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a b s t r a c t

We develop new methods for representing the asset-pricing implications of stochastic general equilib-
rium models. We provide asset-pricing counterparts to impulse response functions and the resulting dy-
namic value decompositions (DVDs). These methods quantify the exposures of macroeconomic cash flows
to shocks over alternative investment horizons and the corresponding prices or investors’ compensations.
We extend the continuous-time methods developed in Hansen and Scheinkman (2012) and Borovička
et al. (2011) by constructing discrete-time, state-dependent, shock-exposure and shock-price elasticities
as functions of the investment horizon. Our methods are applicable to economic models that are nonlin-
ear, including models with stochastic volatility.
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1. Introduction

It is standard practice to represent implications of dynamic
macroeconomic models by showing how featured time series re-
spond to shocks. Alternative current period shocks influence the
future trajectory of macroeconomic processes such as consump-
tion, investment or output, and these impacts aremeasured by im-
pulse response functions. From an asset pricing perspective, these
functions reflect the exposures of the underlying macroeconomic
processes to shocks. These exposures depend on how much time
has elapsed between the time the shock is realized and time of
its impact on the macroeconomic time series under investigation.
Changing this gap of time gives a trajectory of exposure elasticities
that we measure. In this manner we build shock-exposure elastic-
ities that are very similar to and in some cases coincide with im-
pulse response functions.

In a fully specified dynamic stochastic general equilibrium
model, exposures to macroeconomic shocks are priced because
investors must be compensated for bearing this risk. To capture
this compensation, we produce pricing counterparts to impulse re-
sponse functions by representing and computing shock-price elas-
ticities implied by the structural model. These prices are the risk
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compensations associated with the shock exposures. The shock-
exposure and shock-price elasticities provide us with dynamic
value decompositions (DVDs) to be used in analyzing alternative
structural models that have valuation implications. Quantity dy-
namics reflect the impact of current shocks on future distributions
of a macroeconomic process, while pricing dynamics reflect the
current period compensation for the exposure to future shocks.

In our framework the shock-exposure and shock-price elastici-
ties have a common underlying mathematical structure. We build
processes that grow or decay stochastically in a geometric fash-
ion. They capture the compounding of the discount and/or growth
rates over time. We construct the shock elasticities that measure
the intertemporal responses to changing exposures of these pro-
cesses to alternative shocks. We interpret the objects of interest as
‘elasticities’ because they reflect the sensitivity of the logarithm of
expected returns or expected cash flows to a change in the expo-
sure to a shock normalized to have a unit standard deviation. The
shock elasticities are state-dependent and reflect the nonlineari-
ties of the dynamic model. We provide an abstract construction
of the elasticities and ways to compute them in practice, includ-
ing tractable frameworks suitable for applications in dynamic,
stochastic general equilibrium (DSGE) modeling.

While these elasticities have not been explored in the quanti-
tative literature in macroeconomics, they have antecedents in the
asset pricing literature. The intertemporal structure of risk pre-
mia has been featured in the term structure of interest rates, but
this literature purposefully abstracts from the pricing of stochas-
tic growth components in themacroeconomy. Recently Lettau and
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Wachter (2007) and Hansen et al. (2008) have explored the term
structure of risk premia explicitly in the context of equity claims
that grow over time. Risk premia reflect contributions from expo-
sures and prices of those exposures. Here we build on an analytical
framework developed in Alvarez and Jermann (2005), Hansen and
Scheinkman (2009, 2012) and Borovička et al. (2011) to distinguish
exposure elasticities and price elasticities.

The shock elasticities are also conceptually close to nonlinear
versions of impulse response functions, introduced in Gallant et al.
(1993); Koop et al. (1996) or Gourieroux and Jasiak (2005). In a
loglinear framework, the shock elasticities exactly correspond to
impulse response functions familiar from VAR analysis applied to
the logarithms of stochastic growth or discount factor processes. In
nonlinear models, our elasticities trace out changes in conditional
expectations of future quantities in response to a marginal change
in shock exposures. We design our approach to give a direct
link to familiar characterizations of risk prices extended to
multiple payoff horizons. We provide a way to operationalize the
continuous-time formulations in Hansen and Scheinkman (2012),
Borovička et al. (2011) and Hansen (2012) in a discrete-time
setting.

In Section 2, we develop the concept of shock elasticities in a
general framework. The shock elasticities arise naturally in decom-
positions of risk premia into the contribution of shocks at differ-
ent horizon. In Section 3, we show that similar decompositions can
be employed in deconstructing entropy measures of Backus et al.
(2011) used to analyze the dynamics of the stochastic discount fac-
tor. An important goal of this paper is a tractable implementation
of DVDs. We therefore devote Sections 4 and 5 to the discussion of
methods that solve for approximate dynamics in a broad class of
DSGEmodels. We pay particular attention to the approximation of
recursive preferences of Kreps and Porteus (1978) and Epstein and
Zin (1989) since these preferences play a prominent role in the as-
set pricing literature. We show that a second-order perturbation
approximation of the DSGE models derived using the series ex-
pansion methods can be nested within an exponential–quadratic
framework in which the shock elasticities are available in quasi-
analytical form.We introduce this framework in Section 6 and dis-
cuss details of the solution in theAppendix.Wealso provideMatlab
codes for the computation of the shock elasticities inmodels solved
by Dynare.

Finally, in Section 7, we illustrate the developed tools in mea-
suring shock exposures and model-implied prices of exposure to
those shocks in a model with physical and intangible capital con-
structed by Ai et al. (2012). A reader immediately interested in the
applicability of the introduced methods can read this section di-
rectly after, or in parallel to, Section 2.

2. Analytical framework

In this section we describe some basic tools for valuation ac-
counting, by which we provide measures of shock exposures and
shock prices for alternative investment horizons. In our framework
the shock-exposure and shock-price elasticities have a common
underlying mathematical structure. Let M be a process that grows
or decays stochastically in a geometric fashion. It captures the com-
pounding discount and/or growth rates over time in a stochastic
fashion and is constructed from an underlying Markov process X .
Let W be a sequence of independent and identically distributed
standard normal random vectors. The common ingredient in our
analysis is the ratio:

εm(x, t) = αh(x) ·
E [MtW1 | X0 = x]
E [Mt | X0 = x]

(1)

where x is the current Markov state and αh selects the linear com-
bination of the shock vector W1 of interest. The state dependence
in αh allows for analysis of stochastic volatility. We interpret this
entity as a ‘‘shock elasticity’’ used to quantify the date t impact on
values of exposure to the shock αh(x)W1 at date one.

We add more structure to this formulation, by considering dy-
namic systems of the form

Xt+1 = ψ(Xt ,Wt+1) (2)

whereW is a sequence of independent shocks distributed as amul-
tivariate standard normal. Inmuch ofwhat followswewill focus on
stationary solutions for this system. By imposing appropriate bal-
anced growth restrictions, we suppose that the logarithms ofmany
macroeconomic processes that interest us grow or decay over time
and can be represented as:

Yt = Y0 +

t−1
s=0

κ(Xs,Ws+1) (3)

where Y0 is an initial condition, which we will set conveniently to
zero in much of our discussion. A typical example of the increment
to this process is

κ(Xs,Ws+1) = β(Xs)+ α(Xs) · Ws+1

where the function β allows for nonlinearity in the conditional
mean and the function α introduces stochastic volatility. We call
such a process Y an additive functional since it accumulates addi-
tively over time, and can be built from the underlying Markov pro-
cess X provided that Wt+1 can be inferred from Xt+1 and Xt . By a
suitable construction of the state vector, this restriction can always
be met. The state vector X thus determines the dynamics of the in-
crements in Y . When X is stationary Y has stationary increments.

While the additive specification of Y is convenient formodeling
logarithms of economic processes, to represent values of uncertain
cash flows it is necessary to study levels instead of logarithms.
We therefore use the exponential of an additive functional, M =

exp (Y ), to capture growth or decay in levels. We will refer toM as
amultiplicative functional represented by κ or sometimes themore
restrictive specification (α, β).

In what follows we will consider two types of multiplicative
functionals, one that captures macroeconomic growth, denoted
by G, and another that captures stochastic discounting, denoted
by S. The stochastic nature of discounting is needed to adjust
consumption processes or cash flows for risk. Thus S, and
sometimes G as well, are computed from the underlying economic
model to reflect equilibrium price dynamics. For instance, Gmight
be a consumption process or someother endogenously determined
cash flow, or itmight be an exogenously specified technology shock
process that grows through time. The interplay between S and G
will dictate valuation over multi-period investment horizons.

Our aim is to use a structural stochastic equilibriummodel with
identified macroeconomic shocks to deconstruct the asset-pricing
implications. Such a model will imply a stochastic discount factor
process S and benchmark stochastic growth processes. While for
empirical purposes the pricing implications are conveniently cap-
tured by the stochastic discount factor process, with DVDmethods
we use the identifiedmacroeconomics shocks as vehicles for inter-
preting the resulting pricing implications. Thesemethodsmeasure
two things: (i) how exposed are future macroeconomic processes
to next-period shocks, and (ii) what are the implied prices for
these shock exposures. Measurements (i) are very closely related
to familiar impulse response functions. Our use of measurements
(ii) reflects a more substantive departure from common practice
in the macroeconomics literature. We view these latter measure-
ments as the pricing counterparts to impulse response functions.

2.1. One-period asset pricing

It is common practice in the asset pricing literature to represent
prices of risk in terms of expected return on an investment per
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unit of exposure to risk. For instance, the familiar Sharpe ratio
measures the difference between the expected return on a risky
and a risk-free cash flow scaled by the volatility of the risky cash
flow. We are interested in using this approach to assign prices to
shock exposures.

As a warm up for subsequent analysis, consider one-period
asset pricing for conditionally normal models. Suppose that

logG1 = βg(X0)+ αg(X0) · W1

log S1 = βs(X0)+ αs(X0) · W1

where G1 is the payoff to which we assign values and S1 is the one-
period stochastic discount factor used to compute these values. The
one-period return on this investment is:

R1 =
G1

E [S1G1 | X0]
.

Applying standard formulas for lognormally distributed ran-
dom variables, the logarithm of the expected return is:

log E [G1 | X0 = x] − log E [S1G1 | X0 = x]

= −βs(x)−
|αs(x)|2

2  
risk-free rate

− αs(x) · αg(x)  
risk premium

.

Imagine applying this to a family of such payoffs parameterized
in part by αg . The vector αg defines a vector of exposures to the
components of the normally distributed shock W1. Then −αs is
the vector of shock ‘‘prices’’ representing the compensation for
exposure to the shocks. This compensation is expressed in terms
of expected returns as is typical in asset pricing.

While this calculation is straightforward, we now explore a
related derivation that will extend directly to multiple horizons.
We parameterize a family of payoffs using:

logH1(r) = rαh(X0) · W1 −
r2

2
|αh(X0)|

2 (4)

where r is an auxiliary scalar parameter and impose

E[|αh(X0)|
2
] = 1

as a normalization. In what follows we use the vector αh as an ex-
posure direction to compute a directional derivative as r → 0. We
have built H1(r) so that it has conditional expectation equal to one,
but other constructions are also possible. We allow αh to depend
on the state vector X to provide flexibility in the scaling of the per-
turbation. The state dependence allows αh to capture fluctuations
in shock exposures induced by stochastic volatility.

Form a parameterized family of payoffs G1H1(r) where by
design:

logG1 + logH1(r) =

αg(X0)+ rαh(X0)


· W1

+βg(X0)−
r2

2
|αh(X0)|

2. (5)

By changing r we alter the exposure in direction αh. These payoffs
imply a corresponding parameterized family of logarithms of
expected returns:

log E[G1H1(r) | X0 = x] − log E[S1G1H1(r) | X0 = x].

Since we are using the logarithms of the expected returnsmeasure
and our exposure direction αh(X0) · W1 has a unit standard devia-
tion, by differentiating with respect to r we compute an elasticity:

d
dr

log E[G1H1(r) | X0 = x]

r=0

−
d
dr

log E[S1G1H1(r) | X0 = x]

r=0
.

This calculation leads us to define counterparts to quantity and
price elasticities from microeconomics:
1. shock-exposure elasticity:

εg(x, 1) =
d
dr

log E[G1H1(r) | X0 = x]

r=0

= αg(x) · αh(x)

2. shock-price elasticity:

εp(x, 1) =
d
dr

log E[G1H1(r) | X0 = x]

r=0

−
d
dr

log E[S1G1H1(r) | X0 = x]

r=0

= −αs(x) · αh(x).

For this conditional log-normal specification, αg measures the
exposure vector, −αs measures the price vector and αh captures
which combination of shocks is being targeted. The shock price
elasticity ‘‘conditional covariance’’ between −logS1 and αh · W1.
Notice that our elasticitiesmeasure the sensitivity of the logarithm
of the expected return or expected cash flow to a perturbation
αh · W1 to logG that has a unit standard deviation.

Since exposure to risk requires compensation, notice that a
‘‘value elasticity’’ is the difference between an exposure elasticity
and a price elasticity:

d
dr

log E[S1G1H1(r) | X0 = x]

r=0

= εg(x, 1)− εp(x, 1).

The value of an asset responds to changes in exposure of the as-
sociated cash flow to a shock (a quantity effect), and to changes in
the compensation resulting from the change in exposure (a price
effect). The shock elasticity of the asset value is then obtained by
taking into account both effects operating in opposite directions.
Specifically, the shock price elasticity enters with a negative sign
because exposure to risk requires compensation reflected in a de-
cline in the asset value.

Our formulas for the shock elasticities exploit conditional log-
normality of the payoffs to be priced and of the stochastic discount
factor. In this formulation we are using the possibility of condi-
tioning variables to fatten tails of distributions as in models with
stochastic volatility. This conditioning is captured by the Markov
state x in our elasticity formulas. We use one as the second argu-
ment for the elasticities to denote that we are pricing a one-period
payoff. We extend the analysis to multi-period cash flows in the
next subsection. While the one-period price elasticity does not de-
pend on our specification of αg , the dependence on αg emerges
when we consider longer investment horizons.

2.2. Multiple-period investment horizons

Nextwe analyze how our analysis extends to longer investment
horizons. Consider the parameterized payoff GtH1(r) with a date-
zero price E [StGtH1(r) | X0 = x]. Notice that we are changing the
exposure at date one and looking at the consequences on a t-period
investment. The logarithm of the expected return is:

log E [GtH1(r) | X0 = x] − log E [StGtH1(r) | X0 = x] .

Following our previous analysis, we construct two elasticities:

1. shock-exposure elasticity:

εg(x, t) =
d
dr

log E[GtH1(r) | X0 = x]

r=0

2. shock-price elasticity:

εp(x, t) =
d
dr

log E[GtH1(r) | X0 = x]

r=0

−
d
dr

log E[StGtH1(r) | X0 = x]

r=0
.
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These two elasticities are functions of the investment horizon t ,
and thuswe obtain a term structure of elasticities. The components
of these elasticities have a common mathematical form. This is
revealed by using a multiplicative functionalM to represent either
G or the product SG. Taking the derivative with respect to r
yields Eq. (1). This formula provides a target for computation and
interpretation. Consider the pricing of a vector of payoffs GtW1 in
comparison to the scalar payoff Gt . The shock-exposure elasticity
is constructed from the ratio of expected payoffs E [GtW1 | X0 = x]
relative to E [Gt | X0 = x]. The shock-price elasticity includes
an adjustment for the values of the payoffs E [StGtW1 | X0 = x]
relative to E [StGt | X0 = x]. Our interest in elasticities leads us to
the use of ratios in these computations.

Notice that
E [MtW1 | X0 = x]
E [Mt | X0 = x]

= E

E [Mt | W1, X0]

E [Mt | X0]
W1

 X0 = x

.

Thus a major ingredient in the computation is the covariance be-
tween E[Mt |W1,X0]

E[Mt |X0]
and the shock vector W1, which shows how the

shock elasticity measures the impact of the shock W1 on the con-
ditional expectation ofMt .

Prior to ourmore general discussion, consider the case inwhich
M is lognormal,

E [logMt | W1, X0] − E [logMt | X0] = φt · W1

where φt is the (state-independent) vector of ‘‘impulse responses’’
or moving-average coefficients ofM for horizon t . Then

E [Mt | W1, X0]
E [Mt | X0]

= exp

φt · W1 −

1
2
|φt |

2

, (6)

and its covariance withW1 is:
E [MtW1 | X0 = x]
E [Mt | X0 = x]

= φt .

ThuswhenM is constructed as a lognormal process and αh is state-
independent, our elasticities coincide with the impulse response
functions typically computed in empirical macroeconomics.1 The
shock-exposure elasticities are the responses for logG and the
shock-price elasticities are the impulse response functions for
− log S.

Our interest is in calculating elasticities for nonlinear models
and in particular for models with stochastic volatility in which
αg and possibly αh are state-dependent. One possibility is to let
αh be a coordinate vector. More generally, αh is allowed to be
state-dependent and thus may change its magnitude over time,
subject to the unconditional scaling constraint E[|αh(X0)|

2
] =

1. A suitable choice of the functional form of αh(x) is typically
driven by the specification of the cash-flow and stochastic discount
factor dynamics. In models with stochastic volatility, it is often
advantageous to mimic the stochastic-volatility exposure of the
cash-flow process.

The construction of shock elasticities is based on the compari-
son of the conditional expectation of M under the perturbed and
unperturbed dynamics, which resembles the analysis of nonlin-
ear impulse response functions in Gallant et al. (1993); Koop et al.
(1996) or Gourieroux and Jasiak (2005). We choose a construction
that is particularly appealing in the structural macroeconomics
and asset pricing literatures where logarithms of quantities are fre-
quently modeled as additive but where the conditional expecta-
tions of the levels of quantities are relevant for the computation of

1 Our dating is shifted by one period vis-à-vis an impulse response function.
In macroeconomic modeling what we denote as φt is the vector of responses of
logMt−1 to the components of the shock vector W0 . The responses are indexed by
the gap of time t − 1 between the shock date and the outcome date.
asset values. This iswhyweexplore additive perturbations to logM
but compute conditional expectations ofM .2

As in the literature on nonlinear impulse response functions,
our shock elasticities take into account the full nonlinear dynamics
of the model between the time of the shock and the maturity of
the cash flow. We differ, however, in the specification of the initial
shock impulse. Rather than specifying a discrete impulse, which
would require us to take a stand on themagnitude of the shock, we
compute the sensitivity to amarginal perturbation, represented by
the derivative in the formula for the shock elasticity.

2.3. Alternative representation

To contrast transitory and long-term implications of structural
shocks for the exposure and price dynamics, we isolate growth rate
and martingale components of multiplicative functionals. Hansen
and Scheinkman (2009) justify the following factorization of the
multiplicative functional:

Mt = exp(ηt)M̂t
e(X0)

e(Xt)
(7)

where M̂ is multiplicative martingale and η is the growth or decay
rate. Associated with the martingale is a change of probability
measure given by

Ê [Z | X0] = E

M̂tZ | X0


for a random variable Z that is a (Borel measurable) function of the
Markov process between dates zero and t . This change of measure
preserves the Markov structure for X although it changes the
transition probabilities. To study long-horizon limits, we consider
only measure changes that preserve stochastic stability in the
sense that

lim
t→∞

Ê [f (Xt) | X0 = x] →


f (x)dQ̂ (x)

where Q̂ is a stationary distribution under the change of measure.3
Using factorization (7),

E [MtW1 | X0 = x]
E [Mt | X0 = x]

=
Ê

ê(Xt)W1 | X0 = x


Ê

ê(Xt) | X0 = x


where ê =

1
e . In the large t limit, the right-hand side converges to

the conditional mean ofW1 under the altered distribution:

Ê [W1 | X0 = x] . (8)
The dependence of ê(Xt) on W1 governs the dependence of the
shock elasticities on the investment horizon and eventually decays
as t → ∞.

2.4. Multi-period risk elasticities and a decomposition result

To build assets with differential exposures to risk over multiple
investment horizons, consider a multi-period parameterization of
an underlying cash flow GH (r), constructed as a generalization of
the family of payoffs from Eq. (4):

logHt (r) =

t−1
s=0


−

1
2
r2 |αh (Xs)|

2
+ rαh (Xs) · Ws+1


.

The perturbed cash flow GH (r) is now more exposed to the
shock vectorW in the direction αh at all times between the current

2 We gain both intuition and tractability becausewe narrowdown our analysis to
frameworks with Gaussian shocks although the approach can be extended to allow
for other shock distributions. See Borovička et al. (2011) for one such extension.
3 Notice that we did not specify the initial distribution for X0 in our use of M̂ . The

convergence is presumed to hold at least for almost all x under the Q̂ distribution.
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period and the maturity date. We capture the sensitivity of the
expected return to such amulti-period perturbation using the risk-
price elasticity ϱp (x, t)

ϱp (x, t) =
1
t

d
dr

log E [GtHt (r) | X0 = x]

r=0

−
1
t

d
dr

log E [StGtHt (r) | X0 = x]

r=0
. (9)

The risk-price elasticity measures the marginal increase in the
expected return on a cash flow in response to a marginal increase
in exposure of the cash flow functional in the direction αh in every
period. Scaling by t annualizes the elasticity.

The risk-price elasticity again consists of two terms, reflecting
the contribution of the exposure of the expected cash flow, and
the contribution of the valuation of this cash flow. Both terms have
a common mathematical structure. Using a general multiplicative
functionalM that substitutes either for S or SG, the derivative in (9)
can be expressed as

ϱ (x, t) =
1
t

d
dr

log E [MtHt (r) | X0 = x]

r=0

=
1
t
E [MtDt | X0 = x]
E [Mt | X0 = x]

where D is an additive functional

Dt =

t−1
s=0

αh (Xs) · Ws+1.

By interchanging summation and integration in the conditional
expectation, and utilizing the martingale decomposition from
Section 2.3, we write the risk elasticity as4

ϱ (x, t) =
1
t

t−1
s=0

E [Mtε (Xs, t − s) | X0 = x]
E [Mt | X0 = x]

=
1
t

t−1
s=0

Ê

ê (Xt) ε (Xs, t − s) | X0 = x


Ê

ê (Xt) | X0 = x

 .

This formula reveals how a risk elasticity is constructed by
averaging across time the contributions of the shock elasticities in
different periods. The contributions of future shocks are weighted
by the term

ê (Xt)

Ê

ê (Xt) | X0 = x

 (10)

which represents the contribution of the nonlinear dynamics of the
model arising from both the stationary component captured by ê,
and by the martingale component incorporated in the change of
probability measure ·̂. The shock elasticities are essential inputs
into this computation because of the recursive construction of
valuation as reflected by the multiplicative functionalM .

The resulting elasticity of a payoff maturing in period t + τ to a
shock that occurs in period τ + 1 then is

ε (x, t; τ) =
Ê

ê (Xt+τ ) ε (Xτ , t) | X0 = x


Ê

ê (Xt+τ ) | X0 = x

 .

By construction, ε (x, t; 0) = ε (x, t).
The impact of ê in the weighting (10) is transient in two

particular senses. First, fix the time of the shock τ and extend the

4 While we are being casual about this interchange, Hansen and Scheinkman
(2012) provide a rigorous analysis of such formulas.
maturity of the cash flow by t → ∞. Then the limiting elasticity
generalizes result (8):

ε (x,∞; τ) = Ê [ε (Xτ ,∞) | X0 = x]

= Ê [αh (Xτ ) · Wτ+1 | X0 = x] .

The impact of proximate shocks on cash flows far in the future re-
mains state-dependent but is only determined by the change in
probability measure constructed from the contribution of perma-
nent shocks.

Second, fix the distance between the time of the shock and the
maturity date, t , but extend the date of the shock by τ → ∞. The
resulting elasticity

ε (x, t; ∞) =
Ê

ê (Xt) ε (X0, t)


Ê

ê (Xt)

 =
Ê

ê(Xt)αh (X0) · W1


Ê

ê(X0)


is independent of the current state, and depends on the transient
term ê only through its dynamics between the date of the shock
and the maturity of the cash flow. Transient dynamics preceding
the date of the shock become irrelevant.

2.5. Partial shock elasticities

In our application in Section 7, we explore how shock elas-
ticities are altered when we change the shock configuration. We
are interested in measuring the approximate impact of introduc-
ing new shocks. Among other things, this will allow us to quantify
the contribution of different propagation channels of the dynam-
ics (2)–(3) to the shock elasticity. In a dynamical system a given
shock may operate through multiple channels as is the case in the
example economywe investigate. To feature a specific channel, we
introduce a new shock and study the sensitivity of the elasticities.
Because of the potential nonlinear nature of the model, we do not
calculate this sensitivity by zeroing out the existing shocks. Instead
we perturb the system by exposing it to new hypothetical shocks.

We motivate and compute the following object:

εm(x, t) =αh(x) ·
d
dq

E

Mt(q)W1 | X0 = x


E [Mt(q) | X0 = x]


q=0

(11)

where W1 is a new shock vector. We use the auxiliary parameter
q as a way to parameterize equilibrium outcomes when the eco-
nomic model includes a marginal perturbation to this new shock
vector W1. The vectorαh(x) determines which combination of W1
is the target of the computation. We refer to this entity as a partial
shock elasticity.

Formally, we consider the perturbed model:

Xt+1(q) = ψ Xt(q),Wt+1, qWt+1, q


for t ≥ 0

where we assume that the shock vector W is independent of W
and X0. Changing the real number q alters the stochastic dynamics
for the Markov process X(q), and formula (11) reveals that we are
interested in the impact of small perturbations as q → 0. We nest
our original construction by imposing that

ψ(x, w) = ψ(x, w, 0, 0).
Similarly, we let

Yt+1(q)− Yt(q) =κ Xt(q),Wt+1, qWt+1, q


for t ≥ 0,

where

κ(x, w) =κ(x, w, 0, 0).
We consider the multiplicative functional M(q) = exp[Y (q)],
which depends implicitly on q. The functionsψ andκ are assumed
to be smooth in what follows in order that we may compute
derivatives needed to characterize sensitivity.
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Wemeasure the sensitivity to the new shock W to characterize
a specific transmissionmechanismwithin the model. In the exam-
ple in Section 7, one shock influences the dynamics of the model
through two channels, as a shock to the production of final output
and a shock to the production of new capital. We utilize the partial
shock elasticity to reveal crucial differences in the role of the two
channels.

As in our construction of shock elasticities, we specify a param-
eterized perturbationH1(r) analogous to (4):

logH1(r) = rαh(X0) · W1 −
r2

2
|αh(X0)|

2.

We restrictαh so that
E|αh(Xt)|

2
= 1

analogous to our previous elasticity computation. Since W1 is in-
dependent of X0 and W , the shock elasticity for W1 is degenerate:

lim
q→0

αh(x) ·
E

Mt(q)W1 | X0 = x


E [Mt(q) | X0 = x]

=αh(x) ·
E

MtW1 | X0 = x


E [Mt | X0 = x]

= 0

where M is M(q) evaluated at q = 0. In what follows we compute
a partial elasticity by differentiating with respect to q:

εm(x, t) =
d
dq
αh(x) ·

E

Mt(q)W1 | X0 = x


E [Mt(q) | X0 = x]


q=0

.

Weuse this derivative to quantify the impact of the shock elasticity
when we introduce a new shock into the dynamical system. When
there are multiple components to W1, we will be able to conduct
relative comparisons of their importance by evaluating the deriva-
tive vector:

d
dq

E

Mt(q)W1 | X0 = x


E [Mt(q) | X0 = x]


q=0

.

2.5.1. Construction
Let X1,· and Y1,· denote the ‘‘first derivative processes’’ obtained

by differentiating the functions ψ andκ and evaluated at q = 0.
These processes are represented using the recursion

X1,t+1 = ψx(Xt ,Wt+1, 0, 0)X1,t + ψw(Xt ,Wt+1, 0, 0)Wt+1

+ψq(Xt ,Wt+1, 0, 0)

Y1,t+1 − Y1,t = κx(Xt ,Wt+1, 0)X1,t +κw(Xt ,Wt+1, 0, 0)Wt+1
+κq(Xt ,Wt+1, 0, 0). (12)

To implement these recursions, we include X1,t as an additional
state vector but we have initialized it to be zero at date zero. The
process X used in this recursion is the one associated with the
original (q = 0) dynamics.

By imitating our previous analysis, we compute:

εm(x, t) = αh(x) ·
E

MtY1,tW1 | X0 = x


E [Mt | X0 = x]

−αh(x) ·


E

MtY1,t | X0 = x


E [Mt | X0 = x]



×


E

MtW1 | X0 = x


E [Mt | X0 = x]


where M is evaluated at q = 0. Since W1 is independent of X0 and
W , the second term on the right-hand side is zero but the first term
is not. Thus formula (11) for the partial elasticity is valid.

We compute this expectation in two steps. Since W1 is indepen-
dent of X and W and future Wt ’s, in the first step we compute ex-
pectationsX1,t = E

X1,t(W1)

′
| Ft


andY1,t = E


Y1,t(W1)

′
| Ft


recursively usingX1,t+1 = ψx(Xt ,Wt+1, 0, 0)X1,tY1,t+1 −Y1,t =κx(Xt ,Wt+1, 0, 0)X1,t

for t ≥ 1 and with initial conditions:X1,1 = ψw(x,W1, 0, 0)E
W1(W1)

′
| F1


= ψw(x,W1, 0, 0)Y1,1 =κw(x,W1, 0, 0)E

W1(W1)
′
| F1


=κw(x,W1, 0, 0). (13)

For the recursions in (12), notice thatψx(Xt ,Wt+1, 0, 0) = ψx(Xt ,Wt+1)κx(Xt ,Wt+1, 0, 0) = κx(Xt ,Wt+1).

With this construction,wemay viewY1,t as the approximate vector
of ‘‘impulse responses’’ of Yt to unit ‘‘impulses’’ of the components
of W1. For a nonlinear model, the date t response will be a random
variable. In the second step we use Y1,t to represent the partial
elasticity:

εm(x, t) =αh(x) ·

E

Mt
Y1,t

′
| X0 = x


E [Mt | X0 = x]

.

2.5.2. An interesting special case
The following special case will be of interest in our application.

Suppose that we construct the perturbed model so thatψw(x, w, 0, 0)Υ = ψw(x, w), (14)
and similarly,κw(x, w, 0, 0)Υ = κw(x, w) (15)
for some matrix Υ with the same number of rows as in the shock
vector Wt+1 and the samenumber of columns as in the vectorWt+1.
In this construction, Υ has at least as many rows as columns and
Υ ′Υ = I .

Given a random vector αh(x) used to model state dependence
in the exposure to Wt+1, form:αh(x) = Υ αh(x).
In light of equalities (14) and (15), and our initialization in (13),

εm(x, t) = αh(x) ·

E

Mt
Y1,t

′
| X0 = x


E [Mt | X0 = x]

≈ αh(x) ·
E [MtW1 | X0 = x]
E [Mt | X0 = x]

, (16)

where the right-hand side is a shock elasticity and the left-hand
side is a partial shock elasticity. The approximation becomes
arbitrarily good in a continuous-time limit. See Borovička et al.
(2011) for a continuous-time characterization of the right-hand
side of this equation. In Appendix B.3, we analyze the discrete-time
approximation (16) in more detail and provide an alternative way
to characterize this approximation.

In our application in Section 7, W has twice as many entries as
W . We construct the model perturbed by W in order to explore
implications of alternative transmission mechanisms when indi-
vidual shocks havemultiple impacts on the dynamic economic sys-
tem. When a component of Wt+1 influences the economic system
through two channels, we design the perturbed system in which
two distinct components of Wt+1 are independent inputs into each
of the channels. In this manner the partial elasticities in conjunc-
tionwith formula (16) allowus to unbundle the impacts of the orig-
inal set of shocks.

3. Entropy decomposition

Our shock-price elasticities target particular shocks. It is also of
interest to have measures of the overall magnitude across shocks.
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In the construction that follows we build on ideas from Bansal
and Lehmann (1997); Alvarez and Jermann (2005), and espe-
cially Backus et al. (2011). The relative entropy of a multiplicative
functionalM for horizon t is given by:
1
t
[log E (Mt |X0 = x)− E (logMt |X0 = x)] ,

which is nonnegative as an implication of Jensen’s Inequality.
When Mt is log-normal, this notion of entropy yields one-half the
conditional variance of logMt conditioned on date zero informa-
tion, and Alvarez and Jermann (2005) propose using this measure
as a ‘‘generalized notion of variation’’. Our primary task is to con-
struct a decomposition that provides amore refined quantification
of how entropy depends on the investment horizon t . While our
approach in this section is similar to the construction of shock elas-
ticities, the analysis of entropy is global in nature and does not re-
quire localizing the risk exposure. On the other hand, it necessarily
bundles the pricing implications of alternative shocks.

For a multiplicative functionalM , form:

E[Mt | W1, X0]

E[Mt | X0]
(17)

which has conditional expectation one conditioned on X0. By
Jensen’s inequality we know that the expected logarithm of this
random variable conditioned on X0 must be less than or equal to
zero, which leads us to construct:

ζm(x, t) = log E [Mt | X0 = x]
− E [log E (Mt | W1, X0) | X0 = x] ≥ 0

which is a measure of ‘‘entropy’’ of the random variable in (17). It
measures the magnitude of new information that arrives between
date zero and date one for the processM . This is the building block
for a variety of computations. We think of these measures as the
entropy counterparts to our shock elasticity measures considered
previously. These measures do not feature specific shocks but they
also do not require that we localize the exposures.

Consider the case inwhichM is lognormal. Aswe showed in (6),

E [Mt | W1, X0]
E [Mt | X0]

= exp

φt · W1 −

1
2

|φt |
2

,

where φt is the (state-independent) vector of ‘‘impulse responses’’
or moving-average coefficients ofM for horizon t . Then

ζm(x, t) =
1
2

|φt |
2

which is one-half the variance of the contribution of the random
vectorW1 to logMt .

Returning to our more general analysis, a straightforward
calculation justifies:

lim
t→∞

ζm(x, t) = −E

log M̂1 | X0 = x


where M̂ is the martingale component of M in factorization (7) of
the multiplicative functional.

To see why ζm(x, t) are valuable building blocks, we use the
multiplicative Markov structure ofM to obtain:

E

Mt | Fj+1


E

Mt | Fj

 =

E

Mt
Mj

| Fj+1


E

Mt
Mj

| Fj

 =

E

Mt
Mj

| Wj+1, Xj


E

Mt
Mj

| Xj

 ,

and thus

log E

Mt | Fj


− E


log E


Mt | Fj+1


| Fj


= ζm(Xj, t − j)

for j = 0, 1, . . . , t − 1. Taking expectations as of date zero,

E

log E


Mt | Fj


| F0


− E


log E


Mt | Fj+1


| F0


= E


ζm(Xj, t − j) | X0


.

We now have the ingredients for representing entropy over longer
investment horizons. Notice that

Mt

E [Mt | F0]
=

t
j=1

E

Mt | Fj


E

Mt | Fj−1

 .
Taking logarithms and expectations conditioned on date zero in-
formation, the entropy over investment horizon-t is
1
t
[log E (Mt | X0)− E (logMt | X0)]

=
1
t

t
j=1

E

ζm(Xt−j, j) | X0


. (18)

The left-hand side is a conditional version of the entropy measure
for alternative prospective horizons t . The right-hand side repre-
sents the horizon t entropy in terms of averages of the building
blocks ζm(x, t).

The structure of the entropy is similar to that of the risk elas-
ticity function ϱ(x, t) from Section 2.4. Both are constructed as
averages over the investment horizon of the expected one-period
contributions captured by our fundamental building blocks.

Recall the multiplicative martingale decomposition of M con-
structed in Section 2.3. Hansen (2012) compares this to an additive
decomposition of logM:

logMt = ρt + log M̃t + g(X0)− g(Xt)

where log M̃ is an additivemartingale. Backus et al. (2011) propose
the average entropy over a t period investment horizon as a
measure of horizon dependence. The large t limit of Eq. (18) then is

lim
t→∞

1
t
[log E (Mt | X0)− E (logMt | X0)] = η − ρ.

The asymptotic entropy measure is state-independent and is ex-
pressed as the difference of two asymptotic growth rates, one
arising from the multiplicative martingale decomposition and the
other from the additive martingale decompositions in logarithms.

We now suggest some applications of our entropy decomposi-
tion. First, to relate our calculations to the work of Backus et al.
(2011), let M = S. Backus et al. (2011) study the left-hand side of
(18) averaged over the initial state X0. They view this entropymea-
sure for different investment horizons as an attractive alternative
to the volatility of stochastic discount factors featured by Hansen
and Jagannathan (1991). To relate these entropy measures to asset
pricing models and data, Backus et al. (2011) note that

−
1
t
E [log E (St | X0)]

is the average yield on a t-period discount bond where we use
the stationary distribution for X0. Following Bansal and Lehmann
(1997),

−
1
t
E [log St ] = −E [log S1] ,

is the average one-period return on the maximal growth portfolio
under the same distribution. The right-hand side of (18) extends
this analysis by featuring the role of conditioning information
captured by the state vector X0 and the entropy-building blocks
ζ (x, t). Notice that we may write

ζs(x, t) = −E [log S1 | X0 = x] + log E [St | X0 = x]

− E

log E


St
S1

| X1


| X0 = x


. (19)

Observe that an input into the formula is

log E

St
S1

| X1


− log E (St | X0) ,
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which is the logarithm of the one-period holding period return on
a t period discount bond at date one. The expectation of this log-
arithm contributes to entropy building block ζ (x, t). By featuring
S only, these calculations by design feature the term structure of
interest rates but not the term structure of exposures of stochastic
growth factors.

As an alternative application, following Rubinstein (1976);
Lettau and Wachter (2007); Hansen et al. (2008); Hansen and
Scheinkman (2009), and Hansen (2012) we consider the interac-
tion between stochastic growth and stochastic discounting. For in-
stance, as in Section 2.4 the logarithm of the risk premium for a
t-period investment in a cash flow Gt is:
1
t
log E [Gt | X0 = x] −

1
t
log E [StGt | X0 = x]

+
1
t
log E [St | X0 = x]

=
1
t
(log E [Gt | X0 = x] − E [logGt | X0 = x])

+
1
t
(log E [St | X0 = x] − E [log St | X0 = x])

−
1
t
(log E [StGt | X0 = x] − E [log St + logGt | X0 = x]) .

The formula relates the t-period risk premium on a stochastically
growing cash flow on the left-hand side to the entropy measures
for threemultiplicative functionals on the right-hand side:G, S and
SG.5 Our decompositions can be applied to all three components
to measure how important one-period ahead exposures are to t-
period risk premia.

4. Perturbation methods

In the preceding sections, we developed formulas for shock-
price and shock-exposure elasticities for a wide class of models
driven by a state vector with Markov dynamics (2). While the gen-
eral analysis is revealing, we now propose a tractable implemen-
tation. Our interest lies in providing tools for valuation analysis in
structural macroeconomic models, and we now feature a special
dynamic structure for which we obtain closed-form solutions for
the shock elasticities.

We start by introducing a special class of approximate solutions
to dynamic macroeconomic models constructed using perturba-
tion methods. We show how to approximate the equilibrium dy-
namics, additive and multiplicative functionals, and the resulting
shock elasticities. These approximations will share a common ex-
ponential–quadratic functional form which we discuss in detail in
Section 6.

Consider a parameterized family of the dynamic systems spec-
ified in (2):

Xt+1(q) = ψ(Xt(q), qWt+1, q) (20)

wherewe letqparameterize the sensitivity of the system to shocks.
The dynamics of X(q) for q = 1 coincidewith the dynamics for X in
the original model as introduced in Eq. (2). We consider a limit in
which q = 0 and first- and second-order approximations around
this limit system. Specifically, following Holmes (1995) and Lom-
bardo (2010), we form an approximating system by deducing the
dynamic evolution for the pathwise derivatives with respect to q
and evaluated at q = 0. To build a link to the parameterization in
Section 6, we feature a second-order expansion:

Xt ≈ X0,t + qX1,t +
q2

2
X2,t

5 We thank Ian Martin for suggesting this link to entropy.
where Xm,t is the mth order, date t component of the stochastic
process. We abstract from the dependence on initial conditions by
restricting each component process to be stationary. Our approxi-
mating process will similarly be stationary.6

4.1. Approximating the state vector process

While Xt serves as a state vector in the dynamic system (20),
the state vector itself depends on the parameter q. Let Ft be the
σ -algebra generated by the infinite history of shocks {Wj : j ≤ t}.
For each dynamic system, we presume that the state vector Xt is
Ft measurable and that in forecasting future values of the state
vector conditioned on Ft it suffices to condition on Xt . Although Xt
depends on q, the construction of Ft does not. As we will see, the
approximating dynamic system will require a higher-dimensional
state vector for a Markov representation, but the construction
of this state vector will not depend on the value of q. We now
construct the dynamics for each of the component processes. The
result will be a recursive system that has the same structure as the
triangular system (28).

Define x̄ to be the solution to the equation:

x̄ = ψ(x̄, 0, 0),

which gives the fixed point for the deterministic dynamic system.
We assume that this fixed point is locally stable. That isψx(x̄, 0, 0)
is a matrix with stable eigenvalues, eigenvalues with absolute
values that are strictly less than one. Then set

X0,t = x̄

for all t . This is the zeroth-order contribution to the solution
constructed to be time-invariant.

In computing pathwise derivatives, we consider the state vec-
tor process viewed as a function of the shock history. Each shock in
this history is scaled by the parameter q, which results in a param-
eterized family of stochastic processes. We compute derivatives
with respect to this parameter where the derivatives themselves
are stochastic processes. Given the Markov representation of the
family of stochastic processes, the derivative processes will also
have convenient recursive representations. In what follows we de-
rive these representations.7

Using theMarkov representation, we compute the derivative of
the state vector process with respect to q, which we evaluate at
q = 0. This derivative has the recursive representation:

X1,t+1 = ψq + ψxX1,t + ψwWt+1 (21)

where ψq, ψx and ψw are the partial derivative matrices:

ψq
.
=
∂ψ

∂q
(x̄, 0, 0), ψx

.
=
∂ψ

∂x′
(x̄, 0, 0),

ψw
.
=
∂ψ

∂w′
(x̄, 0, 0).

In particular, the termψwWt+1 reveals the role of the shock vector
in this recursive representation. Recall that we have presumed

6 As argued by Lombardo (2010), this approach is computationally very similar
to the pruning approach described by Kim et al. (2008) or Andreasen et al. (2010).
7 Conceptually, this approach is distinct from the approach often taken in solving

dynamic stochastic general equilibrium models. The common practice is to a
compute a joint expansion in q and state vector x around zero and x̄ respectively
in approximating the one-period state dynamics. This approach often results
in approximating processes that are not globally stable, which is problematic
for our calculations. We avoid this problem by computing an expansion of the
stochastic process solutions in q alone, which allows us to impose stationarity on
the approximating solution. In conjunction with the more common approach, the
method of ‘‘pruning’’ has been suggested as an ad hoc way to induce stochastic
stability, and we suspect that it will give similar answers for many applications.
See Lombardo (2010) for further discussion.



J. Borovička, L.P. Hansen / Journal of Econometrics 183 (2014) 67–90 75
that x̄ has been chosen so that ψx has stable eigenvalues. Thus
the first derivative evolves as a Gaussian vector autoregression. It
can be expressed as an infinite moving average of the history of
shocks, which restricts the process to be stationary. The first-order
approximation to the original process is:
Xt ≈ x̄ + qX1,t .

In particular, the approximating process on the right-hand side has
x̄ + q(I − ψx)

−1ψq as its unconditional mean.
In many applications, the first-derivative process X1,· will have

unconditional mean zero, ψq = 0. This includes a large class of
models solved using the familiar log approximation techniques,
widely used in macroeconomic modeling. This applies to the
example economywe consider in Section 7. In Section 5we suggest
an alternative approach motivated by models in which economic
agents have a concern for model misspecification. This approach,
when applied to economies with production, results in a ψq ≠ 0.

We compute the pathwise second derivative with respect to q
recursively by differentiating the recursion for the first derivative.
As a consequence, the second derivative has the recursive repre-
sentation:
X2,t+1 = ψqq + 2


ψxqX1,t + ψwqWt+1


+ψxX2,t + ψxx


X1,t ⊗ X1,t


+ 2ψxw


X1,t ⊗ Wt+1


+ψww (Wt+1 ⊗ Wt+1) (22)

where matrices ψij denote the second-order derivatives of ψ
evaluated at (x̄, 0, 0) and formed using the construction of the
derivative matrices described in Appendix A.2. As noted by
Schmitt-Grohé and Uribe (2004), the mixed second-order deriva-
tives ψxq and ψwq are often zero using second-order refinements
to the familiar log approximation methods.

The second-derivative process X2,· evolves as a stable recursion
that feeds back on itself and depends on the first derivative process.
We have already argued that the first derivative process X1,t can be
constructed as a linear function of the infinite history of the shocks.
Since the matrix ψx has stable eigenvalues, X2,t can be expressed
as a linear–quadratic function of this same shock history. Since
there are no feedback effects from X2,t to X1,t+1, the joint process
X1,·, X2,·


constructed in this manner is necessarily stationary.

With this second-order adjustment, we approximate Xt as

Xt ≈ x̄ + qX1,t +
q2

2
X2,t .

When using this approach we replace Xt with these three compo-
nents, thus increasing the number of state variables. Since X0,t is
invariant to t , we essentially double the number of state variables
by using X1,t and X2,t in place of Xt .

Further, the dynamic evolution for

X1,·, X2,·


becomes a spe-

cial case of the triangular system (28) given in Section 6. When
the shock vectorWt is a multivariate standard normal, we can uti-
lize results from Section 6 to produce exact formulas for condi-
tional expectations of exponentials of linear–quadratic functions in
X1,t , X2,t


. We exploit this construction in the subsequent subsec-

tion. For details on the derivation of the approximating formulas
see Appendix A.

4.2. Approximating an additive functional and its multiplicative
counterpart

Consider the approximation of a parameterized family of addi-
tive functionals with increments given by:
Yt+1(q)− Yt(q) = κ(Xt(q), qWt+1, q)

and an initial condition Y0(q) = 0. We use the function κ in con-
junctionwithq to parameterize implicitly a family of additive func-
tionals. We approximate the resulting additive functionals by

Yt ≈ Y0,t + qY1,t +
q2

2
Y2,t (23)
where each additive functional is initialized at zero and has sta-
tionary increments.

Following the steps of our approximation of X , the recursive
representation of the zeroth-order contribution to Y is

Y0,t+1 − Y0,t = κ(x̄, 0, 0) .= κ̄;

the first-order contribution is

Y1,t+1 − Y1,t = κq + κxX1,t + κwWt+1

where κx and κw are the respective first derivatives of κ evaluated
at (x̄, 0, 0); and the second-order contribution is

Y2,t+1 − Y2,t = κqq + 2

κxqX1,t + κwqWt+1


+ κxX2,t + κxx


X1,t ⊗ X1,t


+ 2κxw


X1,t ⊗ Wt+1


+ κww (Wt+1 ⊗ Wt+1)

where the κij’s are the second derivative matrices constructed as
in Appendix A.2. The resulting component additive functionals
are special cases of the additive functional given in (29) that we
introduced in Section 6.

Consider next the approximation of a multiplicative functional:

Mt = exp (Yt) .

The corresponding components in the second-order expansion of
Mt are

M0,t = exp (t κ̄)
M1,t = M0,tY1,t

M2,t = M0,t

Y1,t

2
+ M0,tY2,t .

Since Y has stationary increments constructed from Xt and
Wt+1, errors in approximating X and κ may accumulate when we
extend the horizon t . Thus caution is required for this and other
approximations to additive functionals and their multiplicative
counterparts. Inwhat followswewill be approximating elasticities
computed as conditional expectations of multiplicative function-
als that scale the shock vector or functions of the state vector.
Previously, we have argued that the nonstationary martingale
component of multiplicative functionals can be absorbed conve-
niently into a change of measure. Thus for our purposes, this prob-
lem of approximation of a multiplicative functional is essentially
equivalent to the problem of approximating a change in measure.
Since our elasticities are measured per unit of time, the potential
accumulation of errors is at least partly offset by this scaling. In our
applicationswewill perform some ad hoc checks, but such approx-
imation issues warrant further investigation.

4.3. Approximating shock elasticities

We consider two alternative approaches to approximating
shock elasticities of the form:

ε(x, t) = αh(x) ·
E [MtW1 | X0 = x]
E [Mt | X0 = x]

. (24)

Recall that we produced this formula by localizing the risk expo-
sure and computing a (logarithmic) derivative.

4.3.1. Approach 1: approximation of elasticity functions
Our first approach is a direct extension of the perturbation

method just applied. We will show how to construct a second-
order approximation to the shock elasticity function of the form

ε(X0, t) ≈ ε0(t)+ qε1(t)+
q2

2
ε2(X1,0, X2,0, t)

where only the second-order component is state-dependent. First,
observe that the zeroth-order approximation is

ε0(t) = 0



76 J. Borovička, L.P. Hansen / Journal of Econometrics 183 (2014) 67–90
because the zeroth-order contribution in the numerator of (24) is
E [exp(t κ̄)W1|X0 = x] = 0.
This result replicates the well-known fact that first-order pertur-
bations of a smooth deterministic system do not lead to any com-
pensation for risk exposure.

The first-order approximation is:
ε1(t) = αh(x̄) · E


Y1,tW1 | F0


= αh(x̄) ·


t−1
j=1

κx (ψx)
j−1 ψw + κw

′

which is state-independent. This approximation shows the explicit
link between the impulse response function for a log-linear ap-
proximation and the shock elasticity function.

The second-order adjustment to the approximation is:

ε2(X1,0, X2,0, t) = αh(x̄) ·


E


Y1,t
2 W1 + Y2,tW1 | F0


− 2E


Y1,tW1 | F0


E

Y1,t | F0

 
+

+ 2

∂αh

∂x′
(x̄)

X1,0 · E


Y1,tW1 | F0


.

This adjustment can be expressed as a function of X1,0 and X2,0
since (X1,·, X2,·) is Markov.

Notice that the second-order approximation can induce state
dependence in the shock elasticities. Often it is argued that higher
than second-order approximations are required to capture state
dependence in risk premia. Since we have already performed
a differentiation to construct an elasticity, the second-order
approximation of an elasticity implicitly include third-order terms.
Relatedly, in approximating elasticities using representation (24),
we have normalized the exposure to have a unit standard deviation
and this magnitude is held fixed even when q declines to zero. By
fixing the exposure we reduce the order of differentiation required
for state dependence to be exposed.

To illustrate these calculations, consider a special case in which
Yt+1 − Yt = κ(Xt , qWt+1, q) = β(Xt)+ qα(Xt) · Wt+1.

Then

ε(x, 1) = αh(x) ·
E [M1W1 | X0 = x]
E [M1 | X0 = x]

= qαh(x) · α(x).

Wemay use our previous formulas or perform a direct calculation
to show that
ε1(1) = αh(x̄) · α(x̄)

ε2(X1,0, X2,0, 1) = 2(X1,0)
′


∂αh

∂x′
(x̄)
′

α(x̄)

+ 2(X1,0)
′


∂α

∂x′
(x̄)
′

αh(x̄).

In comparison, suppose thatwe compute a risk premium for the
one-period cash flow
G1 = exp


βg(X0)+ qαg(X0) · W1


priced using the one-period stochastic discount factor:
S1 = exp [βs(X0)+ qαs(X0) · W1] .
The one-period risk premium (in logarithms) is:
log E [G1 | X0 = x] − log E [S1G1 | X0 = x]

+ log E [S1 | X0 = x] = (q)2αg(x) · αs(x).
The first two terms on the left when taken together give the log-
arithm of the expected one period return, and the negative of the
third term is an adjustment for the risk-free rate. Since we scaled
the cash flow exposure by q, the risk premium scales in q2 and the
second-order approximation to this premium will be constant in
contrast to our shock elasticities.
4.3.2. Approach 2: exact elasticities under approximate dynamics
As an alternative approach, we exploit the fact that the second-

order approximation is a special case of the convenient functional
form that we discussed in Section 6. This allows us to compute
elasticities using the quasi-analytical formulaswedescribed in that
section. With this second approach, we calculate approximating
stochastic growth and discounting functionals and then use these
to represent arbitrage-free pricing. This second approach leads us
to include some (but not all) third-order terms in q as we now
illustrate.

Recall that in the example just considered, we approximated
the one-period shock elasticity as

ε(x, 1) = qαh(x) · α(x).

With this second approach, we obtain

ε(x, 1) ≈ q


αh(x̄)+ q

∂αh

∂x′
(x̄)X1,0


·


α(x̄)+ q

∂α

∂x′
(x̄)X1,0


.

The q and q2 terms agree with the outcome of our first approach,
but we now include an additional third-order term in q. Both ap-
proaches are straightforward to implement and can be compared.

There are applications where it is natural to make the pertur-
bation vector αh (x) depend on x, for example, when calculating
shock elasticities in models with stochastic volatility. However, in
line with the literature on impulse response functions, αh (x) will
often be chosen to be a constant vector of zeros with a single one.
In this case, both notions of the second-order approximation of a
shock elasticity function coincide.

4.4. Approximating partial shock elasticities

In Section 2.5 we defined the partial shock elasticity function
as a way to explore alternative transmission mechanisms and the
impact of introducing new shocks. We may either compute direct
expansions or we may use the second-order expansion in q as a
starting point. The formulas in Section 2.5 are directly applicable
to these, except that we must compute the initializations:X1,1 = ψw(x,W1, 0, 0)Y1,1 =κw(x,W1, 0, 0).

We may approximate these initial conditions by constructing a
joint expansion based on scaling Wt+1 by q and qW̃ and including
first-order terms in q. This allows us to exploit the analytical
tractability of the convenient functional form in Section 6.

In Appendix B.3, we show that the first-order expansion in r of
the partial elasticity functionε(X0, t) ≈ε0(t)+ qε1(X1,0, t)

corresponds to the second-order expansion of the shock elasticity
function for appropriately chosen shock configurations. The
differentiation in q that we used to construct the partial elasticity
(11) implies that the partial elasticity function is nonzero already
in its zeroth-order:

ε0(t) = α(x̄) ·


t−1
j=1

κx ψx
j−1 ψw +κw′

where the derivative matrices are evaluated at the deterministic
steady state (x̄, 0, 0, 0).

Observe thatε0(t) is linear in the partial derivatives with re-
spect to W evaluated at the deterministic steady state, which is
also true for the higher-order terms in the expansion ofε(x, t). This
illustrates why partial elasticities decompose additively in shock
configurations, as we documented in the ‘interesting special case’
in Section 2.5. We utilize this additive decomposition in Section 7
to quantify the contribution of different shock propagation chan-
nels to shock elasticities in an example economy.
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4.5. Equilibrium conditions

In our discussion for pedagogical simplicity we took as a
starting point the Markov representation for the law of motion
(20). In economic applications, this law of motion is expressed
in terms of equilibrium conditions that involve conditional
expectations of state and co-state variables. Using the perturbation
methods described in Judd (1998), we may compute the necessary
derivatives at the deterministic steady state without explicitly
computing the function ψ in advance. As in our calculations
there is a convenient recursive structure to the derivatives in
which higher-order derivatives can be built easily from the lower-
order counterparts. The requisite derivatives can be constructed
sequentially, order by order.

4.6. Related approaches

There also exist ad-hoc approaches which mix orders of ap-
proximation for different components of themodel or state vector.
The aim of these methods is to improve the precision of the ap-
proximation along specific dimensions of interest, while retaining
tractability in the computation of the derivatives of the function
ψ . Justiniano and Primiceri (2008) use a first-order approximation
but augment the solution with heteroskedastic innovations. Be-
nigno et al. (2010) study second-order approximations for the en-
dogenous state variables inwhich exogenous state variables follow
a conditionally linear Markov process. Malkhozov and Shamloo
(2011) combine a first-order perturbation with heteroskedasticity
in the shocks to the exogenous process and corrections for the vari-
ance of future shocks. These solutionmethods are designed to pro-
duce nontrivial roles for stochastic volatility in the solution of the
model and in the pricing of exposure to risk. The approach of Be-
nigno et al. (2010) or Malkhozov and Shamloo (2011) gives alter-
native ways to construct the functional form used in Section 6.

5. Recursive and robust utility investors

In this section we contrast two preference specifications which
share some common features but can lead to different approaches
for local approximation. The first preference specification is the
recursive utility of Kreps and Porteus (1978). By design, this specifi-
cation avoids presuming that investors reduce intertemporal, com-
pound consumption lotteries. Instead investorsmay care about the
intertemporal composition of risk. As an alternative, we consider
an investor whose preferences are influenced by his concern for
robustness, which leads him to evaluate his utility under alterna-
tive distributions and checking for sensitivity.

5.1. Recursive preferences and the robust utility interpretation

We follow Epstein and Zin (1989) and others by using a homo-
geneous aggregator inmodeling recursive preferences in the study
of asset pricing implications. For simplicity we focus on the special
case in which investors’ preferences exhibit a unitary elasticity of
intertemporal substitution. In this case the continuation value pro-
cess satisfies the forward recursion:

log Vt = [1 − exp(−δ)] log Ct +
exp(−δ)
1 − γ

log E

(Vt+1)

1−γ
|Ft

.

(25)

where Vt is the date t continuation value associated with the con-
sumption process {Ct+j : j = 0, 1, . . .}. The parameter δ is the
subjective rate of discount and γ is used for making a risk adjust-
ment in the continuation value. The limiting γ = 1 version gives
the separable logarithmic utility. We focus on the case in which
γ > 1. As we will see, the forward-looking nature of the continu-
ation value process can amplify the role of beliefs and uncertainty
about the future in asset valuation.

We suppose that the equilibrium consumption process from an
economicmodel is amultiplicative functional of the type described
previously. For numerical convenience, subtract log Ct from both
sides of this equation:

log Vt − log Ct =
exp(−δ)
1 − γ

log E


Vt+1

Ct

1−γ

| Ft


,

or

logUt =
exp(−δ)
1 − γ

log E (exp [(1 − γ ) logUt+1

+ (1 − γ )(log Ct+1 − log Ct)] | Ft)

where logUt = log Vt − log Ct . The stochastic discount factor
process is given by the recursion:

St+1

St
= exp(−δ)


Ct

Ct+1


(Vt+1)

1−γ

E

(Vt+1)

1−γ
| Ft


= exp(−δ)


Ct

Ct+1

 (Ut+1)
1−γ


Ct+1
Ct

1−γ
E

(Ut+1)

1−γ


Ct+1
Ct

1−γ
| Ft

 , (26)

which gives the one-period intertemporal marginal rate of substi-
tution for a recursive utility investor. When γ = 1 the expres-
sion for the stochastic discount factor simplifies and reveals the
intertemporal marginal rate of substitution for discounted loga-
rithmic utility. When γ > 1, there is a potentially important
contribution from the forward-looking continuation value process
reflected in Vt+1 or Ut+1.

Allowing the parameter γ in the recursive utility specification
to be large has become common in the macro-asset pricing lit-
erature. For this reason we are led to consider motivations other
than risk aversion for large values of this parameter. Anderson et al.
(2003) extend the literature on risk-sensitive control by Jacobson
(1973); Whittle (1990) and others and provide a ‘‘concern for ro-
bustness’’ interpretation of the utility recursion (25). Under this in-
terpretation the decisionmaker explores alternative specifications
of the transition dynamics as part of the decision-making process.
This yields a substantially different interpretation of the utility re-
cursion and the parameter γ . An outcome of this robustness as-
sessment is an exponentially-tilted worst case model (subject to
penalization) in which the term

St+1St ≡
(Vt+1)

1−γ

E

(Vt+1)

1−γ
| Ft

 =

(Ut+1)
1−γ


Ct+1
Ct

1−γ
E

(Ut+1)

1−γ


Ct+1
Ct

1−γ
| Ft


in the stochastic discount factor ratio (26) induces an alternative
specification of the transitional dynamics used to implement ro-
bustness. Notice that this term has conditional expectation equal
to one, and as a consequence it implies an alternative density for
the shock vectorWt+1 conditioned on date t information.

5.2. Expansion approaches

Since an essential ingredient for the evolution of the logarithm
of the stochastic discount factor process is the continuation value
process, as a precursor to approximating the stochastic discount
factor process we first approximate logU . As previously, we seek
an approximation of the form:

logUt ≈ logU0,t + q logU1,t +
q2

2
logU2,t

where the terms on the right-hand side are themselves compo-
nents of stationary processes.Wewill construct the approximation
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of the continuation value as a function of a corresponding approxi-
mation of the logarithm of the consumption process log C given by
Eq. (23). For ease of comparison, we will hold fixed the second-
order approximation for consumption as we explore two differ-
ent approaches. In a production economy the approximation of the
consumption processwill itself change aswe alter the specification
of preferences.

The typical approach that is valid for the recursive utility speci-
fication dictates to treat both the scaled continuation value process
U as well as the consumption process C as functions of the pertur-
bation parameter q:

logUt (q) =
exp(−δ)
1 − γ

log E (exp [(1 − γ ) (logUt+1 (q)

+ log Ct+1 (q)− log Ct (q))] | Ft) .

The zeroth order expansion implies a constant contribution

logU0,t ≡ ū =
exp (−δ)

1 − exp (−δ)


log C0,t+1 − log C0,t


(27)

and the higher-order terms can be represented recursively as
logU1,t = exp(−δ)E


logU1,t+1 + log C1,t+1 − log C1,t | Ft


logU2,t = exp(−δ)E


logU2,t+1 + log C2,t+1 − log C2,t | Ft


+ (1 − γ ) exp(−δ)E


logU1,t+1 + log C1,t+1 − log C1,t

2
| Ft


− (1 − γ ) exp(−δ)


E

logU1,t+1 + log C1,t+1 − log C1,t | Ft

2
and can be solved forward. This approach assures that both logU
and log C will conform functional forms introduced when con-
structing expansions of additive functionals in Section 4.2. Observe
that only the second-order term logU2,· in the expansion of the
continuation value depends on the risk aversion parameter γ , and
only scales the first-order terms.8

Under the recursive utility preferences, the terms in the expan-
sion of the stochastic discount factor are linear in continuation val-
ues and changes in consumption:
log S0,t+1 − log S0,t = −δ + log C0,t − log C0,t+1

log S1,t+1 − log S1,t = log C1,t − log C1,t+1

+ (1 − γ )

logU1,t+1 + log C1,t+1 − log C1,t − exp (δ) logU1,t


log S2,t+1 − log S2,t = log C2,t − log C2,t+1

+ (1 − γ )

logU2,t+1 + log C2,t+1 − log C2,t

− (1 − γ ) exp (δ) logU2,t

.

6. Convenient functional form

In Sections 4 and 5,we developed second-order approximations
of dynamic macroeconomic models and the resulting shock elas-
ticities. We now introduce a more general exponential–quadratic
framework that nests these approximate solutions and that gener-
ates quasi-analytical solutions for the shock elasticities. The exact
mapping from the second-order approximation to this framework
together with detailed computations is provided in Appendix A.

Consider the following triangular state vector system:
X1,t+1 = Θ10 +Θ11X1,t +Λ10Wt+1

X2,t+1 = Θ20 +Θ21X1,t +Θ22X2,t +Θ23

X1,t ⊗ X1,t


+Λ20Wt+1 +Λ21


X1,t ⊗ Wt+1


+Λ22 (Wt+1 ⊗ Wt+1) . (28)

8 In related work we derive an alternative approximation for stochastic discount
factors motivated by a concern for robustness and calibrations of that concern. This
change in perspective alters the expansion in a substantive way by allowing for the
robustness concern to present in lower order terms.
Such a system allows for stochastic volatility, and we restrict the
matrices Θ11 and Θ22 to have stable eigenvalues. A comparison
with Eqs. (21) and (22) reveals that the dynamics of X1 and X2
capture the laws of motion of the first and second derivatives of
the state vector X introduced in Section 4. The additive functionals
that interest us satisfy
Yt+1 − Yt = Γ0 + Γ1X1,t + Γ2X2,t + Γ3


X1,t ⊗ X1,t


+Ψ0Wt+1 + Ψ1


X1,t ⊗ Wt+1


+Ψ2 (Wt+1 ⊗ Wt+1) . (29)

In what follows we use a 1 × k2 vector Ψ to construct a k × k
symmetric matrix sym


matk,k (Ψ )


such that9

w′

sym


matk,k (Ψ )


w = Ψ (w ⊗ w) .

This representation will be valuable in some of the computations
that follow. We use additive functionals to represent stochastic
growth via a technology shock process or aggregate consumption,
and to represent stochastic discounting used in representing asset
values. This setup is rich enough to accommodate stochastic
volatility, which has been featured in the asset pricing literature
and to a lesser extent in the macroeconomics literature.

A virtue of parameterization (28)–(29) is that it gives quasi-
analytical formulas for our dynamic elasticities. The impliedmodel
of the stochastic discount factor has been used in a variety of
reduced-form asset pricing models. Such calculations are free of
any approximation errors to the dynamic system (28)–(29) and,
as a consequence, ignore the possibility that approximation errors
compound and might become more prominent as we extend the
investment or forecast horizon t . On the other hand, we will use
an approximation to deduce this dynamical system, and we have
research in progress that explores the implications of approxima-
tion errors in the computations that interest us.

We illustrate the convenience of this functional form by cal-
culating the logarithms of conditional expectations of multiplica-
tive functionals of the form (29). Consider a function that is
linear/quadratic in x = (x′

1, x
′

2)
′:

log f (x) = Φ0 + Φ1x1 + Φ2x2 + Φ3 (x1 ⊗ x1) .
Then conditional expectations are of the form:

log E


Mt+1

Mt


f (Xt+1) | Xt = x


= log E [exp (Yt+1 − Yt) f (Xt+1) | Xt = x]
= Φ∗

0 + Φ∗

1 x1 + Φ∗

2 x2 + Φ∗

3 (x1 ⊗ x1)

= log f ∗(x) (30)
where the formulas for Φ∗

i , i = 0, . . . , 3 are given in Appendix A.
This calculation maps a function f into another function f ∗ with
the same functional form. Our multi-period calculations exploit
this link. For instance, repeating these calculations compounds
stochastic growth or discounting. Moreover, we may exploit the
recursive Markov construction in (30) initiated with f (x) = 1 to
obtain:
log E [Mt | X0 = x] = Φ∗

0,t + Φ∗

1,tx1 + Φ∗

2,tx2 + Φ∗

3,t (x1 ⊗ x1)
for appropriate choices ofΦ∗

i,t .

6.1. Shock elasticities

To compute shock elasticities given in (1) under the convenient
functional form, we construct:

9 In this formula matk,k (Ψ ) converts a vector into a k × k matrix and the sym
operator transforms this square matrix into a symmetric matrix by averaging the
matrix and its transpose. Appendix A introduces convenient notation for the algebra
underlying the calculations in this and subsequent sections.
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E [MtW1 | X0 = x]
E [Mt | X0 = x]

=

E

M1E


Mt
M1

| X1


W1 | X0 = x


E

M1E


Mt
M1

| X1


| X0 = x

 .

Notice that the random variable:

L1,t =

M1E


Mt
M1

| X1


E

M1E


Mt
M1

| X1


| X0 = x


has conditional expectation one. Multiplying this positive random
variable by W1 and taking expectations is equivalent to changing
the conditional probability distribution and evaluating the condi-
tional expectation ofW1 under this change ofmeasure. Then under
the transformedmeasure, using a complete-the-squares argument
wemay show thatW1 remains normally distributed with a covari-
ance matrix:Σt =


Ik − 2 sym


matk,k


Ψ2 + Φ∗

2,t−1Λ22

+ Φ∗

3,t−1 (Λ10 ⊗Λ10)
−1

where Ik is the identity matrix of dimension k.10 We suppose that
this matrix is positive definite. The conditional mean vector forW1
under the change of measure is:

Ẽ [W1|X0 = x] = Σt

µt,0 + µt,1x1


,

where Ẽ is the expectation under the change of measure and the
coefficients µt,0 and µt,1 are given in Appendix B.

Thus the shock elasticity is given by:

ε (x, t) = αh(x) · E

L1,tW1 | X0 = x


= αh(x)′Σt


µt,0 + µt,1x1


.

The shock elasticity function in this environment depends on the
first component, x1, of the state vector. Recall from (28) that this
component has linear dynamics. The coefficient matrices for the
evolution of the second component, x2, neverthelessmatter for the
shock elasticities even though these elasticities do not depend on
this component of the state vector.

6.2. Entropy increments

The convenient functional form (28)–(29) also provides a
tractable formula for the entropy components. Observe that
ζ (x, t) = −E


log L1,t |X0 = x


.

Consistent with our previous calculations, L1,t is the likelihood
ratio built from two normal densities for the shock vector: a
multivariate normal density for the altered distribution and a
multivariate standard normal density. A consequence of this
construction is that the negative of the resulting expected log-
likelihood satisfies:

ζ (x, t) =
1
2

E [W1|X0 = x]
′ Σt

−1 E [W1|X0 = x]


+ log |Σt | + trace
Σ −1

t


− k


.

Thus the mean distortionE [W1|X0 = x] is a critical input into both
the shock elasticities and the entropy increments.11

7. Application: intangible risk

We use the model of Ai et al. (2012) to illustrate our method-
ology by analyzing shock elasticities associated with consumption

10 This formula uses the result that (Λ10W1) ⊗ (Λ10W1) = (Λ10 ⊗Λ10) (W1 ⊗

W1).
11 In a continuous-time limit, the only term that will remain is the counterpart to
the quadratic form in the conditional mean distortion for the shock.
and capital dynamics in a model with two types of capital. The two
capital stocks face different risk exposures, which leads to differ-
ences in their valuation.Wedecompose shock elasticities to under-
stand the mechanism how risk propagates in the model economy.

Themodel ismotivated by an extensive literature that confronts
challenges in measuring capital. In this literature, one component
of the capital stock, tangible capital, is measured while another
one, intangible capital, is not. In what follows we will refer to
the tangible component as physical capital. Intangible capital is
introduced to account fully for firm values. For instance, if firms
accumulate large quantities of unmeasured productive intangible
capital, their market valuation will differ from valuation based on
the replacement value of the stock of physical capital. Hall (2000,
2001) uses this argument to understand the secular movement in
asset values relative to measures of capital. Similarly, McGrattan
and Prescott (2010a,b) argue that accounting properly for the
accumulation of intangible capital explains the heterogeneity in
measured returns and the observed macroeconomic dynamics
including the period of the 1990s.12 Other literature focused on
specific types of intangible capital with observable counterparts
in the data. Atkeson and Kehoe (2005) construct a model of
organization capital motivated by the life cycle of production
plants. Eisfeldt and Papanikolaou (2013) use expenditures on
organization capital as an observablemeasure of intangible capital,
while Rudanko and Gourio (2013) analyze the role of customer
capital.

Following Hansen et al. (2005) we consider a related question
by exploring risk-based explanations for the heterogeneity in the
returns to physical and intangible capital. Hansen et al. (2005)
use the return heterogeneity documented by Fama and French
(1992, 1996) to motivate studies of the risk exposure differences
between returns on tangible and intangible capital. Among other
things, Fama and French (1992, 1996) show that firms with high
book-to-market (B/M) ratios (value firms) have systematically
higher expected returns compared to their low B/M counterparts
(growth firms).13 Ai et al. (2012) build a stylized model to
investigate formally the link between the value premium featured
by Fama and French and the differential contribution of intangible
capital to what are classified as growth or value firms. In the Ai
et al. (2012) model growth firms are those with relatively large
amounts of intangible capital, are less exposed to aggregate risk,
and therefore earn lower expected returns.

7.1. The model

Weuse the aggregate version of the Ai et al. (2012)model inclu-
sive of adjustment costs. Ai et al. (2012) suggest a more primitive
starting point meant to provide microfoundations for the model.
We use shock elasticities to characterize the valuation of mea-
sured and intangible capital stocks. Parameters and specification of
some of the functional forms can be found in Appendix C. While a
more explicit use of econometric methods to the estimation of this
model is a welcome extension, we find it useful to exposit proper-
ties of the model as given in the Ai et al. (2012) paper.

7.1.1. Technology
The economy consists of two sectors. Final output is produced

using physical capital K and labor, and allocated to consumption C

12 This literature implicitly confronts the potential fragility in asset values because
to the extent tangible capital is used to explain increases in asset values, it must also
account for large declines in these values.
13 For related empirical motivation see the cross-sectional heterogeneity in cash-
flow risk exposures of growth and value firms documented by Bansal et al. (2005)
and Hansen et al. (2008).
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and investment into physical capital I and intangible capital I∗:

Ct + It + I∗t = (Kt)
ν (Zt)1−ν .

The model abstracts from endogenous labor supply and instead
normalizes the labor input to be one. The technology process Z is
specified exogenously. To produce new capital, investment I must
be combined with the stock of intangible capital K ∗

Kt+1 = (1 − λ) Kt +


Z∗

t+1

Z∗
t


G

It , K ∗

t


.

The investment-specific technology process Z∗ is also specified
exogenously. In the process of capital accumulationG


It , K ∗

t


units

of intangible capital are depleted in the production of one unit
of new physical capital. With this adjustment, intangible capital
accumulates in accordance with:

K ∗

t+1 =

1 − λ∗

 
K ∗

t − G

It , K ∗

t


+ H


I∗t , Kt


.

The functions G and H used to model adjustment costs are both
concave.

7.1.2. Exogenous inputs
The technology processes Z and Z∗ evolve according to:

log Zt+1 − log Zt = Γ0 + Γ1Xt + ΨWt+1 (31)
log Z∗

t+1 − log Z∗

t = Γ ∗

0 + Γ ∗

1 Xt + Ψ ∗Wt+1

Xt+1 = Θ1Xt +ΛWt+1

where Xt andWt+1 are both two-dimensional. The first component
of the shock vector W is a direct shock to the growth rate of
technology Z , while the second component represents a long-
run risk shock to the expected growth rates. The persistence
in these expected growth rates is modeled using a first-order,
bivariate Markov process X . Correspondingly, Ψ and Ψ ∗ are two-
dimensional row vectors with a zero in their second columns, and
Λ is a two-dimensional squarematrixwith zeros in its first column.

The matrix Θ1 is a diagonal matrix with common diagonal en-
tries strictly less than one, and Λ has identical entries in the sec-
ond column. By design, the two components of X remain the same
when they have a common initialization. We include both compo-
nents to the state vector because we will consider perturbations of
the original dynamics (31) where the two components will have
distinct roles. Observe that the first component ofW impacts both
Z and Z∗. Moreover, we impose the restrictions

Ψ ∗
= −

1 − ν

ν
Ψ , Γ1 =


1 0


, Γ ∗

1 =


0 −

1 − ν

ν


.

Under the maintained restrictions,

Γ ∗

1 Xt + Ψ ∗Wt+1 = −


1 − ν

ν


(Γ1Xt + ΨWt+1)

and shocks thus have offsetting impacts on the technology pro-
cesses Z and Z∗. A positive shock movement increases the growth
rate in the neutral technology process Z but simultaneously de-
creases the investment-specific process Z∗. Ai et al. (2012) inter-
pret Z∗ as a wedge that temporarily mitigates the risk exposure
of newly installed capital. In summary, there are two underlying
shocks whose impacts we seek to characterize: a direct shock and
a long-run risk shock.

To understand better the shock transmission mechanisms in
this model, we also consider a less rigid specification by introduc-
ing an independent shock vector Wt+1 that has four components:

log Zt+1(q)− log Zt(q) = Γ0 + Γ1Xt(q)+ ΨWt+1 + qΨ Wt+1

log Z∗

t+1(q)− log Z∗

t (q) = Γ ∗

0 + Γ ∗

1 Xt(q)+ Ψ ∗Wt+1 + qΨ̃ ∗Wt+1

Xt+1(q) = Θ1Xt(q)+ΛWt+1 + qΛWt+1
whereΨ =
√
2

Ψ 0


, Ψ ∗

=
√
2

0 Ψ


,

Λ =
√
2

Λ1 0
0 Λ1


and Λ1 is the first row (or the second row as they are the same)
of Λ. We construct Wt+1 in order to explore independent shocks
that impinge directly on each technology as well as independent
shocks that shift the predictable components to these technolo-
gies. The first two components of W only impact the neutral tech-
nology process Z while the remaining two components impact the
investment-specific technology process Z∗. We compute partial
elasticities by exploring small changes in the exposure to Wt+1 pa-
rameterized by q. By design, the constructed impact matrices forWt+1 satisfy:ΨΥ = Ψ , Ψ ∗Υ = Ψ ∗, ΛΥ = Λ

where

Υ =
1

√
2


I
I


.

Notice that Υ ′Υ = I . We impose these restrictions to ensure that
restrictions (14) and (15) given in Section 2.5 are satisfied.

7.1.3. Preferences
The model is closed by introducing a representative household

with recursive preferences of the Epstein and Zin (1989) type:

Vt =


[1 − exp (−δ)] (Ct)

1−ρ

+ exp (−δ) E

(Vt+1)

1−γ
| Ft

 1−ρ
1−γ

 1
1−ρ

. (32)

This specification is more general than the recursion considered in
Section 5 by allowing the elasticity of intertemporal substitution
ρ−1 to be different from one. We obtain Eq. (25) by taking the
limit as ρ → 1. The preference recursion (32) implies a stochastic
discount factor which is a generalization of expression (26):

St+1

St
= β


Ct+1

Ct

−ρ

 Vt+1
E

(Vt+1)

1−γ
| Ft

 1
1−γ

ρ−γ

.

The first-order conditions from a fictitious planner problem
then lead to recursive formulas for the (shadow) prices of existing
physical and intangible capital Q and Q ∗, respectively:

Qt = ν


Zt
Kt

1−ν

+ E

St+1

St


HK

I∗t , Kt


Q ∗

t+1 + (1 − λ)Qt+1


| Ft


Q ∗

t = E

St+1

St


Z∗

t+1

Z∗
t


GK∗


It , K ∗

t


Qt+1

+ (1 − λ∗)

1 − GK∗


It , K ∗

t


Q ∗

t+1


| Ft


.

This equation system can be solved forward to compute the prices
of the two capital stocks.14 The resulting solution will, at least
implicitly, use themulti-period stochastic discount factors tomake
risk adjustments in future time periods. Dividing both equations
by the right-hand side variables gives the pricing formula for one-
period returns to physical and intangible capital. The conditional
expectation of the one-period stochastic discount factor times the
one-period return is equal to one.

14 Alternative formulas can be obtained by looking at the first-order conditions for
investment.
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7.2. Dynare implementation

Following Ai et al. (2012), we solve the model using a second-
order perturbation around the deterministic steady state. We
provide online the Dynare code for the model, and the toolbox
that computes shock elasticities from the solution generated by
Dynare.15 The toolbox is general and can be employed to analyze
shock elasticities in conjunction with Dynare using only minor
modifications to the model files.16

We exploit Dynare to construct the equilibrium dynamics for
the increments of additive functionals that are of our interest.With
the characterization of the dynamics (28)–(29), we only need to
implement the elasticity formulas developed in Section 4.

7.3. Shock price and exposure dynamics

We use elasticities and partial elasticities to obtain a more
complete characterization of the equilibrium expected return het-
erogeneity. We analyze the dynamics of aggregate consumption
whichdetermines the characteristics of the stochastic discount fac-
tor, and the pricing implications for the two capital stocks.

7.3.1. Consumption price and exposure elasticities
We first consider the shock elasticities for the equilibrium

consumption process. To make comparisons to the literature on
long-run consumption risk, we use consumption as the growth
functional. The resulting elasticities are reported in Fig. 1.

The top left panel gives the shock-price elasticities. The flat
trajectories are familiar from our earlier analysis of consumption-
based models of the type suggested by Bansal and Yaron
(2004). See Hansen (2012) and Borovička et al. (2011). As is
shown in these two papers, with large specifications of the risk
aversion coefficient γ , a forward-looking martingale component
associated with the continuation value process dominates the
pricing implications. Expected future growth in consumption
is an important contributor to this martingale component. The
magnitudes of the shock-price elasticities reported in Fig. 1 are
about double of those reported in our earlier work.

There is a substantive difference in the structure of the Bansal
and Yaron (2004) and the Ai et al. (2012) models. Bansal and
Yaron (2004) specify directly predictability in the growth rates in
consumption whereas Ai et al. (2012) specify the predictability
in technology processes that are inputs into production. The
two models in fact produce very different implied predictability
for consumption, reflected in the shock-exposure elasticities. For
instance, the limiting shock-exposure elasticity for the shock to the
growth rates in technology reported in the top right panel of Fig. 1
is about double that implied by the Bansal and Yaron (2004)model.
Given the forward-looking role for continuation values in pricing,
the approximate doubling of the long-run responses also doubles
the entire trajectory of the shock-price elasticity function.

The direct empirical evidence for the long-run predictability
in consumption is weak, however. For instance, see Hansen et al.
(2008). This has led one of us to view long-run risk models
as models of sentiments (Hansen, 2012) and to explore related
models in which investors have skepticism about their model as

15 See https://files.nyu.edu/jb4457/public/software.html.
16 Dynare produces a full second-order approximation of the model solution as
in Schmitt-Grohé and Uribe (2004). This approximation is globally unstable, and
does not fit the convenient triangular structure introduced in Section 6. However,
we can apply the perturbationmethods from Section 4 to the second-order solution
itself. This step effectively doubles the number of state variables, generating
separate vectors of variables for the first- and second-order dynamics. This method
also corresponds to the algorithms used in Andreasen et al. (2010).
in Hansen (2007) and Hansen and Sargent (2010). Given the even
more prominent role of this forward-looking channel in the Ai
et al. (2012) model, it would be valuable either to reconsider the
evidence for predictability in growth using other macroeconomic
time series or to reduce the degree of the confidence that investors
have in the long-run risk model.17

Since the long-run risk shocks have a common impact on both
technology processes, we use partial elasticities to explore the
two channels of influence: (i) neutral technology channel and
(ii) investment-specific channel. As is evident from comparing the
panels in rows two and three, the neutral technology channel is
much more important for equilibrium consumption as reflected
by the larger exposure elasticities. This same channel dominates
pricing again with a flat trajectory. The investment-specific
channel has only a small and transitory impact on equilibrium
consumption dynamics, reflected in elasticities that start small
and decay quickly to zero. The partial shock-price elasticities for
the investment specific channel are also very small, although they
do not decay to zero due to the forward-looking channel of the
recursive preference specification.

Another difference between the model used by Bansal and
Yaron (2004) and that used by Ai et al. (2012) is that Bansal and
Yaron introduce stochastic volatility in consumption as an exoge-
nously specified process. There is no counterpart process in the
Ai et al. (2012) model, although stochastic volatility could be
generated endogenously by the nonlinearity in the equilibrium
evolution. Stochastic volatility would be manifested in the state
dependence of the shock elasticities. Fig. 1 shows that this endoge-
nous source is only noticeable for the partial elasticities associ-
ated with the investment channel and these elasticities are small
in magnitude.

7.3.2. Elasticities for capital and the associated prices
The Ai et al. (2012) model features differences in valuation

of physical and intangible capital. To understand what underlies
the differences, we report exposure elasticities for quantities and
prices of capital. Fig. 2 shows the differential exposures of the
two capital stocks, K and K ∗, to the underlying shocks, and Fig. 3
complements the analysis by depicting the exposures of the cor-
responding prices of capital, Q and Q ∗. The prices are of direct
interest, but they are also important components to returns to
holding capital over time.

The responses of physical capital (top left panel in Fig. 2) start
small and build up over time, as is typically the case in business
cycle models. The long-run responses of intangible capital (top
right panel) necessarily coincide with the positive responses for
physical capital but the short-run responses are very different
for both shocks. The exposure of intangible capital to the direct
shock to the technology processes is initially strongly negative
(beginning after a one-period delay), while the exposure elasticity
for the long-run risk shock provides a mirror image of the direct
shock elasticity in the short run. For the physical capital the short-
run exposure elasticities are slightly negative for both shocks but
then both eventually become positive and more pronounced.

The partial elasticities in the second and third rows of Fig. 2
show that the neutral technology shock channel dominates the
long-term responses for both capital stocks as might be expected.
The investment-specific channel is important for intangible capital
for the shorter investment horizons but not for the physical
capital stock. In fact, the investment-specific channel inhibits the
accumulation of physical capital after a positive shock because new
vintages of physical capital are temporarily less productive.

17 Hansen et al. (2008) feature corporate earnings but do not report findings for
other macroeconomic aggregates.

https://files.nyu.edu/jb4457/public/software.html


82 J. Borovička, L.P. Hansen / Journal of Econometrics 183 (2014) 67–90
Fig. 1. Shock elasticities for consumption. The left panels give the shock-price elasticities and the right panels give the shock-exposure elasticities. The top row shows
elasticities for alternative investment horizons in the original model. The second and third rows show the corresponding elasticities using the perturbed specification. The
second row features the transmission mechanism for neutral technology shocks, and the third row for investment-specific shocks. To capture the state dependence in the
elasticities, we report three quartiles.
Consider next the exposure elasticities for the prices of the
two types of capital reported in Fig. 3. Overall these exposure
elasticities are much smaller than the corresponding quantity
elasticities and are only transitory because prices of capital in
this model are stationary. The important differences are in the
elasticities to the long-run risk shock. They are initially negative
for the price of intangible capital but substantially positive for the
physical capital stock. Recall that intangible capital is expected to
increase in response to such a shock in contrast to the physical
capital stock, but the physical capital stock becomesmore valuable.
From the partial elasticity plots it is evident that the important
differences are accounted for by the investment-specific channel.

Overall, the partial elasticities illuminate the interaction be-
tween the quantity and price dynamics for the two types of capital.
While the neutral technology shock channel dominates the long-
term quantity responses for both capital stocks, the investment-
specific channel plays a crucial role in the short-run dynamics after
a long-run risk shock. This latter channel drives both the quantity
response of intangible capital, and the price response of physical
capital.

7.3.3. Exposure elasticities for cumulative returns
The Ai et al. (2012) model generates a large expected return

on physical capital, much larger than for intangible capital. To
enhance our understanding of the differences in the risk premia
associated with the two capital investments, we study the shock-
exposure elasticities of their associated excess returns. An n-period
return is a cash flow delivered in n periods for a unitary initial
investment. Fig. 4 plots the shock-exposure elasticities of the
cumulative excess returns on physical and intangible capital and
their decomposition into partial elasticities.

The elasticities of the cumulative excess returns are flat. The
excess return exposures for the physical capital are essentially the
same for both shocks, but they are substantially different for the
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Fig. 2. Shock-exposure elasticities for physical and intangible capital. The left panels give the elasticities for physical capital and the right panels give the elasticities for
intangible capital. The top row shows elasticities for alternative investment horizons in the original model. The second and third rows show the corresponding partial
elasticities using the perturbed specification. The second row features the transmission mechanism for neutral technology shocks, and the third row for investment-specific
shocks. To capture the state dependence in the elasticities, we report three quartiles.
excess returns on intangible capital. The exposure elasticity for the
long-run risk shock is slightly negative for the intangible capital
excess return whereas this exposure elasticity is much bigger in
magnitude and positive for the direct shock. Recall that the shock-
price elasticities are much larger for the long-run risk shock and
hence investors in the physical capital are compensatedmore than
investors in intangible capital. The negative exposure elasticity
of intangible capital to the long-run risk shock makes intangible
capital a good hedge against such a shock and this is reflected in
equilibrium expected returns.

The partial elasticities are particularly revealing for the excess
return to the physical capital asset. The primary channel for the
large exposure to the direct shock is through the impact of the
neutral technology process, while the primary channel for the
long-run risk shock is through the impact of the investment-
specific technology. Consider the partial elasticities for the long-
run risk shock. The impact on the expected returns via the neutral
technology process Z is very small. This same impact via the
investment-specific technology Z∗ is large for the physical capital
stock but small and actually negative for the intangible capital
stock for the reasons given in our discussion of exposure elasticities
for the quantities and prices of capital. This investment-specific
channel is the critical one for generating large expected returns for
physical capital vis-à-vis intangible capital.

In summary, distinguishing price from exposure elasticities and
exploring separately channelswith two technological inputs reveal
key features underlying the differences in risk premia between
physical and intangible capital investments. As in the earlier
literature, shocks to long-run risk are central to understanding
these differences. The partial elasticities for the shock prices are
large for the neutral technology process. Exposure to the shock
to long-run risk in this technology requires compensation. At the
same time, excess returns to physical capital have large exposure
elasticities to the long-run risk shocks to the investment-specific
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Fig. 3. Shock-exposure elasticities for the prices of physical and intangible capital. The left panels give the elasticities for the price of physical capital Q and the right panels
give the elasticities for the price of intangible capital Q ∗ . The top row shows elasticities for alternative investment horizons in the original model. The second and third rows
show the corresponding partial elasticities using the perturbed specification. The second row features the transmission mechanism for neutral technology shocks, and the
third row for investment-specific shocks. To capture the state dependence in the elasticities, we report three quartiles.
technology process. The large premium for returns to physical
capital are generated by the high (in fact perfect) correlation
between the two long-run risk shocks.

8. Conclusion and directions for further research

In this paper, we build on our previous work in Hansen and
Scheinkman (2012); Borovička et al. (2011), and Hansen (2012) by
developing tractable ways to measure the sensitivity of expected
cash-flows with macroeconomic components and the associated
expected returns to structural shocks. These shock elasticities
measure prices and quantities of risk in macro-asset pricing mod-
els. They constitute fundamental building blocks for dynamic value
decompositions within stochastic equilibrium models. We show
that the same approach can be used to deconstruct dynamic
entropy measures analyzed in Alvarez and Jermann (2005) and
Backus et al. (2011) by taking account of the role of conditioning
information for alternative investment horizons.

This paper focuses on tractable implementability in contrast
to Hansen and Scheinkman (2012), who provide a more rigorous
basis for some of our calculations by taking continuous-time lim-
its. We show that a second-order perturbation approach to model
solution along the lines of Holmes (1995) and Lombardo (2010) re-
sults in tractable closed-form formulas for the shock elasticities.
To support the use of our methodology, we provide a set of Mat-
lab codes18 that can be integrated with Dynare/Dynare++ and
generate the shock elasticities for second-order solutions to dy-
namic macroeconomic models. It remains to provide more rigor
to some of these approximations and to explore other more global
approaches to approximation.

18 See https://files.nyu.edu/jb4457/public/software.html.

https://files.nyu.edu/jb4457/public/software.html
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Fig. 4. Shock exposure elasticities for cumulative excess returns on physical and intangible capital in the Ai et al. (2012) model. The left column gives the elasticities and
partial elasticities for physical capital, the right column for intangible capital. The top row shows elasticities for alternative investment horizons in the original model.
The second and third rows show the corresponding partial elasticities using the perturbed specification. The second row features the transmission mechanism for neutral
technology shocks, and the third row for investment-specific shocks. To capture the state dependence in the elasticities, we report three quartiles.
This paper also sketches an approach for constructing low-order
expansions applicable to economies in which either private agents
or policy makers have a concern for robustness. Our emphasis is to
show how robustness can have consequences for even first-order
approximations to continuation values and for initial terms in ex-
pansions for stochastic discount factors and the resulting elastic-
ities. We suspect this same approach will also provide additional
insights into the study and design of robust macroeconomic policy
rules.

In this paper we used shock elasticities as interpretive diagnos-
tics for comparing the asset valuation implications of alternative
macroeconomicmodels and for understanding better the channels
by which exogenous shocks influence equilibrium outcomes. We
have not described formally shock identification and statistical un-
certainty in our measurements, but we should be able to build on
the related macroeconomic literature on identification and infer-
ence for impulse response functions. Also methods like the ones
we describe here should provide useful complements for the re-
cent empirical work by Binsbergen et al. (2012) and others on the
decomposition of cash flow contributions to equity returns for al-
ternative investment horizons.
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Appendix A. Conditional expectations of multiplicative func-
tionals

Let X = (X ′

1, X
′

2)
′ be a 2n × 1 vector of states, W ∼ N(0, I) a

k × 1 vector of independent Gaussian shocks, and Ft the filtration



86 J. Borovička, L.P. Hansen / Journal of Econometrics 183 (2014) 67–90
generated by (X0,W1, . . . ,Wt). In this appendix, we show that
given the law of motion from Eq. (28)

X1,t+1 = Θ10 +Θ11X1,t +Λ10Wt+1 (33)

X2,t+1 = Θ20 +Θ21X1,t +Θ22X2,t +Θ23

X1,t ⊗ X1,t


+Λ20Wt+1 +Λ21


X1,t ⊗ Wt+1


+Λ22 (Wt+1 ⊗ Wt+1)

and a multiplicative functional Mt = exp (Yt) whose additive
increment is given in Eq. (29):

Yt+1 − Yt = Γ0 + Γ1X1,t + Γ2X2,t + Γ3

X1,t ⊗ X1,t


+Ψ0Wt+1 + Ψ1


X1,t ⊗ W1,t+1


+Ψ2 (Wt+1 ⊗ Wt+1) , (34)

we can write the conditional expectation ofM as

log E [Mt | F0] =

Γ̄0

t +


Γ̄1

t X1,0 +


Γ̄2

t X2,0

+

Γ̄3

t (X0 ⊗ X0) (35)

where

Γ̄i

t are constant coefficients to be determined.

The dynamics given by (33)–(34) embeds the perturbation
approximation constructed in Section 4 as a special case. The Θ
andΛmatrices needed tomap the perturbedmodel into the above
structure are constructed from the first and second derivatives of
the function ψ(x, w, q) that captures the law of motion of the
model, evaluated at (x̄, 0, 0):

Θ10 = ψq Θ11 = ψx Λ10 = ψw

Θ20 = ψqq Θ21 = 2ψxq Θ22 = ψx Θ23 = ψxx

Λ20 = 2ψwq Λ21 = 2ψxw Λ22 = ψww

where the notation for the derivatives is defined in Appendix A.2.

A.1. Definitions

To simplify work with Kronecker products, we define two
operators vec andmatm,n. For anm×nmatrix H , vec (H) produces
a column vector of length mn created by stacking the columns of
H:

h(j−1)m+i = [vec(H)](j−1)m+i = Hij.

For a vector (column or row) h of length mn, matm,n (h) produces
an m × n matrix H created by ‘columnizing’ the vector:

Hij =

matm,n(h)


ij = h(j−1)m+i.

We drop the m, n subindex if the dimensions of the resulting
matrix are obvious from the context.

For a square matrix A, define the sym operator as

sym (A) =
1
2


A + A′


.

Apart from the standard operations with Kronecker products,
notice that the following is true. For a row vectorH1×nk and column
vectors Xn×1 and Wn×1

H (X ⊗ W ) = X ′

matk,n (H)

′ W
and for a matrix An×k, we have

X ′AW =

vec A′

′
(X ⊗ W ) . (36)

Also, for An×n, Xn×1, Kk×1, we have

(AX)⊗ K = (A ⊗ K) X
K ⊗ (AX) = (K ⊗ A) X .

Finally, for column vectors Xn×1 andWk×1,

(AX)⊗ (BW ) = (A ⊗ B) (X ⊗ W )
and

(BW )⊗ (AX) =

B ⊗ A•j

n
j=1 (X ⊗ W )

where
B ⊗ A•j

n
j=1 = [B ⊗ A•1 B ⊗ A•2 · · · B ⊗ A•n] .

A.2. Concise notation for derivatives

Consider a vector function f (x, w) where x and w are column
vectors of lengthm and n, respectively. The first-derivative matrix
fi where i = x, w is constructed as follows. The kth row [fi]k•
corresponds to the derivative of the kth component of f

[fi (x, w)]k• =
∂ f (k)

∂ i′
(x, w) .

Similarly, the second-derivative matrix is the matrix of vector-
ized and stacked Hessians of individual components with kth row
fij (x, w)


k• =


vec

∂2f (k)

∂ j∂ i′
(x, w)

′

.

It follows from formula (36) that, for example,

x′


∂2f (k)

∂x∂w′
(x, w)


w =


vec

∂2f (k)

∂w∂x′
(x, w)

′

(x ⊗ w)

= [fxw (x, w)]k• (x ⊗ w) .

A.3. Conditional expectations

Notice that a complete-the-squares argument implies that, for
a 1 × k vector A, a 1 × k2 vector B, and a scalar function f (w),

E [exp (B (Wt+1 ⊗ Wt+1)+ AWt+1) f (Wt+1) | Ft ]

= E

exp


1
2
W ′

t+1


matk,k (2B)


Wt+1

+ AWt+1


f (Wt+1) | Ft


=
Ik − sym


matk,k (2B)

−1/2

× exp

1
2
A

Ik − sym


matk,k (2B)

−1 A′


× Ẽ [f (Wt+1) | Ft ] (37)

where ·̃ is a measure under which

Wt+1 ∼ N


Ik − sym

matk,k (2B)

−1 A′,
Ik − sym


matk,k (2B)

−1

.

We start by utilizing formula (37) to compute

Ȳ (Xt) = log E [exp (Yt+1 − Yt) | Ft ]
= Γ0 + Γ1X1,t + Γ2X2,t + Γ3


X1,t ⊗ X1,t


+ log E


exp


Ψ0 + X ′

1t


matk,n (Ψ1)

′Wt+1

+
1
2
W ′

t+1


matk,k (Ψ2)


Wt+1


| Ft


= Γ0 + Γ1X1,t + Γ2X2,t + Γ3


X1,t ⊗ X1,t


−

1
2
log

Ik − sym

matk,k (2Ψ2)


+

1
2
µ′

Ik − sym


matk,k (2Ψ2)

−1
µ
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with µ defined as

µ = Ψ ′

0 +

matk,n (Ψ1)


X1,t .

Reorganizing terms, we obtain

Ȳ (Xt) = Γ̄0 + Γ̄1X1,t + Γ̄2X2,t + Γ̄3

X1,t ⊗ X1,t


where

Γ̄0 = Γ0 −
1
2
log

Ik − sym

matk,k (2Ψ2)


+

1
2
Ψ0

Ik − sym


matk,k (2Ψ2)

−1
Ψ ′

0

Γ̄1 = Γ1 + Ψ0

Ik − sym


matk,k (2Ψ2)

−1 matk,n (Ψ1)


(38)

Γ̄2 = Γ2

Γ̄3 = Γ3 +
1
2
vec


matk,n (Ψ1)

′ Ik − sym

matk,k (2Ψ2)

−1


matk,n (Ψ1)

 ′

.

For the set of parameters P = (Γ0, . . . ,Γ3,Ψ0, . . . ,Ψ2),
Eq. (38) defines a mapping

P̄ = Ē (P ) ,

with all Ψ̄j = 0. We now substitute the law of motion for X1 and
X2 to produce Ȳ (Xt) = Ỹ (Xt−1,Wt). It is just a matter of algebraic
operations to determine that

Ỹ (Xt−1,Wt) = log E [exp (Yt+1 − Yt) | Ft ]

= Γ̃0 + Γ̃1X1,t−1 + Γ̃2X2,t−1 + Γ̃3

X1,t−1 ⊗ X1,t−1


+ Ψ̃0Wt + Ψ̃1


X1,t−1 ⊗ Wt


+ Ψ̃2 (Wt ⊗ Wt)

where

Γ̃0 = Γ̄0 + Γ̄1Θ10 + Γ̄2Θ20 + Γ̄3 (Θ10 ⊗Θ10) (39)
Γ̃1 = Γ̄1Θ11 + Γ̄2Θ21 + Γ̄3 (Θ10 ⊗Θ11 +Θ11 ⊗Θ10)

Γ̃2 = Γ̄2Θ22

Γ̃3 = Γ̄2Θ23 + Γ̄3 (Θ11 ⊗Θ11)

Ψ̃0 = Γ̄1Λ10 + Γ̄2Λ20 + Γ̄3 (Θ10 ⊗Λ10 +Λ10 ⊗Θ10)

Ψ̃1 = Γ̄2Λ21 + Γ̄3


Θ11 ⊗Λ10 +


Λ10 ⊗ (Θ11)•j

n
j=1


Ψ̃2 = Γ̄2Λ22 + Γ̄3 (Λ10 ⊗Λ10) .

This set of equations defines the mapping

P̃ = Ẽ

P̄

.

A.4. Iterative formulas

We can write the conditional expectation in (35) recursively as

log E [Mt | F0] = log E

exp (Y1 − Y0) E


Mt

M1
| F1


| F0


.

Given the mappings Ē and Ẽ , we can therefore express the
coefficients P̄ in (35) using the recursion

P̄t = Ē

P + Ẽ


P̄t−1


where the addition is by coefficients and all coefficients in P̄0 are
zero matrices.

Appendix B. Shock elasticity calculations

In this appendix, we provide details on some of the calculations
underlying the derived shock elasticity formulas.
B.1. Shock elasticities under the convenient functional form

To calculate the shock elasticities in Section 6.1, utilize the for-
mulas derived in Appendix A to deduce the one-period change of
measure

log L1,t = logM1 + log E

Mt

M1
| X1


− log E


M1E


Mt

M1
| X1


| X0 = x


.

In particular, following the set of formulas (39), define

µ0,t =

Ψ1 + Φ∗

1,t−1Λ1,0 + Φ∗

2,t−1Λ20

+ Φ∗

3,t−1 (Θ10 ⊗Λ10 +Λ10 ⊗Θ10)
′

µ1,t = matk,n

Ψ1 + Φ∗

2,t−1Λ21

+ Φ∗

3,t−1


Θ11 ⊗Λ10 +


Λ10 ⊗ (Θ11)•j

n
j=1


µ2,t = sym


matk,k


Ψ2 + Γ̄2Λ22 + Γ̄3 (Λ10 ⊗Λ10)


.

Then it follows that

log L1,t =

µ0,t + µ1,tX1,0

′ W1 + (W1)
′ µ2,tW1

−
1
2
log E


exp


µ0,t + µ1,tX1,0

′ W1 + (W1)
′ µ2,tW1


| F0


.

Expression (37) then implies that

E

L1,tW1 | F0


= E [W1 | F0]

=

Ik − 2µ2,t

−1 
µ0,t + µ1tX1,0


.

The variance ofW1 under the ·̃ measure satisfiesΣt =

Ik − 2sym


matk,k


Ψ2 + Γ̄2Λ22 + Γ̄3 (Λ10 ⊗Λ10)

−1
.

B.2. Approximation of the shock elasticity function

In Section 4, we constructed the approximation of the shock
elasticity function ε (x, t). The first-order approximation is con-
structed by differentiating the elasticity function under the per-
turbed dynamics

ε1

X1,0, t


=

d
dq
α(X0 (q)) ·

E [Mt (q)W1 | X0 = x]
E [Mt (q) | X0 = x]


q=0

= α (x̄) · E

Y1,tW1 | X0 = x


.

The first-derivative process Y1,t can be expressed in terms of its in-
crements, and we obtain a state-independent function

ε1 (t) = α (x̄) · E


t−1
j=1

κx (ψx)
j−1 ψw + κw

′

where κx, ψx, κw, ψw are derivative matrices evaluated at the
steady state (x̄, 0).

Continuing with the second derivative, we have

ε2

X1,0, X2,0, t


=

d2

dq2
α(X0 (q)) ·

E [Mt (q)W1 | X0 = x]
E [Mt (q) | X0 = x]


q=0

= α (x̄) ·


E


Y1,t
2 W1 + Y2,tW1 | F0


− 2E


Y1,tW1 | F0


E

Y1,t | F0

 
+ 2


∂α

∂x′
(x̄)

X1,0 · E


Y1,tW1 | F0


.
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However, notice that

E


Y1,t
2 W1 | F0


= 2


t−1
j=0

κx (ψx)
j X1,0



×


t−1
j=1

κx (ψx)
j−1 ψw + κw

′

E

Y1,tW1 | F0


=


t−1
j=1

κx (ψx)
j−1 ψw + κw

′

E

Y1,t | F0


=

t−1
j=0

κx (ψx)
j X1,0

and thus

E


Y1,t
2 W1 | F0


− 2E


Y1,tW1 | F0


E

Y1,t | F0


= 0.

The second-order term in the approximation of the shock elasticity
function thus simplifies to

ε2

X1,0, X2,0, t


= α (x̄) · E


Y2,tW1 | F0


+ 2


∂α

∂x′
(x̄)

X1,0 · E


Y1,tW1 | F0


. (40)

The expression for the first term on the right-hand side is

E

Y2,tW1 | F0


= E


t−1
j=0


Y2,j+1 − Y2,j


W1 | F0



= 2matk,n (κxw) X1,0 + 2
t−1
j=1


ψ ′

w


ψ ′

x

j−1 matn,n (κxx) (ψx)
j

+ matk,n

κx (ψx)

j−1 ψxw
 

X1,0

+ 2
t−1
j=1

j−1
k=1


ψ ′

w


ψ ′

x

k−1 matn,n

κx (ψx)

j−k−1 ψxx

(ψx)

k

X1,0.

To obtain this result, notice that repeated substitution for
Y1,j+1−Y1,j into the above formula yields a variety of terms but only
those containing X1,0⊗W1 have a nonzero conditional expectation
when interacted withW1.

B.3. Partial shock elasticities

In Section 4.4, we constructed the first-order approximation of
the partial shock elasticity function, and argued that it is equivalent
to the second-order approximation of the shock elasticity function.

Recall that for a shock vector W that is independent ofW ,

ε(x, t) =α(x) ·
E

MtY1,tW1 | X0 = x


E [Mt | X0 = x]

where

Y1,t =

t−1
j=0


Y1,j+1 − Y1,j


=κw (X0,W1, 0, 0) W1

+

t−1
j=1

κx Xj,Wj+1, 0, 0
  j−1

k=1

ψx (Xk,Wk+1, 0, 0)


×ψw (X0,W1, 0, 0) W1

=

t−1
j=0

Y1,j+1 −Y1,j
 W1
where Y1,t = E

Y1,t

W1
′

| Ft


, with Ft being the σ -algebra

generated by (X0,W1, . . . ,Wt). Once W1 is conditioned out, we
proceed with the parameterization of the sensitivity to the shock
W given by (20), and follow the approximations from Section 4.

We construct a first-order approximation of the partial shock
elasticity functionε (x, t) ≈ε0 (x, t)+ qε1 (x, t) .
The zeroth order approximation to the partial shock elasticity
function evaluatesY1,t at the deterministic steady state

ε0 (x, t) = α(x̄) ·


t−1
j=1

κx (x̄, 0, 0, 0) ψx (x̄, 0, 0, 0)
j−1

ψw (x̄, 0, 0, 0)+κw (x̄, 0, 0, 0) .
Notice that derivatives κx and ψx evaluated at the deterministic
steady state coincide with κx and ψx. In line with the interesting
special case from Section 2.5.2, consider the following positioning
of the shock vector W :ψ (x, w, qw, q) ≡ ψ


x, w + qΥ ′w, q (41)κ (x, w, qw, q) ≡ κ


x, w + qΥ ′w, q .

Then the derivatives evaluated at q = 0 satisfy:ψw (x, w, 0, 0) ≡ ψw (x, w, 0)Υ ′κw (x, w, 0, 0) ≡ κw (x, w, 0)Υ ′,

and post-multiplying by Υ yields expressions (14)–(15). Choosing
the exposure direction vector asαh = Υ αh, we obtainε0 (x, t) =

ε1 (x, t). By constructing alternative configurations of the shock
vector W̃ in the functions ψ andκ , the partial elasticity function
allows us to study a richer class of dynamic responses.

In order to construct the first-order approximation, notice that

ε1 X1,0, t


=
d
dq
α(X0)

E

Mt
Y1,t

′
| X0 = x


E [Mt | X0 = x]


q=0

=α(x̄) · E


d
dq

Y1,t
′

q=0
| F0


+
∂α
∂x′

(x̄) X1,0 ·ε0 (x, t) .
The second term on the second line corresponds to one half of the
second term in expression (40). It remains to express the derivative
in the first term. Recall thatY1,1 (q) =κw (X0 (q) , qW1, 0, 0)Y1,j+1 (q)−Y1,j (q) =κx Xj (q) , qWj+1, 0, 0


×


j−1
k=1

ψx (Xk (q) , qWk+1, 0, 0)

ψw (X0 (q) , qW1, 0, 0) ,

j > 0.
We then have

E


d
dq

Y1,1
′

q=0
| F0


= matk,n (κxw) X1,0

and, for j > 0,

E


d
dq

Y1,j+1 (q)−Y1,j (q)
′

q=0
| F0


= ψ ′w ψ ′

x

j−1
matn,n (κxx) E X1,j | F0


+matk,n

κx ψx
j−1 ψxw X1,0

+

j−1
k=1

ψ ′w ψ ′

x

k−1
matn,n

κx ψx
j−k−1 ψxx


E

X1,k | F0


.
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Table 1
Parameterization of the Ai et al. (2012) model. All parameters correspond to a
calibration at the annual frequency.

Preferences

Time preference β 0.971
Risk aversion γ 10
Intertemporal elasticity of substitution ρ−1 2

Technology

Capital share ν 0.3
Depreciation rate of physical capital λ 0.11
Depreciation rate of intangible capital λ∗ 0.11
Weight on physical investment ϕ 0.88
Elasticity of substitution in G(I, K ∗) η 2.5
Elasticity of substitution in H(I∗, K) ξ 5
Scaling parameters H(I∗, K) a1 0.6645

a2 −0.0324

Exogenous shocks

Mean growth rate Γ0 0.02
Γ ∗

0 0
Volatility of the direct shock Ψ [0.0508 0]
Autocorrelation of the long-run risk process (Θ1)1,1 0.925
Volatility of the long-run risk shock Λ1 [0 0.008636]

Collecting the terms and substituting for E

X1,k | F0


, we ob-

tain a result that is analogous to the first term of 1
2ε2


X1,0, X2,0, t


in expression (40):

E


d
dq

Y1,t
′

q=0
| F0



= E

 d
dq

t−1
j=0

Y1,j+1 −Y1,j
′

q=0

| F0

 = matk,n (κxw) X1,0

+

t−1
j=1

ψ ′w ψ ′

x

j−1
matn,n (κxx) ψx

j
+ matk,n

κx ψx
j−1 ψxw X1,0

+

t−1
j=1

j−1
k=1

ψ ′w ψ ′

x

k−1
matn,n

κx ψx
j−k−1 ψxx

 ψx
k

X1,0.

Once again, if we construct ψ and κ to satisfy (41), then all
partial derivatives of κ and ψ with respect to W correspond to
those of κ and ψ with respect to W multiplied by Υ ′. When we
chooseαh = Υ αh, we obtain

ε1 X1,0, t


=
1
2
ε2

X1,0, t


and thus the approximations coincide.

Moreover, an inspection of the above expressions forε0 (x, t)
andε1 x1,·, t reveals that all terms are linear in a single partial
derivative with respect to W . Partial elasticities will thus be addi-
tive in shock configurations, and we can naturally additively de-
compose elasticities by positioning shocks in alternative locations
in the functions ψ andκ .
Appendix C. Parameterization of the Ai et al. (2012) model

For sake of illustration and comparability, we use the same
parameters as used by Ai et al. (2012) in their extended model
with adjustment costs, H (I∗, K), in the accumulation of intangible
capital. The production technology for turning intangible capital
into new vintages of physical capital is specified by the CES
aggregator

G

I, K ∗


=


ϕI1−1/η

+ (1 − ϕ)

K ∗
1−1/η

 1
1−1/η
and the adjustment cost function for the production of new
intangible capital is chosen to be

H

I∗, K


=


a1

1 − 1/ξ


I∗

K

1−1/ξ

+ a2


K

where a1 and a2 are chosen so as to assure that H

Ī∗, K̄


=

HI∗

Ī∗, K̄


= 1 for steady state values Ī∗ and K̄ . The parameter

values are summarized in Table 1.
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