from the
stationary distribution Q of {xt}. In fact one may not even
exist while the other one is a positive finite measure. The next
assumption ensures the existence of Q̂ :

Assumption 7.2.
∫ r
`

λ(x)
s(x)σ 2(x)

dx <∞.

Now all the results in previous sections apply to the time-
altered diffusion {̂yt : t ≥ 0}. In particular, the pull measure for the
altered process is given by
1
λ1/2

[
µ

σ
−
σ ′

2
+
σλ′

4λ

]
when λ and σ are differentiable.

7.2. Poisson sampling

We can now form the discrete-time process
{
y∗j : j =

0, 1, 2, . . .
}
by taking a Poisson sample of {̂yt : t ≥ 0}with unit in-

tensity. The resulting discrete-time process is still stationary with
distribution Q̂ , and is an aperiodic Markov chain with one-period
transition operator

T̂ φ(y) =
(
I− Â

)−1
φ(y). (16)

The discrete-time transition operator is a special case of what is
referred to as a resolvent operator for the generator Â.
The next result states that
{
y∗j : j = 0, 1, 2, . . .

}
preserves all of

the temporal dependence properties of {̂yt : t ≥ 0}.

Theorem 7.3. Suppose that Assumptions 3.1, 3.2 and 7.1 are
satisfied. If

lim inf
x↗r

sσ
|S|λ1/2

> 0 (17)

lim sup
x↘`

sσ
|S|λ1/2

< 0, (18)

then: Assumption 7.2 holds and {y∗j : j = 0, 1, 2, . . .} is stationary,
ρ-mixing and β-mixing with exponential decay rates.

This theorem is a special case of Theorem A.1, which is
stated and proved in the Appendix. The latter theorem includes
a characterization of the β-mixing coefficients when the resulting
process is strongly dependent.

Remark 7.4. When σ and λ are smooth, the sufficient conditions
for inequalities (17) and (18) are

lim sup
x↗r

λ−1/2
[
µ

σ
−
σ ′

2
+
σλ′

4λ

]
< 0,

lim inf
x↘`

λ−1/2
[
µ

σ
−
σ ′

2
+
σλ′

4λ

]
> 0.

Consider now the case in which the subordinated process {̂yt}
is stationary (Assumption 7.2 is satisfied), but its pull measure

λ−1/2
[
µ

σ
−
σ ′

2
+
σλ′

4λ

]
is zero at one of the two boundaries. By the arguments in Hansen
et al. (1998), there exists a sequence of functions

{
φj
}
with norm

one such that

lim
j→∞

∫
φj
(
Âφj

)
dQ̂ = 0.

It follows that there exists a sequence of functions
{
ψj
}
withmean

zero and unit norm such that

lim
j→∞

∫
ψj
(
T̂ ψj

)
dQ̂ = 1,

which implies that all of the discrete-time ρ-mixing coefficients
are unity. Hence the dependence properties of the Poisson sampled
discrete-time process {y∗j }mirror that of the deformed continuous-
time process {̂yt}.
Our next examples illustrate how subordination can alter the

unconditional distribution as well as the temporal dependence of
a scalar diffusion:

Example 7.5. Let {xt} be a stationary diffusion process on
(−∞,+∞) with µ(x) = −γ x for some γ > − 12 and σ

2(x) =
1+ x2. The stationary density q(x) is proportional to (1+ x2)−γ−1
(Example ‘‘E’’ in Wong (1964)). Clearly,

lim
x↘−∞

µ

σ
−
σ ′

2
= γ +

1
2
> 0,

lim
x↗+∞

µ

σ
−
σ ′

2
= −γ −

1
2
< 0.

Thus the ρ-mixing and β-mixing coefficients decay exponentially.
Let {̂yt} be the time-deformed diffusion with λ(x) = 1 + x2.
Then for γ ∈ (− 12 ,

1
2 ], this diffusion does not have a stationary

distribution, while for γ > 1
2 this diffusion has a stationary

density proportional to (1 + x2)−γ , and has a pull measure equal
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to zero at both boundaries. Thus the ρ-mixing coefficients are
unity and the β-mixing coefficients decay slowly. When we take a
Poisson sample of the process {̂yt}with unit intensity, the discrete-
time process

{
y∗j
}
remains non-stationary for γ ∈ (− 12 ,

1
2 ], and

stationary but strongly dependent for γ > 1
2 .

Example 7.6. Suppose that {xt} has the same drift and diffusion
coefficient as {̂yt} had in the previous example: µ =

−γ x
1+x2

and
σ 2 = 1. As we just argued, this process is stationary and strongly
dependent for γ > 1

2 , and fails to be stationarywhen γ ∈ (−
1
2 ,
1
2 ].

Let λ(x) = 1
1+x2
; then the resulting time-deformed {̂yt} process

coincides with the {xt} process of the previous example. Hence
{̂yt} and the associated Poisson sampled discrete-timeprocess

{
y∗j
}

with unit intensity are stationary, β-mixing and ρ-mixing with
exponential decay.

8. Multivariate diffusions

We now explore an alternative convenient formulation of a
Markov diffusion process and give some extensions of our previous
results. We useΩ to denote the set of hypothetical Markov states,
and we restrict Ω to being an open and connected subset of
Rn. Let y denote an element of Ω , or equivalently a possible
realized value of the Markov state.14Wewill model a multivariate
diffusion by first constructing a quadratic formon the domain C2K of
functions that are twice continuously differentiable with compact
support. This form is built using a multivariate diffusion matrix
and a stationary density. We study mixing as a restriction on tail
behavior of these two objects.
For any pair of functions φ and ψ in C2K , we construct the

positive semidefinite quadratic form

fo(φ, ψ) =
1
2

∫ ∑
i,j

σij
∂φ

∂yj

∂ψ

∂yi
q.

where

Σ = [σij]

is a positive definite matrix for each Markov state y and q is a
positive density that integrates to unity.

Assumption 8.1. Σ is a continuously differentiable, positive
definite matrix function onΩ .

Assumption 8.2. q = exp(−2h), and h is twice continuously
differentiable, satisfying

∫
Ω
exp(−2h) = 1.

We construct the generator for the semigroup of conditional
expectation operators for Markov diffusion from the differential
operator associated with the form by solving

fo(φ, ψ) = −〈Bφ,ψ〉 = − 〈φ,Bψ〉 .

Applying integration by parts,

Bφ =
1
2

∑
i,j

σij
∂2φ

∂yi∂yj
+
1
2q

∑
i,j

∂(qσij)
∂yi

∂φ

∂yj
.

With this formula,Σ is interpreted as the diffusionmatrix and q as
the stationary density. The implicit drift can be constructed from
Σ and q via: µ = (µ1, . . . , µn)′ satisfies

µj =
1
2q

n∑
i=1

∂(qσij)
∂yi

14 Here and elsewhere in the section we define new notation with a usage distinct
from that in previous sections.
for j = 1, . . . , n when {xt} satisfies the stochastic differential
equation

dxt = µ(xt)dt +Λ(xt)dWt

with appropriate boundary restrictions. The process {Wt : t ≥ 0}
is an n-dimensional, standard Brownian motion, and Σ = ΛΛ′.
Notice that we start with Σ and q and infer a unique generator
for a Markov diffusion. Under this construction the process {xt}
is time reversible, although later we will also consider irreversible
diffusions.
We extend the form fo to a larger spaceH using theweak notion

of a derivative:

H =
{
φ ∈ L2 : there exists g measurable, with

∫
g ′Σgq <∞,

and
∫
φ∇ψ = −

∫
gψ, for all ψ ∈ C∞K

}
The Borel measurable function g is unique (for each φ) and is
referred to as the weak derivative of φ. From now on, for each φ
in H we write ∇φ = g . Then H is a Hilbert space under the inner
product

〈φ,ψ〉∗ = 〈φ,ψ〉 +
1
2

∫
(∇φ)′Σ(∇ψ)q.

For any pair of functionsψ and φ in H , we define a quadratic form
f ,

f (φ, ψ) =
1
2

∫
(∇φ)′Σ(∇ψ)q,

as a closed form extension of fo to H .
For the purpose of approximation, we maintain:

Assumption 8.3. For any φo in H , there exists a sequence {φj} in
C2K such that

lim
j→∞

< φj − φo, φj − φo>∗ = 0.

Fukushima et al. (1994) and Chen et al. (in press) give sufficient
conditions for this assumption to be satisfied. Under this assump-
tionwe can focus our attention on the form fo defined on C2K instead
of the extension f .
Hansen and Scheinkman (1995) give the following necessary

and sufficient condition for the Markov process to be ρ-mixing
with exponential decay. (See Proposition 8.)

Condition 8.4. There exists a δ > 0 such that

fo(φ, φ) ≥ δ

[
< φ, φ > −

(∫
φq
)2]

for all φ ∈ C2K .

In the case of a scalar diffusion with state space (`, u) and
Σ = ς2, Hansen and Scheinkman (1995) show that Condition 8.4
is satisfied when

lim inf
y→u

[
ς ′(y)+ ς(y)

q′(y)
q(y)

]
> 0

lim sup
y→`

[
ς ′(y)+ ς(y)

q′(y)
q(y)

]
< 0

where both limits are assumed to exist. This shows how ρ-mixing
(and hence β- and α-mixing with exponential decay) can be
induced either by a stationary density with a thin tail or by a
volatility specification that grows at least linearly with theMarkov
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state. Hansen and Scheinkman (1995) show that this restriction is
equivalent to the scalar drift condition introducedpreviously in (6).
To obtain multivariate results, we follow an approach of Chen

et al. (in press) developed for a different purpose.15Weassume that
Ω = Rn. In what follows we will impose a lower bound on the
diffusion matrixΣ .

Assumption 8.5. Suppose that

Σ(y) ≥ ς(y)2I ≥ εI

where ς(y) = exp[v(y)] and v is continuously differentiable.

One possibility is to set ς2 = ε. Define a potential function:

F(y) ≡ −
∑
i,j

σij
∂2h
∂yi∂yj

−

∑
i,j

∂σij

∂yi

∂h
∂yj
+ (∇h)′Σ(∇h). (19)

Theorem 8.6. Let Assumptions 8.1–8.3 and 8.5 be satisfied. If

lim inf
|y|→∞

F(y) > 0,

then Condition 8.4 is satisfied. Hence {xt} is ρ-mixing.

Proof. See the Appendix. �

As in Chen et al. (in press) it is sometimes possible to construct
a more refined result by exploiting even more the state dependent
growth in volatility. Such a result is important for accommodating
processes with stationary densities and tail behavior that is
algebraic rather than exponential. Form the potential function

F̂(y) = ς(y)2
(
−trace

[
∂2h(y)
∂yi∂yj

−
∂2v(y)
∂yi∂yj

]
+ |∇h(y)−∇v(y)|2

)
+ ε

(
∇v(y) · ∇v(y)− trace

[
∂2v(y)
∂yi∂yj

])
.

Theorem 8.7. Let Assumptions 8.1–8.3 and 8.5 be satisfied. If

lim inf
|y|→∞

F̂(y) > 0,

then Condition 8.4 is satisfied. Hence {xt} is ρ-mixing.

Proof. See the Appendix. �

Notice that derivatives of the logarithms of both the density and
the state dependent bound on the diffusion matrix contribute to
the construction of the potential function F̂ .
While our use of forms leads naturally to representing a

Markov diffusion in terms of a stationary density q and a diffusion
matrix Σ , as we noted, the resulting process is time reversible. In
multivariate settings there are typically many other constructions
of a generator which result in diffusions with the same density and
the same diffusion matrix. Provided that the generatorA satisfies

fo(φ, ψ) = −
∫
ψ(Aφ)q

on C2K , our results remain applicable to a diffusion process with
generatorA.
Rockner and Wang (2001) use forms to study multivariate

Markov processes with slower than exponential rates of conver-
gence of the α-mixing coefficients. Let C2B be given by all linear
combinations of functions in C2K and constant functions. These

15 Chen et al. (in press) study the existence of functional principal components,
which requires more stringent restrictions.
functions are necessarily in H . Rockner and Wang (2001) provide
sufficient conditions for the inequality

(‖Ttφ‖2)
2
≤ ξ(t)

[
(‖φ‖∞)

2
+ (‖φ‖2)

2] for all φ ∈ C2B ∩ Z,

For instance, see their Theorem 2.1. From this inequality, we see
that
‖Ttφ‖1

‖φ‖∞
≤
‖Ttφ‖2

‖φ‖∞
≤

√
2ξ(t)

and hence

αt ≤
√
2ξ(t).

For an example of the construction of ξ(t) in terms of Σ and
h = − 12 log q, see the discussion on page 579 of Rockner andWang
(2001).16

9. Concluding remarks

In this paper we studied the temporal dependence of nonlinear
scalar diffusion models. As we have seen, scalar diffusion models
provide a convenient and pedagogically valuable platform for
understanding how nonlinearities in time series models get
transmitted into temporal dependence. Scalar diffusions are of
course special. Nevertheless, they are often used as building blocks
in more realistic empirical models of financial data.
We explored extensions in Sections 7 and 8. We studied

the temporal dependence in models of subordinated diffusions.
In these models the time clock is distorted in a random and
temporally dependent way. Since the work of Clark (1973)
and Nelson (1990), it has been known that subordination
provides a convenient way to model returns with unconditional
distributions that have fat tails and volatility that is clustered
over time. Strongly dependent diffusions provide a useful tool for
studying the time clock distortions as a way of inducing highly
persistent stochastic volatility.17 Also we showed how to extend
some characterizations of dependence through theuse of quadratic
forms as a modeling device. This approach allowed us to include
multivariate diffusion models in our analysis, and it demonstrates
the connection betweenmixing properties and the tail behavior of
stationary densities and conditional volatilities.
Strongly dependent diffusions, like models of fractional inte-

gration, serve to blur the distinction between stationary and non-
stationary processes. As we have seen, the strong dependence of
diffusions is conveniently manifested in the pull of the diffusion at
extreme values of the Markov state. As a practical matter, this pull
behavior will be hard to measure accurately without using para-
metric restrictions on, at the very least, the tail behavior of the drift
and diffusion coefficients. This practical problem, however, is no
different than what occurs in attempts to detect the degree of long
range dependence in time series. It is known that oncewe allow for
flexible transient dynamics, the degree of long range dependence
is hard to measure.
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Appendix

Proof (Theorem 3.6). It suffices to prove this result in the natural
scale. We establish uniform ergodicity by finding a non-negative,
C2 function V that satisfies

1
2
θ2V ′′ ≤ −c(V + 1)+ d1K (20)

for some positive numbers c and d and some compact set K . We
construct the function V by first solving the eigenvalue problem

1
2
θ2φ′′ = −cφ

for some c > 0 and some φ ∈ C2, and then we construct V
from φ. If φ solves this differential equation then so does aφ for
any real number a. Since the diffusion is ρ-mixing , we may choose
a sufficiently small c > 0 such that φ has only a finite number
of zeros (e.g. see Weidmann (1987, page 225)). Let K be a closed
interval containing all of the zeros as interior points. Notice that φ
is concave when it is positive and convex when it is negative. Thus
φ is bounded away from zero in both tails. We let V +1 be equal to
aφ to the left of K and bφ to the right of K where the scale factors
are chosen so that V + 1 exceeds one outside K . We extend V to
the interior so that it remains non-negative and is C2, and select d
to guarantee inequality (20) on K . �

Proof (Theorem 3.7). Let φ be a non-trivial solution of the
eigenvalue problem

1
2
θ2φ′′ = −cφ. (21)

It suffices to show that φ has a finite number of zeros. In the study
of second-order differential equations, it is common to use the
Prufer substitution (Birkhoff and Rota, 1989, page 312) to count
the number of zeros of a solution to a second-order differential
equation. We recall the Prufer substitution:

φ′(z) = r(z) cosα(z), φ(z) = r(z) sinα(z) (22)

where

(r(z))2 = (φ(z))2 +
(
φ′(z)

)2
; α(z) = arctan

(
φ(z)
φ′(z)

)
.

Obviously r(z) = 0 for a given z if and only if φ′(z) = 0 = φ(z),
which leads to a trivial solution φ(·) ≡ 0 for (21). Hence we
can assume r(z) > 0 for all z. Then the second-order differential
equation (21) is equivalent to the following system of first-order
differential equations for (r, α):

(α(z))′ =
2c
θ2(z)

sin2 α(z)+ cos2 α(z) (23)

(r(z))′ =
1
2

[
1−

2c
θ2(z)

]
r(z) sin 2α(z). (24)

Notice that although arctan
(
φ(z)
φ′(z)

)
is not defined whenever

φ′(z) = 0, the Prufer system of first-order differential equations
(23)–(24) are well-defined and have a unique solution given any
initial values, say (r(z0), α(z0)) = (r0, α0), which in turn defines
a unique solution φ(z) for the second-order Eq. (21) via (22).
Moreover, every non-trivial solution φ(·) to (21) takes value zero
at a point z (φ(z) = 0) if and only if the solution α(·) to (23) takes
value nπ for some integer n at that point z (i.e. sinα(z) = 0).
Eq. (23) has a unique solution α(z) for any initial value, say

α(z0) = a, and the solution is an increasing (continuously
differentiable) function. In particular, α(z) is bounded (above and
below) over the compact set K . Thus φ has only a finite number of
zeros over the compact set K .
We now show thatφ has atmost finitelymany zeros outside the

set K (or equivalently, α(z) is bounded above and below outside
the set K ). Suppose φ has a zero to the right of K . (Otherwise the
conclusion follows immediately.) Thus there exists a z∗ to the right
of K such that

α(z∗) = n∗π for some integer n∗.

Apply the Prufer substitution to inequality (3), and denote
the corresponding new dependent variables as (rV+1, αV+1) (in
particular αV+1(z) = arctan

( V+1
V ′
)
). It may be shown that

(αV+1(z))′ ≥
2c
θ2(z)

sin2 αV+1(z)+ cos2 αV+1(z).

Since V + 1 never crosses the zero axis, the function αV+1(z) can
be initialized to be in the interval (n∗π, (n∗ + 1)π) for z ≥ z∗. In
particular,

αV+1(z∗) > n∗π = α(z∗).

From the comparison theorem (e.g. see Birkhoff and Rota,
1989, pages 29–31),

αV+1(z) ≥ α(z) for all z ≥ z∗

implying that

α(z) < (n∗ + 1)π for all z ≥ z∗.

Hence φ has no zero values for all z > z∗. An analogous argument
studies the behavior of α(z), φ(z) to the left of the set K . �

Proof (Theorem5.1).We follow Lindvall (1983) and use a coupling
argument. Consider two independent diffusions. One {z1t : t ≥
0} is initialized at z and the other is initialized according to the
stationary distribution. We are interested in the stopping time
τ ≡ inf{t ≥ 0 : z1t = z

2
t }. The probability distributions for z

1
t and

z2t coincide from τ on. Define the conditional β-mixing coefficient:

βt(z) ≡ sup
0≤φ≤1

|E[φ(z1t )|z
1
0 = z] − Eφ(z

2
t )|

Then from Lindvall (1983, Section 2),

βt(z) ≤ Pr{τ > t|z10 = z}.

As a consequence,

βt ≤ E[βt(z10)] ≤ Pr{τ > t}.

To bound the tail probabilities of the hitting time τ , we follow
Pitman (1974) and Lindvall (1983) by using a familiar inequality
for non-negative random variables. Suppose that Eξ(τ ) < ∞ for
ξ ≥ 0 non-decreasing on [0,∞). Then

lim
t↑∞

ξ(t)Pr{τ > t} = 0 hence lim
t↑∞

ξ(t)βt = 0.

If further, ξ is absolutely continuous with respect to the Lebesgue
measure and has density ξ ′, then a simple integration-by-parts
argument implies that∫
∞

0
ξ ′(t)Pr{τ > t} <∞ and hence

∫
∞

0
ξ ′(t)βt <∞. �
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Theorem A.1. Suppose that Assumptions 3.1, 3.2 and 7.1 are
satisfied. If for some η ∈ ( 12 , 1],

lim inf
x↗r

sσ
|S|ηλ1/2

> 0

lim sup
x↘`

sσ
|S|ηλ1/2

< 0,

then: (i) Assumption 7.2 holds and {y∗j : j = 0, 1, 2, . . .} is stationary
and β-mixing for η > 1

2 . Define

η∗ ≡ sup
{
η ∈

(
1
2
, 1
]
: inequalities (17) and (18) are satisfied

}
.

(ii) If η∗ = 1, then {y∗j : j = 0, 1, 2, . . .} is ρ-mixing and β-mixing
with exponential decay rates; (iii) if η∗ ∈ ( 12 , 1), then limj→∞ j

δβj =

0 for any δ < δ∗ where δ∗ = 2η∗−1
2−2η∗ .

Proof (Theorem A.1). In what follows we let D̂ denote the domain
of Â constructed using the stationary distribution Q̂ , and L̂2 denote
the space of functions with finite second moment (against Q̂ ).
(i) As long as η > 1

2 , Assumptions 3.1, 3.2 and 7.1 imply that the
time-altered continuous-time diffusion {̂yt : t ≥ 0} is stationary,
recurrent and aperiodic. Hence {y∗j : j = 0, 1, 2, . . .} is still
stationary, recurrent and aperiodic; hence it is β-mixing .
(ii) If η = 1 in inequalities (17) and (18), then {̂yt : t ≥ 0} is

ρ-mixing and β-mixing with exponential decay by Corollary 4.2.
Next, by the result of Banon (1977) (see also Hansen and

Scheinkman (1995)), ρ-mixing of {̂yt : t ≥ 0} implies the existence
of a spectral gap of the negative semidefinite generator Â. That is,
Â satisfies∫
φ
(
Âφ

)
dQ̂ ≤ −δ

∫
φ2dQ̂ (25)

for all φ ∈ Ẑ for some δ > 0 where

Ẑ =
{
φ ∈ D̂ :

∫
φdQ̂ = 0

}
.

An implication of (25) is that∫
φ
(
I− Â

)
φdQ̂ ≥ (1+ δ)

∫
φ2dQ̂ .

Therefore, by Eq. (16)∫
φT̂ φdQ̂ ≤

1
1+ δ

∫
φ2dQ̂

for φ ∈ Ẑ . In other words, the conditional expectation operator
T̂ of the discrete-time process

{
y∗j : j = 0, 1, 2, . . .

}
is a strong

contraction on φ ∈ Ẑ . Since D̂ is dense in L̂2, it follows from
Rosenblatt (1971) that

{
y∗j : j = 0, 1, 2, . . .

}
is ρ-mixing with

exponential decay provided that inequality (25) is satisfied, which
holds given inequalities (17) and (18) with η = 1.
Finally, by Theorem3.6, theρ-mixing of {̂yt : t ≥ 0} also implies

that there exists a non-negative Lyapunov function V ∈ C2 with
V ≥ 1, a compact set K , positive constants c and d such that

ÂV ≤ −cV + d1K .

Thus,(
I− Â

)
V ≥ (1+ c)V − d1K .

Take inverses and obtain

V ≥ (1+ c)
(
I− Â

)−1 V − d1K ,
or

T̂ V (y) ≤
1
1+ c

V (y)+
d
1+ c

1K .

We may now apply Theorem 2.1 of Down et al. (1995) to justify
saying that

{
y∗j : j = 0, 1, 2, . . .

}
is β-mixing with exponential

decay.
(iii) If η ∈ ( 12 , 1] in inequalities (17) and (18), then by

Theorem 5.2, {̂yt : t ≥ 0} is β-mixing with limt→∞ tδβt = 0.
To establish the result for

{
y∗j : j = 0, 1, 2, . . .

}
, we apply the

Theorems 2.3 and 4.3 of Tuominen and Tweedie (1994), which are
for discrete-time Markov processes. �

Proof (Theorem 8.6). First we consider a closed quadratic form

f̃ (φ, ψ) =
1
2

∫
(∇φ)′Σ(∇ψ)+

1
2

∫
Fφψ

on the domain

D(̃f ) = {ψ ∈ L2(leb) : ψ has a weak derivative and∫
F(ψ)2 +

∫
(∇ψ)′Σ(∇ψ) <∞}.

As shown in Chen et al. (in press), under our assumption onΣ and
F , the form f̃ will be positive semidefinite because f is. Moreover,
the spectrum of f is the same as that of f̃ .
Notice that

f̃ (ψ,ψ) ≥
ε

2

∫
(∇ψ)′(∇ψ)+

1
2

∫
Fψψ for all ψ ∈ D(̃f ). (26)

The essential spectrum for the form f̃ is necessarily to the right of
the essential spectrum for the form on the right of (26). See Davies
(1989), Section 1.1.11. The essential spectrum for the form on the
right-hand side is in turn to the right of

lim inf
|y|→∞

F(y)

which is positive by assumption. See exercise 8.2 in Davies (1995).
Thus the spectrum for f̃ is discrete to the right of zero and zero is
not an accumulation point. Therefore Condition 8.4 is satisfied. �

Proof (Theorem8.7).We first construct a lower bound for the form
f̃ in the sameway as in the proof of Theorem8.6 except thatwe use
F̂ in place of F . See Chen et al. (in press) for a detailed construction
and justification for F̂ . The remainder of the proof follows from that
of Theorem 8.6. �
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